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Abstract: This study proposed a procedure of using the energy method to evaluate the SSI-related
damping effect when the soil–structure interaction (SSI) was considered in a bridge pier system,
which can thus be deemed a soil–foundation–superstructure (SFS) inelastic system. Firstly, the SSI is
implemented by adopting a discrete-time recursive filter approach as well as frequency-dependent
foundation–soil impedance functions to solve for the external soil forces exerted onto the foundation.
Then, by integrating such external soil forces into the motion equations of the SSI-based SFS system,
the energy equations can be formulated during the ground motions. To demonstrate the proposed
procedure, an implementation study involving a bridge pier was carried out, considering two
earthquake recordings. The resultant energy quantities and SSI-related damping ratio shed light on
how the aspects of earthquake characteristics affected the energy dissipation mechanism of the bridge
pier SSI-based SFS system. This proposed procedure renders a promising solution for quantifying
the soil role in the seismic energy dissipation of arbitrary single- and multiple-degree-of-freedom
systems considering the SSI effect. The results obtained show that the SSI effect was suppressed when
the SFS system underwent near-fault earthquakes, which illustrated that the stiffness and damping
contribution from the soil was not pronounced. Furthermore, near-fault earthquakes with large
incremental velocities may lead to a low SSI-related damping ratio (SSIDR).

Keywords: discrete-time infinite impulse response filter (IIRF); soil–foundation–superstructure (SFS)
system; structural inelasticity; energy quantity; SSI-related damping ratio (SSIDR)

1. Introduction

The soil–structure interaction (SSI) is crucial in evaluating structural responses. When
sitting on a flexible soil bed, a system considering the SSI effect exhibits a larger structural
period than the system without SSI consideration. Many studies have investigated the SSI
effects on the dynamic performance of structures [1–6] and on the structural ductility and
strength demand [7–13].

The stiffness and dynamic characteristics of soil are highly sensitive to the properties
of soil contents and superstructure characteristics. To account for these characteristics,
Gazetas [14] proposed a complex frequency-dependent foundation–soil impedance (FSI)
function consisting of both real and imaginary components. The real component indicates
the stiffness and inertia of the supporting soil, whereas the imaginary component reflects the
radiation and material damping of the foundation–soil impedance system. Since Gazetas’
work, numerous studies have been conducted to address various soil modeling issues, such
as the incorporation of embedded, non-circular, non-rigid, or piled foundations [15–17].

The frequency-dependent nature of soil often necessitates frequency-domain analyses
when formulating the equation of motion for the SFS system. However, this approach
can come at the cost of losing the benefits that time-domain analysis offers. Incorporating
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SSI into standard time-history analysis can be achieved by using a method proposed
by Safak [18], which involves approximating the frequency-dependent FSI function in
the time domain using a discrete-time digital filter. This allows for the definition of the
relationship between foundation forces and displacements through resultant time-domain
finite-difference equations. Gash et al. [19] later applied this method to solve the multiple-
degree-of-freedom (MDOF) motion equation of a shear building supported by a rigid disk
foundation and uniform-soil half-space. Another approach was taken by Sung et al. [20],
who used a z-transformed discrete-time infinite impulse response filter as a foundation–soil
impedance function. They derived a transfer function between ground displacement and
foundation shear, which allowed for the analysis of structural responses using the base
force propagating function.

The structural damping mechanism typically results in the dissipation of energy,
which can be quantified by the viscous damping ratio. This ratio takes into account all
sources of energy dissipation and condenses them into a few basic modal parameters.
This approach streamlines the motion equations and provides trustworthy outcomes,
making it widely employed in both academic research and practical design applications. To
determine radiation damping, the ATC3-06 [21] and ASCE [22] standards utilize Veletsos’
technique [23] for assessing the structural and soil parameters. These standards propose
that when evaluating foundation damping, it is important to account for both the radiation
damping and soil material damping’s energy dissipation effects.

Among these two damping items, the radiation damping is dependent on the geometry
of the foundation–soil contact area, the structural properties, and the soil properties. The
soil material damping can be calculated from the stress–strain response in a steady-state
cyclic loading using a variety of testing techniques. However, this method is only accurate
as the system is in resonance [24]. In addition, due to the frequency-dependent properties
of soil, the soil material damping and radiation damping cannot be directly added into the
seismic numerical analysis.

Time integration and motion equation are often used for solving the energy equation
of motion. By constructing and solving the energy motion equation, McKevitt et al. [25]
evaluated the input energy, hysteretic energy, and the ratio of the cumulative hysteretic
energy to the input energy for both single-degree-of-freedom (SDOF) and MDOF systems
subjected to four earthquake records. They concluded that the input energy dissipated by
the hysteretic mechanism was approximately the same for all four earthquake records.

