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Abstract: With advancements in bionanotechnology, the field of nanobiocatalysts has undergone
rapid growth and revolutionized various nanomaterials as novel and fascinating nanocarriers for
enzyme immobilization. Nanotubes, nanofibers, nanopores, nanoparticles, and nanocomposites have
been successfully developed and used as nanocarriers. The construction of robust nanobiocatalysts
by combining enzymes and nanocarriers using various enzyme immobilization techniques is gaining
incredible attention because of their extraordinary catalytic performance, high stability, and ease of
reusability under different physical and chemical conditions. Creating appropriate surface chemistry
for nanomaterials promotes their downstream applications. This review discusses enzyme immobi-
lization on nanocarriers and highlights the techniques, properties, preparations, and applications of
nanoimmobilized enzymes.

Keywords: enzyme carrier; nanoimmobilized enzyme; nanobiocatalyst; nanomaterial; enzyme assay

1. Introduction

Enzymes are macromolecular biocatalysts composed of complex globular proteins
that play vital roles in all stages of metabolism and biochemical processes in a living
system [1]. In addition, enzymes are a significant part in the latest “white biotechnology”
trends, including sustainable energy and green chemistry. Enzymes are highly efficient
and specific biocatalysts for many reactions, owing to their ability to accelerate chemical
reactions by turn-over under mild conditions with high substrate specificity. Enzyme and
substrate reactions occur primarily by lock and key or induced fit mechanisms. Biologically
active enzymes contain thousands of atoms in specific arrangements that catalyze various
biochemical interactions in living biological cells [2]. They have been widely used in
various applications in daily life, such as biomedicine, food, biofuel, diagnostics, and
bioremediation. Nevertheless, widespread industrial applications and desirable properties
are usually limited by a lack of long-term operational stability, recovery, recyclability, and
shelf-life. These conditions leave room for further enhancement. Enzyme immobilization is
the most efficient method for solving these bottlenecks, resulting in enzyme application in
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biotechnological processes. Considering different parameters for enzyme immobilization
can accelerate the efficient utilization of enzymes [3].

2. Enzyme Immobilization and Stabilization

The term “enzyme immobilization” is defined as “enzymes physically confined or
localized in a certain region of space with retention of their catalytic activities and can
be used repeatedly and continuously.” Enzyme immobilization has been discovered and
used since 1916, as Nelson and Griffin found that “invertase” can absorb charcoal and
hydrolyze sucrose [4]. This discovery proved that the enzymatic activity of invertase is
not hindered when it is adsorbed on a solid support, such as aluminum hydroxide or
charcoal [5]. The dawn of immobilized enzymes has led to the advancement of recently
available enzyme immobilization techniques. An ideal enzyme immobilization system has
three major components including mode of attachment, enzyme, and carrier. A number
of advantages, such as an increase in volume-specific enzyme loading, ease of enzyme
reusability in downstream processing, and improved enzyme stability are the main driving
forces for enzyme immobilization [6]. Various enzyme immobilization techniques, such
as adsorption, crosslinking, and covalent binding, have been developed [7]. Enzymes
immobilized in/onto nanomaterials have been established as nanocarriers. Nanostruc-
tured materials, such as nanotubes, nanofibers, nanoporous materials, nanoparticles and
nanocomposites, are used as enzyme carriers. Nanomaterials have significant advantages
owing to their large surface area, which increases catalytic efficiency for commercial ap-
plications of nano immobilized enzymes, facilitating reaction kinetics and higher enzyme
loading [8]. Hence, the design and application of nanomaterials for enzyme immobilization
are essential areas of interest.

The stabilization of immobilized enzymes has been widely studied widely for mul-
tiple downstream purposes [9,10]. Proper immobilization enhances enzyme stability
via multipoint immobilizations, improves activity, specificity or selectivity, and more
activity in the presence of inhibitor or inactivating agents in order to facilitate purify-
ing the enzyme [11,12]. Specificity/selectivity with improved enzyme activity is manda-
tory for industrial and real-sample analyses because of multiple proteins/interferences in
biological samples [13].

3. Enzyme Immobilization Techniques

The choice of the most appropriate immobilization technique is an integral part of the
enzyme immobilization process because of its significant impact on enzyme activity and
properties in a specific reaction. The ideal enzyme immobilization technique prevents en-
zyme activity loss by retaining the enzyme active sites’ biochemical properties or functional
groups. The carrier and the nature of the enzyme strongly govern the selection of the most
appropriate technique. Generally, the various approaches for immobilizing enzymes can
be classified into two broad classes: chemical and physical. Chemical methods involve the
formation of covalent bonds between the enzyme and carrier. In contrast, physical methods
involve weaker, noncovalent interactions, namely van der Waals forces, hydrogen bonds,
hydrophobic bonds, and ionic bonding. Conventional techniques for enzyme immobiliza-
tion include covalent binding, adsorption, encapsulation, and crosslinking. Eventually,
optimizing enzyme immobilization and the desired the surface chemistry is mandatory
for the efficient utilization of enzymes [3,14–17]. Nonetheless, no one method is ideal for
immobilizing all enzymes because the abovementioned methods all have advantages and
disadvantages (Table 1) and due to the differing types of enzyme immobilization tech-
niques (Figure 1). Furthermore, the use of current cutting-edge techniques and approaches
is increasing with advancements in enzyme technologies [18–21].
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Table 1. Summary of advantages and disadvantages of various methods of enzyme immobilization.

Method of Enzyme
Immobilization Advantages Disadvantages

Adsorption

• Simple and easy
• Cheap
• Chemical-free enzyme

binding
• No reagents are required
• Minimum activation step

involved
• High retention of

enzymatic activity
• Reversibility

• Weak physical bonding
• Enzyme leakage
• Low stability
• Desorption of enzyme

Covalent bonding

• Strong biocatalyst
bindings

• No enzyme leakage
• High reusability
• High thermostability
• High uniformity of the

self-assembled
monolayer (SAM layer)

• Good control of the
immobilized
enzyme amount

• High risk of enzyme
denaturation

• Conformation restriction
• Limitation of enzyme

mobility
• Less efficient
• Longer time required.

Cross-linking

• Simple
• Strong chemical binding
• Support-free
• Prevention of

enzyme leaching
• Minimize in desorption.
• Possibility for

modification of
microenvironment

• Harshness of
multifunctional
reagent used

• Loss of enzyme activity
• Possibility for enzyme

conformational changes

Entrapment/
Encapsulation

• Cheap
• Fast
• Large surface area
• Mild conditions

are required.
• Improves

enzyme stability.
• Minimizes enzyme

denaturation
• Decrease in leaching
• Ability to creation of op-

timal microenvironment

• Limitation in
mass transfer

• Low loading capacity
• Abrasion of

support material
• Deactivation of enzyme

when immobilized
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are shown.

3.1. Adsorption of Enzyme

Adsorption is the oldest and most effortless techniques for enzyme immobilization.
This straightforward method for reversible carrier-bound immobilization is widely used
and involves electrostatic interactions or passive adsorption. The interaction between the
enzyme and the surface of the supporting material is due to weak nonspecific forces, such
as van der Waals forces, hydrogen bonds, and hydrophobic bonds. In contrast, enzymes
are bound via salt linkages in ionic bonding. Adsorption can be carried out by mixing the
enzymes with an appropriate adsorbent under proper temperature, ionic strength, and
pH conditions. Enzymes immobilized using adsorption are protected from aggregation,
interaction at hydrophobic interfaces, and proteolysis. The enzyme immobilized using
adsorption is reversible, allowing detachment from the support material owing to the
absence of permanent bond formation.
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3.2. Enzyme Attachment by Covalent Binding

Covalent binding is a conventional approach for irreversible enzyme immobilization.
This can be accomplished by the formation of a covalent bond between the support material
and enzyme. Covalent binding generally occurs between the enzyme surface and func-
tional groups in the support material in the presence of amino acid residues. Covalently
bound enzymes can be obtained through various reactive sidechains on enzymes with
important critical functional groups, such as sidechains of aspartic acid (carboxyl groups),
arginine (amino group), lysine (amino group), glutamic acid (carboxyl groups), serine
(hydroxyl group), threonine (hydroxyl group), tyrosine (phenolic group), and histidine
(imidazole group). The covalent binding of enzymes depends on various factors, including
the binding method, specific conditions when binding, and the carrier material’s shape,
size, and composition. The covalent binding of enzymes to different materials have been
shown to enhance the enzyme half-life and thermal stability. However, this method has
disadvantages, such as a high risk of enzyme denaturation and loss of functional confor-
mation of the enzyme when chemical modifications of enzymes to possess a functional
group are less efficient because lesser enzymes are immobilized using a high volume of
bioreagent and longer time is required.