Uang et al. [26] proposed two procedures for computing the earthquake input energy:
one procedure was based on the absolute motion, whereas the other was based on the
relative motion. Bruneau et al. [27] believed that the input energy derived from the relative
motion method was more sensible than that from the absolute motion method. Hu et al. [28]
calculated the additional equivalent damping ratio of an external damping device through
energy equations. That is, the ratio of the energy consumption of inherent damping to
that of the added dampers can be obtained under external excitations in the time-history
analysis. Unlike the strain energy method, this method can eliminate the effect of the
excitation frequency on the additional equivalent damping ratio.

From the literature reviewed above, many studies have investigated SSI’s effects,
inelastic structural behaviors, near-fault earthquakes, and energy dissipation considering
SSI-related damping sources. However, few papers have been concerned with the following
aspects together: (1) the implementation of the SSI effect through a frequency-dependent
FSI function; (2) the energy quantities of yielding energy due to structural inelasticity and
SSI-related energy; and (3) near-fault ground motions, which induce different structural
responses to far-field earthquakes.

In view of this, this study aimed to develop a procedure for evaluating the SSI-related
damping effect, through an energy perspective, on the responses of bridge pier structures.
This evaluation procedure first constructs a soil–foundation–superstructure (SFS) system by
expanding an inelastic SDOF system to include a frequency-dependent SSI model via the
discrete-time infinite impulse response filter (IIRF) technique. Then, based on the motion
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equations of the SSI-based SFS system, the energy equations were formulated to distinguish
distinct energy quantities in a quantitative manner, particularly the SSI-related energy. The
SSI-related damping ratio (SSIDR) was also introduced herein. An implementation study
was conducted not only to demonstrate the proposed evaluation procedure, but also to
compare the response variance between distinct input earthquake recordings.

This paper proceeds as follows. In Section 2, the methodology of the evaluation
procedure is developed. The implementation study is in Section 3. Conclusions are
addressed in the last section.

2. Methodology
2.1. Soil–Foundation–Superstructure System

Figure 1a shows an SDOF system sitting on fixed base. The SSI effect is not considered
by assuming the fixed-base SDOF system subject to the free-field ground motion. To
consider the SSI effect, a 3DOF SSI-based SFS system was constructed by expanding the
SDOF system, comprising the underlying soil, foundation, and superstructure, as shown
in Figure 1b. The SFS system includes a set of 3DOF, which encompasses the horizontal
displacement us of the superstructure mass, the horizontal displacement uFIM, and the
rotational angle θf at the foundation level.
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Figure 1. Structural models: (a) the fixed-base SDOF system and (b) the SSI-based SFS system.

In Figure 1b, ms, cs, and ks denote the mass, damping, and stiffness of the superstruc-
ture, respectively, us is the mass-to-ground relative displacement, and uf is the foundation-
to-ground relative displacement. The collective soil–foundation dynamic stiffness and
damping properties are approximated as the transitional and rotational forces—fh and
fr—at the foundation level. Figure 2 illustrates the process flowchart for determining the
transitional and rotational forces using the IIRF technique.

In this context, the method proposed by Veletsos et al. [16], Sieffert et al. [24], and
Safak [18] was utilized to calculate the transitional and rotational forces, which are not
explicitly discussed for the sake of brevity.
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2.2. Motion Equations Considering SSI Effects and Superstructure’s Inelasticity

Equation (1) is used to formulate the equation of motion for the 3DOF SSI-based SFS
system at a specific time instance n.


ms 0 0

0 m f 0

0 0 I f




..
us,n
..
u f ,n
..
θ f ,n

+


cs −cs −csh

−cs cs csh

−csh csh csh2




.
us,n
.
u f ,n
.
θ f ,n

+


ks −ks −ksh

−ks ks ksh

−ksh ksh ksh2




us,n

u f ,n

θ f ,n


+


0

fh,n

fr,n

 = −


ms

m f

0


..
ug,n

(1)

where

ms = mass of the superstructure
mf = mass of the foundation
If = moment inertia of the foundation
cs = damping of the superstructure
ks = stiffness of the superstructure

The terms us, u f , θ f and
.
us,

.
u f ,

.
θ f and

..
us,

..
u f ,

..
θ f denote the displacement or rotational

angle and their first- and second-order derivatives, and
..
ug is the ground acceleration. The

subscripts s and f represent structure- and foundation-related, respectively.
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Equation (1) is intentionally restructured into the format of Equation (2) by relocating
the terms f h,n and f r,n to the right-hand side of the equation. The terms f h,n and f r,n, as
the partial contents of the horizontal force fh,n and moment fr,n, respectively, can be derived
from the known quantities uf,n−1, θf,n−1, fh,n−1 and fr,n−1 of the previous time step. Such
practice can avoid recalculation of f h,n and f r,n during the time-wise iteration, thereby
enhancing the efficiency of the overall calculation process.