3.3. Crosslinked Enzyme Aggregates

Crosslinking is also known as carrier-free immobilization because the enzyme can
act as a carrier, eliminating the advantages and disadvantages of carriers, and a pure
enzymatic system can be obtained. The crosslinking process is conducted with the aid
of bi- or multifunctional reagents that act as linkers to link enzyme molecules to three-
dimensional crosslinked enzyme aggregates. Surface chemicals are potential agents for
creating linkers to form enzyme aggregates [22,23]. Glutaraldehyde is the most common
crosslinking reagent because it is easily accessible in large quantities and cost-effective.
Using glutaraldehyde as a multifunctional reagent can drastically reduce the modification
of enzymes by adding inert proteins such as gelatin and bovine serum albumin during
the immobilization process. Another option for crosslinking with an enzyme–receptor is
between the amine (on the enzyme) and the carboxyl on the substrate or receptor. The
reaction between the amine and carboxyl groups can be activated, then stabilized with
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide- and N-hydroxy succinimide-mediated
coupling reactions (Figure 2). Both amine-carboxyl coupling and glutaraldehyde modi-
fication of nanomaterials are highly feasible [24]. In addition, thiol (sulfur)—containing
amino acids, such as methionine, cysteine, taurine, and homocysteine,—on enzymes can
be easily attached to gold materials as substrates. Metal oxides (silicon oxide, titanium
dioxide, zinc oxide, etc.) with nanomaterials have the potential to achieve ideal surface
functionalization, as oxides are reliable for simple chemical reactions with linkers [24]. The
enhancement of oxides or the formation of an oxide surface can be achieved by treating the
surface with potassium hydroxide. However, heterofunctional supports have significant
advantages, and in a study by Trobo-Maseda et al., heterofunctional amino-epoxy and
amino-glyoxyl groups were used. In first step, the enzyme is attached to the support, and
in the second step, the intramolecular attachment between the enzyme and the support is
enhanced [25]. Heterofunctional support generally elevates enzyme specificity and stability
to demonstrate high-performance activity. However, the ratios between the two functional
groups must be optimized and the functional groups should not share groups that cause
nonspecific attachments or common reactions with different steps [26,27]. At present, and
in the past, different materials and polymers have been utilized to produce novel materials
that link or encapsulate enzymes [28–32].
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carboxyl reaction.

3.4. Crosslinking on the Substrate

Nanomaterials for enzyme immobilization utilize functional groups, and the presence
of different functional groups on the surface expands their applications. In an investigation,
gold nanoparticles and graphene were used to capture the enzyme “glucose oxidase” for
sensing purposes. The interdigitated electrode surface material with silica was complexed
using the above conjugation, and glucose was detected at a lower level [33]. These two
materials (graphene and gold) are currently prevalent in sensing applications, including
enzymes. Pure graphene needs to be functionalized; however, activated graphene materials
have three easily reacting chemical groups on their surface, namely epoxides, carboxylic
acids, and alcohols. Gold is a flexible material that can react with amines on enzymes and
proteins and can be tailored to desired sizes [34,35].

3.5. Entrapment of Enzyme

Entrapment is an irreversible approach to enzyme immobilization. Enzymes are en-
trapped and occluded in the entrapment method within natural or synthetic polymeric
networks, a semipermeable membrane that allows only the traversal of substrates and
products via diffusion but retains the enzymes [7]. Thus, entrapment is defined as the
physical limits of an enzyme within a confined network or space with selectively con-
trolled permeability. The enzyme is not directly bound to the support material and is
achieved by covalent or noncovalent bonds when the enzyme is caged within a polymeric
network. Entrapment immobilization can be achieved using the inclusion of gels, fiber
entrapment, and microencapsulation. This type of entrapment triggers a variety of methods
for entrapment immobilization, including photopolymerization, electro polymerization,
and microencapsulation.
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3.6. Encapsulation of Enzyme

Enzyme immobilization by encapsulation is an entrapment method in which enzymes
are enclosed within a membrane. It is a reproducible, simple method that does not require
sophisticated equipment [36]. Therefore, encapsulation has attracted significant interest
due to its biomolecular freedom and simplicity of preparation compared to other enzyme
immobilization methods. During the encapsulation process, enzymes are encapsulated by
way of entrapment in a network matrix, such as hydrogels and other polymeric materials,
in the form of particles, capsules, and fibers; otherwise, they are encapsulated inside a
host-semipermeable membrane [36].

4. Choice of the Carrier for Enzyme Immobilization

The effectiveness and performance of an immobilized enzyme system strongly de-
pends on the characteristics of the carrier. Variations in the physical and morphological
characteristics of the support material affects the enzyme immobilization system and its
enzymatic characteristics because the carrier is in direct contact with the enzyme. A unique
and ideal carrier should have desirable properties, such as chemical and thermal stability,
biocompatibility, hydrophilicity, inertness towards enzymes, mechanical resistance, an-
timicrobial properties, and low cost. Carriers can be classified into two broad categories
based on their chemical composition: organic and inorganic. The classification of new
materials commonly used as supports is shown in Figure 3. Advances have been made in
the use of nanostructured materials called nanocarriers. These nanomaterials fulfill the
ideal requirements for enzyme immobilization.
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5. Nanomaterial as Nanocarriers

With the rapid development of nanobiotechnology, using nanostructured materi-
als as nanocarriers in enzyme immobilization system has gained considerable attention.
Nanostructured materials are more preferable than conventional materials owing to their
unique characteristics, such as hardness, conductivity, nanoscale pore diameter (5–100 nm),
hydrophobicity/hydrophilicity ratio, magnetic properties, and defined geometry. These
interesting characteristics make them suitable for designing robust biocatalysts. Various
nanostructured materials such as nanoparticles, nanofibers, nanopores, nanotubes, and
nanocomposites have been successfully developed. The classification of nanomaterials
according to their dimensions is shown in Figure 4, namely zero-, one-, two-, and three-
dimensional. Nanostructured materials have gained significant attention as carriers for
enzyme immobilization owing to their intrinsically large surface areas. Thus, nanomaterials
are more preferable than conventional materials because their large surface area allows
for increased enzyme loading, resulting in enhanced enzyme activity per volume or unit
mass [37]. Biological entities for biocatalysts (enzymes) with nanocarriers can be defined as
nanobiocatalysts with unique chemical, electronic, magnetic, and mechanical properties. In
addition, when nanomaterials act as nanocarriers, all the benefits of enzyme immobilization
on micron-sized particles are successfully inherited.
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the support is not porous, the enzyme is exposed to the medium [38]. Nanomaterials have
been reviewed as enzyme/biomolecular immobilization platforms in several instances,
and their advantages and disadvantages have been discussed [5,12,35,39,40]. For example,
graphene and gold are excellent materials that capture the enzyme, providing enhanced
performance and stability [33,41].

5.1. Nanoparticles as a Carrier

Nanoparticles are defined as particles (substances) with at least one dimension at
the nanoscale (<100 nm). Nanoparticles can exist in agglomerated, aggregated, or fused
form and are irregular, spherical, or tubular in shape. Nanoparticles are composed of
two parts: a core material and a surface modifier that may be used to change the physic-
ochemical characteristics of the core material. The core materials may be composed of
biological materials (chitosan, dextran, lactic acid, lipids, peptides, and phospholipids) or a
chemical polymer, carbon, metal, or silica. Nanoparticles, either inorganic or organic, with
diameters up to 30 nm, have been broadly studied in recent years as potential carriers for
enzyme immobilization.

Recently, nanoparticles have been used as carriers for enzyme immobilization.
Nanoparticles play an important role as highly efficient supports for the immobilization of
enzymes owing to their fascinating properties in balancing the main elements that regulate
enzyme efficiencies, such as enzyme loading efficiency, mass transfer resistance, and spe-
cific surface area. A large surface area per unit mass of nanoparticles can increase effective
enzyme loading onto nanoparticles by up to 10 wt% [42]. Moreover, nanoparticles are ideal
candidates for overcoming relevant diffusion problems when dealing with macromolecular
substrates [42]. The enzymatic activity of enzyme-bound nanoparticles is greater than that
of unbound enzymes, which was proven by the fact that nanoimmobilized enzymes exhibit
Brownian movement during dispersion in aqueous solutions.