ms 0 0

0 m f 0

0 0 I f




..
us,n
..
u f ,n
..
θ f ,n

+


cs −cs −csh

−cs cs csh

−csh csh csh2




.
us,n
.
u f ,n
.
θ f ,n

+


ks −ks −ksh

−ks ks + bh,0 ksh

−ksh ksh ksh2 + br,0




us,n

u f ,n

θ f ,n


= −


ms

m f

0


..
ug,n +


0

f h,n

f r,n


(2)

f h,n = −
p

∑
j=1

bh,ju f ,n−j +
k

∑
i=1

ah,i fh,n−i (3)

f r,n = −
p

∑
j=1

br,jθ f ,n−j +
k

∑
i=1

ar,i fr,n−i (4)

Literally, Equation (2) represents the motion equation obtained under the assumption of a
linear system. However, to account for the nonlinear behavior of the superstructure, the
Takeda hysteresis model illustrated in Figure 3 was utilized to depict the force-displacement
relationship of the superstructure during cyclic elastic–plastic evolution. The superstruc-
ture’s stiffness ks in Equation (2) is no longer a constant but a variable that changes with the
deformation process associated with loading, unloading, and reloading. Figure 3 demon-
strates that this study defines several stiffness components, including the initial stiffness k0,
the post-yielding stiffness factor r, and power law constant α.
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2.3. Formulation of Energy Equations

To derive the mechanical energy quantities of the defined SSI-based SFS system during
a ground motion excitation, Equation (1) is reorganized into the following three equilibrium
equations for a particular time instant t:

ms
..
us(t) + cs

.
us(t)− cs

.
u f (t)− csh

.
θ f (t) + ksus(t)− ksu f (t)− kshθ f (t) = −ms

..
ug(t) (5)

m f
..
u f (t)− cs

.
us(t) + cs

.
u f (t) + csh

.
θ f (t)− ksus(t) + ksu f (t) + kshθ f (t) + fh = −m f

..
ug(t) (6)

I f
..
θ f (t)− csh

.
us(t) + csh

.
u f (t) + csh2

.
θ f (t)− kshus(t) + kshu f (t) + ksh2θ f (t) + fr = 0 (7)
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Through integration of Equations (5)–(7) w.r.t. us(t), uf(t), and θf(t), respectively, the
energy equation for each degree of freedom is obtained:∫

ms
..
us(t)dus +

∫
cs

.
us(t)dus −

∫
cs

.
u f (t)dus −

∫
csh

.
θ f (t)dus

+
∫

ksus(t)dus −
∫

ksu f (t)dus −
∫

kshθ f (t)dus = −
∫

ms
..
ug(t)dus

(8)

∫
m f

..
u f (t)du f −

∫
cs

.
us(t)du f +

∫
cs

.
u f (t)du f +

∫
csh

.
θ f (t)du f

−
∫

ksus(t)du f +
∫

ksu f (t)du f +
∫

kshθ f (t)du f +
∫

fhdu f = −
∫

m f
..
ug(t)du f

(9)

∫
I f

..
θ f (t)dθ f −

∫
csh

.
us(t)dθ f +

∫
csh

.
u f (t)dθ f +

∫
csh2

.
θ f (t)dθ f

−
∫

kshus(t)dθ f +
∫

kshu f (t)dθ f +
∫

ksh2θ f (t)dθ f +
∫

frdθ f = 0
(10)

From the view of energy dissipation mechanism, the above energy quantities can be
classified into kinetic energy, Ek(t), damping energy, Ed(t), recoverable strain energy, Es(t),
yielding energy, EY(t), SSI-related energy, ESSI-related(t), and input energy, Ein(t), as defined
in Equations (11)–(15).

The kinetic energy is associated with the work undertaken by the inertial forces in the
components of the system. The recoverable strain energy and yielding energy are depen-
dent on the structural stiffness. The seismic input energy is primarily dissipated through
the hysteresis damping of the superstructure and the SSI effect caused by supporting soil,
which is alternatively represented through the work undertaken by the transitional and
rotational foundation forces in this study.

Ek(t) =
∫ us

0
ms

..
us(t)dus +

∫ u f

0
m f

..
u f (t)du f +

∫ θ f

0
I f

..
θ f (t)dθ f (11)

Ed(t) =
∫ us

0 cs
.
us(t)dus −

∫ us
0 cs

.
u f (t)dus −

∫ us
0 csh

.
θ f (t)dus

−
∫ u f

0 cs
.
us(t)du f +

∫ u f
0 cs

.
u f (t)du f +

∫ u f
0 csh

.
θ f (t)du f

−
∫ θ f

0 csh
.
us(t)dθ f +

∫ θ f
0 csh

.
u f (t)dθ f +

∫ θ f
0 csh2

.
θ f (t)dθ f

(12)

EY(t) + Es(t) =
∫ u

0 ksus(t)dus −
∫ u

0 ksu f (t)dus −
∫ u

0 kshθ f (t)dus

−
∫ u f

0 ksus(t)du f +
∫ u f

0 ksu f (t)du f +
∫ u f

0 kshθ f (t)du f

−
∫ θ f

0 kshus(t)dθ f +
∫ θ f

0 kshu f (t)dθ f +
∫ θ f

0 ksh2θ f (t)dθ f

(13)

ESSI−related(t) =
∫ u f

0
fh(t)du f +

∫ θ f

0
fr(t)dθ f (14)

Ein(t) = −
∫ us

0
ms

..
ug(t)dus −

∫ u f

0
m f

..
ug(t)du f (15)

Based on the energy conservation theorem, the energy equilibrium equation can be
written as

Ein(t) = Ek(t) + Ed(t) + Es(t) + EY(t) + ESSI−related(t) (16)

2.4. Determination of SSI-Related Damping Ratio

This study used a work–energy theorem equation to determine the SSI-related Damp-
ing Ratio (SSIDR), as presented in Equation (17). The SSI-related energy dissipated is
equalized with the energy dissipated by an equivalent viscous system during one vibration
cycle:

ESSIDR(t) =
∫

fSSI−relateddu =
∫ 2π/ω

0
(cSSI−related

.
u)

.
udt =

∫ 2π/ω

0
cSSI−related

.
u2dt = 2πξSSI−related

ω

ωn
ku2

0 (17)

where

ω = circular frequency of excitation
ωn = natural circular frequency of the system
u0 = maximum displacement of the structure in one cycle
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ξSSI-related = SSI-related Damping Ratio (SSIDR)
cSSI-related = SSI-related damping coefficient in one loading cycle = 2kξSSI−related/ωn

In the paper, the frequency-related impedance function is presented in the time domain
through the aforementioned IIRF system, and the energy equation expressed by applying
the SSIDR is defined in Equation (18). The energy entity ESSIDR signifies the energy
dissipated due to SSI effect during a period of [0, t].

ESSIDR(t) =
∫ t

0
fSSI−related

.
udt =

∫ t

0
cSSI−related

.
u2dt =

2ξSSI−relatedk
ωn

∫ t

0

.
u2dt (18)

Meanwhile, the energy dissipated by the inherent damping of the superstructure can
be expressed as

Ed(t) =
∫ t

0
c

.
u2dt =

2ξ0k
ωn

∫ t

0

.
u2dt (19)

where ξ0 denotes the inherent damping ratio of the superstructure. Accordingly, the SSIDR
can then be defined as

ξSSI−related(t) = ξ0
ESSIDR

Ed
= ξ0

∫ t
0 fd

.
udt∫ t

0 c
.
u2dt

(20)

When under an earthquake excitation, the ξSSI-related value varies as the time elapses.
To circumvent the needs for determining the energy quantities and ξSSI-related at discrete
time instants, this study calculated the ξSSI-related in the form of the total system energy.

3. Implementation Study

A procedure of using the energy method to evaluate the SSI-related damping in a bridge
pier system was developed based on the methods and techniques elaborated in Section 2. This
section presents a bridge pier case to demonstrate an implementation procedure.

Theoretically, the proposed SSI-based SFS system is developed by expanding an SDOF
model to include the SSI effects (e.g., damping) via the IIRF technique. As the base stone,
the accuracy of the fixed-base SDOF model is of great importance.

Therefore, the case study is conducted by first referencing a previous experimental
bridge pier study to verify the feasibility of the fixed-base SDOF model, and then conducting
seismic analyses on the IIRF-integrated SFS system to explore the SSI effects on the relative
displacement responses. Furthermore, great emphasis was laid on the energy dissipation
mechanism of the SSI-based SFS system and the role of SSI-related energy dissipating in a
quantitative manner (i.e., SSIDR) when different earthquake recordings were considered.