5.1.1. Metal-Organic Frameworks

For these applications, metallic and nonmetallic compounds have been formed. Metal–
organic frameworks are crystalline, porous, organic–inorganic hybrid materials made
of a regular arrangement of positively charged metal ions encircled by organic “linker”
molecules. Metal ions act as nodes, connecting the arm of the linkers to create a repeating,
cage-like structure. An extensive class of crystalline materials known as metal–organic
frameworks have arisen, exhibiting extremely high porosity and large interior surface
areas. Different mesoporous and organic materials become key players in conjunction
with enzyme capture and encapsulation [20,43–45]. With this set-up, a wide range of
downstream applications have become feasible by involving co-immobilization with the
surface interface, and structural arrangements have promoted enzyme performance [46–49].

5.1.2. Magnetic Nanoparticles

Generally, magnetic nanoparticles are made up of a highly magnetic core bounded
by a polymer shell, whereas the polymer shell is made up of various materials, namely
silica, cellulose, and acrylamide, which have properties such as eco-friendliness, biocom-
patiblilty, nontoxicity, and biodegradablity. The type of polymer shell used for enzyme
immobilization is determined based on the application [50]. Nude magnetic nanoparticles
do not effectively interact with enzyme particles (proteins); therefore, surface modifications
are usually necessary. In this context, compared with other organic nanoparticles, iron
oxide nanoparticles have several practical advantages, such as readily forming oxides with
ultimate use in surface functionalization. Furthermore, iron oxides are widely used in com-
mercial cosmetic sectors, such as catalysts and pigments, that rely on enzymes. As revealed
elsewhere, iron oxide nanoparticles are highly magnetic, unlike other nanomaterials.

Magnetic nanoparticles are suitable as support materials for enzyme immobilization
owing to their unique characteristics, such as easy separation under an external magnetic
field, large surface-to-volume ratio, superparamagnetism, high reusability, low toxicity,
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large surface area, high enzyme capacity, and flexible surface modification using chemi-
cal reactions, which significantly improve the loading capacity and reduce the diffusion
limitation [51]. In particular, magnetite (Fe3O4) nanoparticles and maghemite (G-Fe2O3)
nanoparticles are the most prevalent materials that have been used in enzyme immobi-
lization owing to their small size, ease of separation from the reaction media, less toxicity,
availability, less environmental impact, good biocompatibility, and superparamagnetic
properties [51,52].

Superparamagnetism, which is unique to nanoparticles, is important for its use as an
enzyme immobilization support. Superparamagnetic particles, such as Fe3O4 nanopar-
ticles, do not have continuous magnetic properties, but they exhibit the phenomenon of
“superparamagnetism” when applying an external magnetic field. These particles become
magnetized to saturation when an external magnetic field is applied, which makes it easy to
purify a high-value product. Superparamagnetic properties are size-dependent and usually
arise when the size of the nanoparticles is as small as 10–20 nm. Thus, the synthesized
particles must be smaller than 30 nm to achieve superparamagnetic properties; otherwise,
ferromagnetic properties replace superparamagnetic properties for particles larger than
30 nm. Immobilizing enzymes onto magnetic nanoparticles provides a simple method for
enzyme recovery in reaction media compared to the reusability of enzymes immobilized
on nonmagnetic nanoparticles that require high-speed centrifugation [51,53]. Hence, many
scientists have studied enzyme immobilization using magnetic nanoparticles because they
can be easily separated from reaction solutions using magnetic attraction [53].

5.1.3. Nonmagnetic Nanoparticles as a Carrier

Nonmagnetic nanoparticles made from gold, silver, silica, chitosan, zirconia, and
other materials have been broadly used for enzyme immobilization [54]. The nonmagnetic
nanoparticle-bound enzyme is fully dispersed in the reaction solution. Thus, regeneration
for reuse is often difficult, before long periods of high-speed centrifugation are required.

5.2. Carbon Nanotubes (CNTs) as a Carrier

CNTs are tubular allotropes of carbon composed of graphite. CNTs are a new class
of nanomaterials that have attracted significant interest owing to their ideal structure,
biocompatibility, and electrical, thermal, and mechanical properties, making them suitable
for enzyme immobilization. Among these nanomaterials, carbon nanotubes can act as
an interesting support material for enzyme immobilization because of their excellent
dispersion in solution and broad factionalization. Carbon nanotubes are classified into
two main types: single-walled carbon nanotubes (SWCNTs) (a single graphitic sheet
with a tubular structure) and multiple-walled carbon nanotubes (MWCNTs) (an array of
nanotubes). A comparison of SWCNTs and MWCNTs is presented in Table 2.