3.1. Experimental Study of Bridge Pier

To illustrate the proposed method and provide a comparison object, an experimental
study by Chang et al. [29] was referenced. Chang et al. conducted a series of experimental
studies on the hysteresis performance of bridge columns under particular ground excita-
tions. The experimental studies involved three identical reinforced-concrete (RC) bridge
piers (Specimens A–C), which were designed according to the 1995 Taiwan Bridge Design
Code, and the geometry and reinforcement details of the as-built specimens are illustrated
in Figure 4. The loading conditions were designed so that Specimen A was subjected to
a cyclic loading at the specimen’s bottom, and that Specimens B and C were during real
earthquake recordings. The masses of 27,500 kg and 68,000 kg were applied via a load cell
to Specimens B and C, respectively.
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In Chang et al.’s study, the loading conditions of Specimens B and C adopted the
ground motion data recorded during the 1999 Chi-Chi Earthquake, Taiwan, at the stations
of TCU075 and TCU102. Figures 5 and 6 separately display the 30-s ground acceleration
and velocity time-histories of the earthquake TCU075 recording with the PGA = 0.8 g and
TCU102 recording with the PGA = 0.7 g.
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Figure 5. Ground motion time-histories of Station TCU075: (a) acceleration and (b) velocity time-history.
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Figure 6. Ground motion time-histories of Station TCU102: (a) acceleration and (b) velocity time-history.

It is noted that both ground excitation records exhibit pulse-like velocity patterns. For
example, in the TCU075 ground motion, the ground velocity spikes from nearly zero to
its maximum of 280.43 cm/s within a short time duration and then transits to 54.26 cm/s
in the opposite direction, and the maximum incremental velocity (MIV) is 334.69 cm/s
(+280.43→−54.26 cm/s). However, TCU102 exhibits a rather opposite fashion in that the
velocity instantaneously transits from the upper side peak of 164.34 cm/s to the bottom
side peak of 201.99 cm/s, while the MIV is 366.33 cm/s (+164.34→−201.99 cm/s).

The variance between the TCU075 and TCU102 recordings lay in the fact that the
ground velocity from the upper side peak had a large intensity and the bottom side peak
had a moderate intensity in the TCU075 recording, i.e., large-to-moderate MIV, and, by
contrast, in the TCU102 recording, the ground velocity from the upper side peak had a
large intensity to the bottom side peak with a large intensity, i.e., large-to-large MIV.

3.2. Verification of Bridge Pier Fixed-Base SDOF System

According to the results of Specimen A subjected to the cyclic loading, the lateral
yielding force Fy = 411.68 kN with the yielding displacement ∆y = 42.23 mm, and the
ultimate force Fu = 432.69 kN with the ultimate displacement ∆u = 150 mm. Based
on the results, a Takeda’s model (Figure 3) can be formulated with k0 = 9748.78 MPa,
r = 0.06, and a = 0.5 to present the bridge pier specimens’ elastic–plastic behavior. For the
dynamic characteristics of Specimens B and C, the elastic structural period is 0.3337 s and
0.5248 s, respectively.

The fundamental dynamic characteristic of the test can be modeled by an SDOF system
using lumped mass and experimental stiffness. A MATLAB-compiled simple fixed-base
SDOF bridge pier model that incorporated the derived Takeda’s model was constructed,
with the superstructure’s damping ratio of 5%. Dynamic simulations were then conducted
by subjecting the inelastic fixed-base SDOF pier model to the earthquake TCU075 and
TCU102 recordings (Figures 5 and 6).

The resultant restoring force and mass-to-foundation relative displacement are dis-
played in Figures 7 and 8, and the corresponding results of Chang et al.’s study are also
depicted for a comparison purpose. According to the results during the earthquake TCU075
recording (large-to-moderate MIV), the maximum lateral restoring force and displacement
in the experiment study were 466.97 kN and 68.32 mm, occurring at t = 14.52 s (Figure 7),
in contrast to the analytical counterpart of 426.86 kN and 68.18 mm.
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Figure 7. Comparison between analytical and experimental results subjected to ground motion
recording of Station TCU075: (a) hysteretic loops and (b) displacement time-history.
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Figure 8. Comparison between analytical and experimental results subjected to ground motion
recording of Station TCU102: (a) hysteretic loops and (b) displacement time-history.

Likewise, for the earthquake TCU102 recording (large-to-large MIV), the maximum lat-
eral restoring force and displacement in the experiment were 476.78 kN and
60.98 mm at t = 14.79 s, while the analytical responses, simultaneously, were 429.08 kN and
72.66 mm (Figure 8). Because pronounced concrete cover spalling and reinforcement buck-
ling occurred at the bottom of the specimen during the test, the test was halted at t = 16.27 s
to avoid unpredictable catastrophes.

Given the resemblance of the hysteresis loops and displacement time-history, as well
as the consistency of the maximum lateral restoring force and displacement, it is sensible to
deduce that the inelastic fixed-base SDOF bridge pier model is reliable for later use as the
foundation for developing the IIRF-integrated SSI-based SFS system.

3.3. Dynamic Analyses of Bridge Pier SFS System

By applying the methods stated in Sections 2.1 and 2.2, the verified inelastic fixed-base
SDOF bridge pier model was expanded to include the SSI effect via the discrete-time IIRF
technique to develop the target SFS system. Figure 9 and Table 1 exhibit the modeling
parameters for the soil and the foundation.
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Figure 9. Geometry details of the bridge pier specimens.

Table 1. Modeling Parameters of the Superstructure, Foundation, and Soil.

Superstructure

Superstructure Height hs (m) 3.55
Superstructure Cross Section (m) 0.75 × 0.6

Superstructure Stiffness (MPa) 9748.78
Superstructure’s Damping Ratio 0.05
Post-yielding Stiffness Factor r 0.06

Power Law Constant α 0.5

Foundation

Foundation Height hf (m) 0.9
Foundation Mass Wf (kg) 27,143

Foundation Diameter df (m) 4

Soil

Shear Modulus G (kN/m2) 29,964
Shear Wave Velocity Vs (m/s) 365

Poisson’s Ratio v 1/3

This study employed soil conditions with the shear wave velocity VS = 365 m/s. The
superstructure of the SSI-based SFS model was assumed to be supported by a rigid disk
foundation and an underlying uniform-soil half-space. The rigid disk foundation is 0.9 m
in height and 4 m in diameter, with a mass of 27,143 kg.

Figures 10 and 11 and Table 2 present the analytical results of the SSI-based SFS
simulation during the earthquake TCU075 or TCU102 recordings, in contrast to those of
the corresponding fixed-base SDOF simulation.

Table 2. Range of the mass-to-foundation relative displacement (mm) of the SSI-based SFS and
Fixed-base SDOF systems during the earthquake TCU075 and TCU102 recordings.

Earthquake Recording SSI-Based SFS System Fixed-Base SDOF System

TCU075 +57.84~−72.04 +58.23~−70.14
TCU102 +104.5~−89.13 +67.63~−79.01

Note: the positive and negative signs denote the fore- and aft-movement directions, respectively.
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Figure 10. Analytical result comparison between SSI-based SFS and Fixed-base SDOF systems during
ground motion recording of Station TCU075: (a) hysteretic loops and (b) displacement time-history.
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Figure 11. Analytical result comparison between SSI-based SFS and Fixed-base SDOF systems during
ground motion recording of Station TCU102: (a) hysteretic loops and (b) displacement time-history.

From the above results, it was found that:

1. As to the earthquake TCU075 recording (large-to-moderate MIV), when the SSI effect
was considered, the hysteresis loops and the mass-to-foundation relative displacement
time-history displayed good resemblance between the SSI-based SFS and fixed-base
SDOF systems.

2. As to the earthquake TCU102 recording (large-to-large MIV), the SSI-based SFS system
exhibited wider hysteresis loops and larger superstructure displacement responses
than the fixed-base SDOF system. This indicated an amplification effect of the soil on
the earthquake excitation and the corresponding superstructure responses.

In this study, frequency domain analysis was conducted on the structural system
responses of the Fixed-base SDOF System and SSI-based SFS System using Fourier trans-
form. The influence of the SSI effect on the structural period was investigated during
different near-fault ground motions. Figures 12 and 13 show the Fourier spectra of the
Fixed-base SDOF System and SSI-based SFS System, respectively, for the earthquake record-
ings TCU075 and TCU102. The structural periods are summarized in Table 3. Compared
with the elastic period, the structural periods are larger as the structure enters the inelastic
phase. Additionally, the results show that considering SSI can prolong the structural period
(from 0.390 s to 0.410 s) during the earthquake TCU075 recording (large-to-moderate MIV).
Meanwhile, during the earthquake TCU102 recording (large-to-large MIV), there is no
difference in the Fourier transform of structural responses between the SFS System and
Fixed-base SDOF System (0.640 s). This indicates that the SSI effect is suppressed during
the earthquake TCU102 recording (large-to-large MIV).
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Table 3. The structural period of the SSI-based SFS and Fixed-base SDOF systems during the
earthquake TCU075 and TCU102 recordings.