Table 2. Comparison between SWCNTs and MWCNTs.

SWCNTs MWCNTs

A single sheet of graphene Multiple sheets of graphene
Catalyst is needed for preparation. Catalyst is not needed for preparation.
Difficult of bulk synthesis due to appropriate
control overgrowth and atmospheric condition
is required.

Easy for bulk synthesis.

Easy to twist and are more flexible. Not easy to twist.
Formation of bundled structures due to not
fully dispersed.

No apparent bundled formation with
homogeneously dispersed

5.3. Nanofibers as Carriers

Nanofibers are one-dimensional (1D) structures that have attracted significant interest
as nanocarriers for constructing nanobiocatalysts because of their extraordinary properties
and applications. Carbon nanofibers (CNFs) and polymeric nanofibers are the most com-
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monly used nanocarriers for enzyme immobilization. Nanofibers have unique properties,
such as homogeneous dispersion in the liquid phase and high enzyme loading, compared
to other nanocarriers, and have been studied for nanoeznyme assembly. In addition, the
high interconnectivity and porosity of nanofibers offer low mass transfer limitations [55].

CNFs are well-defined cylindrical nanostructures with different arrangements of
graphene layers, such as cones, cups, or plates. According to the arrangement of the
graphene layers, CNFs can be classified into tubular, herringbone (cup-stacked), and
platelet structures. CNFs are preferable to carbon nanotubes owing to affordability, easy
mass reproducibility, great surface–active group ratio, and large functional surface area [56].
Polymer nanofibers have remarkable properties, including a large surface-area-to-volume
ratio, excellent mechanical performance, and flexible surface functionalities [57]. Several
techniques can be used to prepare polymer nanofibers, including electrospinning, chemical
synthesis, physical drawing, and nanolithography [58].

5.4. Nanoporous for Enzyme Entrapment

Porous materials are classified into three categories: mesoporous (2–50 nm), microp-
orous (<2 nm), and macroporous (>50 nm), based on the International Union of Pure and
Applied Chemistry classification. Materials can be denoted as “nanoporous” if their pore
dimension is in the nanometer range (nm). Nanoporous materials comprise carbon, metals,
metal oxides, and silica. Nanoporous materials have several fascinating characteristics,
such as a high surface area, the ability to immobilize enzymes within the pores and offer a
more suitable microenvironment. Mesoporous carbon and silica materials with tunable
periodic nanostructures and uniform nanopores have been designed to control the release
of small and large molecules [59]. Mesoporous materials have recently gained immense
attention as excellent enzyme supports due to their mechanical stability, ease of synthesis,
well-defined pore geometry, good pore connectivity, and narrow pore size distribution [41].

5.5. Nanocomposite with Multiple Dimensions

Nanocomposites are commonly classified as fibers (1D), platelets (2D), and particles
(3D), depending on the number of nanoscale dimensions. Nanocomposites have recently
been developed as enzyme carriers capable of retaining enzyme activity and increasing
direct electron transfer between electrodes and redox enzymes [60]. There is a novel
trend toward using nanocomposite materials as nanocarriers for enzyme immobilization.
Nanocomposite materials have free functional groups specifically positioned on the surface,
accessible for specific biomolecule binding in an oriented and controlled manner, or act as
a scaffold for simple adsorption. Nanocomposites are commonly fabricated from carbon,
sol-gels, polymers and nanometer-sized materials. Nanocomposites can contain catalysts,
cofactors, mediators, or stabilizers that may be required for enzyme activity. During
fabrication, enzymes can be integrated into two ways: (i) formation of biocomposite
paste/ink in a single step together with the other components; and (ii) classical attachment
method after preparation of the nanocomposite. The performance of nanocomposites is
determined by several nanoparticle characteristics such as aspect ratio, particle size, volume
fraction, and biocompatibility with the dispersion and matrix [61]. Nanocomposites can
offer better characteristics than their individual components if optimization is achieved.