Earthquake Recording Fixed-Base SDOF System SSI-Based SFS System

TCU075 0.390 s 0.410 s
TCU102 0.640 s 0.640 s

The above observation exhibits the SSI effects on the displacement response of the
superstructure in a qualitative manner, not rending an overview performance of the su-
perstructure, foundation, and soil as a whole. The next section attempts, from an energy
viewpoint, to discuss the SSI-based SFS system energy dissipation mechanism and the role
of soil in energy dissipation in a quantitative manner.

3.4. Energy Time-History Analysis Considering SSI Effect

According to the formulation of energy equation mentioned in Section 2.4 and the
above analytical results of the SSI-based SFS system subjected to two near-fault earthquake
recordings, this study obtained the separate energy quantities of damping energy, Ed,
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recoverable strain energy, Es, yielding energy, EY, SSI-related energy, ESSI-related, and input
energy, Ein, as defined in Equations (12)–(15) and shown in Figures 14 and 15.
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Figure 14. Energy time-histories of the SSI-based SFS system during ground motion recording of
Station TCU075.
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Station TCU102.

It can be seen from Figure 14 that as the time elapses from the initiation of the earth-
quake TCU075 recording (large-to-moderate MIV), the input energy Ein gradually increases
till a considerable leap occurs at t = 14–15 s. Such leaping fashion simultaneously happens
to the energy sum of recoverable strain energy Es and yielding energy EY; this indicates
that the superstructure enters its inelastic domain concurrently. Notably, the maximum
velocity pulse (Figure 5b) does not coincide with the energy leaping.

Likewise, Figure 15 gives the energy time history of the SSI-based SFS system during
the earthquake TCU102 recording (large-to-large MIV). The maximum velocity pulse
occurred at approximately t = 16 s (Figure 6b), followed by an excitation cease considering
the prevention of possible structural catastrophe, as shown in Figure 8b. In other words,
the original earthquake TCU102 recording was modified by truncating the excitation trace
at t = 16.27 s, after which the ground motion ceased.

In the TCU102 earthquake recording case, no pronounced SSI-related energy dissi-
pation appears (Figure 15). Such variance may be attributable to the fact that the two
earthquake recordings have distinct ground motion traces. As shown in Figure 6b, TCU102
exhibits a fashion that the velocity instantaneously transits from one side peak to the other
side peak, with a velocity change of 366.33 cm/s. Such sudden large-to-large MIV may



Sustainability 2023, 15, 7401 15 of 17

cause the soil to not be able to react in a short time and the structure suddenly reaches its
failure limit.

Table 4 presents the energy quantities integrated over time regarding the earthquake
recordings, and the percentage of the total input energy is determined and presented in
Table 4.

Table 4. Summary of Energy Quantities in the SSI-based SFS Systems.

Earthquake
Recording

Energy Quantities of the SSI-Based SFS System (kN-m-s)
(The Values in the Parentheses Signify the Percentage of the Total Input Energy)

Ek Ed Es+ EY ESSI-related

TCU075 30.240
(1.51%)

1293.964
(64.797%)

624.996
(31.297%)

47.764
(2.392%)

TCU102 29.956
(9.091%)

121.821
(36.970%)

172.764
(52.431%)

4.969
(1.508%)

According to Table 4, conclusions can be drawn as follows:

1. During the earthquake TCU075 recording (large-to-moderate MIV), the SSI-related
energy ESSI-related took up only 2.4% of the total earthquake energy, whereas the
damping energy Ed and the strain and yielding energy Es + EY accounted for 64.8%
and 31.3%, respectively.

2. During the earthquake TCU102 recording (large-to-large MIV), the velocity pulse
shifted too fast to initiate the SSI-related energy dissipation action; therefore, the SSI-
related energy percentage was rather small, i.e., ESSI-related = 1.51% Ein. Given the fact
that the strain and yielding energy Es + EY = 52.34%, it is sensible to deduce that the
superstructure undertook the majority of energy by exerting its inelastic performance,
with minor SSI effects on energy consumption.

3.5. SSIDR Determination

Through the IIRF method, the frequency-dependent characteristics of the soil can
be transformed into the time domain for dynamic analysis. As a result, the SSI effect
(including the dynamic stiffness and damping property of the soil) were approximated as
the transitional force and rotational moment at the foundation level. Therefore, the work
done by the transitional force and rotational moment can be regarded as the SSI-related
energy of the SSI-based SFS system.

According to the characteristics of cumulated damping and recoverable strain energy,
the SSI-related energy illustrated in Figure 16 can be disassembled into the recoverable
strain energy and cumulated damping energy.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 18 
 

According to the characteristics of cumulated damping and recoverable strain en-
ergy, the SSI-related energy illustrated in Figure 16 can be disassembled into the recover-
able strain energy and cumulated damping energy. 

 
Figure 16. SSI-related energy time-history of the SSI-based SFS system. 

Because the SSIDR is a variable during the time-history process, this study used the 
total system energy to calculate the representative SSIDR during a specific earthquake. 
The resultant SSIDRs are presented in Table 5, and a solid trend can be found: The small 
SSIDR values during the earthquake TCU102 recording (large-to-large MIV) indicated mi-
nor SSI effects on the system, and that the majority of the earthquake energy was dissi-
pated through the inelastic performance of the superstructure. This observation is con-
sistent with the findings in Section 3.3, where the SFS system’s structural period was not 
prolonged due to the SSI effect during the earthquake TCU102 recording (large-to-large 
MIV), indicating that the SSI effects are suppressed during near-fault earthquakes with 
large-to-large MIV characteristics. 

Table 5. Summary of the SSIDR in the SSI-based SFS system. 

Earthquake Recording SSIDR (%) 
TCU075 

(large-to-moderate velocity transition) 0.167 

TCU102 
(large-to-large velocity transition) 

0.066 

4. Conclusions 
This study proposed a procedure of using the energy method to evaluate the SSI-

related damping effects on the responses of bridge pier structures. Through the IIRF 
method, the frequency-dependent SSI function was transferred into the time domain to 
formulate the motion equation of the bridge pier SSI-based SFS inelastic system. Based on 
the motion equation, the energy dissipation mechanism was formulated to explore the 
SSI-related and superstructure energy distribution separately. Taketa’s model, with the 
model parameters calibrated experimentally, was used to account for the elastic–plastic 
behavior of the bridge pier system. Therefore, the energy consumed by the superstructure 
yielding can be quantitatively determined. Finally, the SSIDR was obtained from the in-
trinsic damping ratio and the ratio of the SSI-related energy to the superstructure damp-
ing energy. Instead of achieving the SSIDR at each instant, this study determined an over-
all SSIDR based on the total system energy scale. 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 5 10 15 20 25 30

E S
SI

-r
el

at
ed

(N
-m

)

Time (s)

Soil Energy

Soil Damping Energy

SSI-related Energy

ESSI-related (t)SSI-related Cumulated Damping Energy

Figure 16. SSI-related energy time-history of the SSI-based SFS system.



Sustainability 2023, 15, 7401 16 of 17

Because the SSIDR is a variable during the time-history process, this study used the
total system energy to calculate the representative SSIDR during a specific earthquake. The
resultant SSIDRs are presented in Table 5, and a solid trend can be found: The small SSIDR
values during the earthquake TCU102 recording (large-to-large MIV) indicated minor
SSI effects on the system, and that the majority of the earthquake energy was dissipated
through the inelastic performance of the superstructure. This observation is consistent with
the findings in Section 3.3, where the SFS system’s structural period was not prolonged
due to the SSI effect during the earthquake TCU102 recording (large-to-large MIV), indicat-
ing that the SSI effects are suppressed during near-fault earthquakes with large-to-large
MIV characteristics.

Table 5. Summary of the SSIDR in the SSI-based SFS system.

Earthquake Recording SSIDR (%)

TCU075
(large-to-moderate velocity transition) 0.167

TCU102
(large-to-large velocity transition) 0.066

4. Conclusions

This study proposed a procedure of using the energy method to evaluate the SSI-
related damping effects on the responses of bridge pier structures. Through the IIRF
method, the frequency-dependent SSI function was transferred into the time domain to
formulate the motion equation of the bridge pier SSI-based SFS inelastic system. Based on
the motion equation, the energy dissipation mechanism was formulated to explore the SSI-
related and superstructure energy distribution separately. Taketa’s model, with the model
parameters calibrated experimentally, was used to account for the elastic–plastic behavior of
the bridge pier system. Therefore, the energy consumed by the superstructure yielding can
be quantitatively determined. Finally, the SSIDR was obtained from the intrinsic damping
ratio and the ratio of the SSI-related energy to the superstructure damping energy. Instead
of achieving the SSIDR at each instant, this study determined an overall SSIDR based on
the total system energy scale.

Furthermore, an implementation study was conducted based on a previous experimen-
tal study to compare the response variance between distinct input earthquake recordings,
and the primary findings are briefly summarized as follows:

1. Earthquakes with large-to-large MIV may lead to low SSIDRs. For those with large-to-
large MIV features, considering the decrease in the SSI effect, the structure may be
exerted towards more nonlinear behaviors.

2. Regardless of the earthquake TCU075 or TCU102 recording, the SSI effect was suppressed
when the SFS system underwent near-fault earthquakes. This phenomenon illustrated
that the stiffness and damping contribution from the soil was not pronounced.
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