Enzyme-Inorganic Hybrid Nanoflowers

Different inorganic hybrid nanoflowers have been generated with further nanocom-
posite applications to capture enzymes, such as cargo [18,62,63]. In the formation of
enzyme-inorganic hybrid nanoflowers, different optimization studies in the presence of
stabilizing agents such as surfactants and polymers have been conducted [64,65]. Further-
more, these hybrid nanoflowers have various benefits, such as industrial, biosensing, and
environmental applications [63,66,67].

Recent advances in enzyme immobilization have focused on developing novel sup-
port materials that can enhance enzyme stability, activity, and specificity. Metal–organic
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frameworks (MOFs) are highly porous materials with high surface area and tunable char-
acteristics [68]. Enzymes immobilized on MOFs have been demonstrated to exhibit en-
hanced stability, reusability, and selectivity compared to free enzymes [69]. Furthermore,
enzymes immobilized on graphene-based materials have shown unique mechanical, elec-
trical, and thermal properties, making them suitable for enzyme immobilization, because
they can enhance enzyme stability and activity by using direct contact and electrostatic
interactions [34].

6. Synthesis of Nanoparticle for Enzyme Immobilization

Chemical, physical, biological, and hybrid methods are diverse approaches that can
synthesize nanoparticles, as shown in Figure 5. Toxic byproducts that pose environmen-
tal risks are formed when nanoparticles are produced using conventional chemical and
physical methods. Therefore, nanoparticle synthesis using these methods cannot be used
in medicine, especially in the clinical field, owing to health-related problems. Conventional
methods have many disadvantages, such as being obsolete, costly, complicated, and ineffi-
cient. However, they can produce large amounts of nanoparticles with well-defined shapes
and sizes in a short period. Recently, the production of ecofriendly nanoparticles that do
not produce toxic waste products during manufacturing has gained increasing attention.
With biotechnological methods considered ecologically safe for nanomaterial production,
ecofriendly nanoparticles can be obtained by benign synthesis procedures of biological
nature as an alternative to conventional chemical and physical methods. The concept of
green nanobiotechnology or green technology has developed [70]. Furthermore, analyzing
the primary compounds involved in the source material is essential, as they significantly
increase the final reduced product.
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Bionanotechnology uses tools and technologies from nanotechnology to design, syn-
thesize and manipulate biological systems including cells, DNA, and proteins (enzymes).
This allows researchers to create new materials and devices that can interact with various
biological systems in novel ways. It has been used to develop new drug delivery sys-
tems, as well as biosensor, immobilization, and nanoscale imaging technologies [71,72].
Furthermore, it can also be used to create new energy storage and conversion devices, as
well as to improve the performance and efficiency of electronic devices [73]. In addition,
bionanotechnology has been widely used for enzyme immobilization, which is the process
of attaching an enzyme onto the surface of nanomaterials to improve its efficiency, stability,
and activity [74].

Green nanobiotechnology involves the production of nanoparticles or nanomaterials
using biological pathways with the aid of numerous biotechnological tools. Biological
pathways are those related to plants, microorganisms and viruses or the synthesis of lipids
and proteins as byproducts [70]. Among these methods, the synthesis of nanoparticles using
green technology is far greater than that using chemical and physical methods because
green techniques use inexpensive chemicals, produce environmentally benign products
and byproducts, and utilize less energy. The biological-based production of nanoparticles
using a bottom-up approach can occur with the aid of reducing and stabilizing agents
(Figure 5). The three major stages of producing nanoparticles using a biological system
are choosing an environmentally friendly reducing agent, solvent medium, and harmless
material as a capping agent to stabilize the nanoparticles [70].

7. Conventional Enzyme Assays

Enzyme assays are carried out to serve two different objectives: (i) to detect the
presence of a particular enzyme in the sample, a qualitative method in which a clear
negative or positive result of the formation of a clear zone is sufficient to determine its
presence or absence in a particular specimen (i.e., organism or tissue), and (ii) to determine
the amount of the enzyme present in the sample, which is a quantitative method that must
deliver data as precisely as possible [75]. Enzymes have a significant advantage, in that
they can be determined by their enzymatic reactions, unlike other components of a cell (i.e.,
nucleic acids or functional proteins), which must be identified using direct detection [75].

The expected results for the qualitative enzyme assays are illustrated in Figure 6a,
where the positive results, with formation of a clear zone, indicate the presence of particular
enzymes. In contrast, negative results without formation of a clear zone indicate the
absence of particular enzymes. The arrow shows the formation of a clear zone. Gopinath
et al. [76] revealed that different enzymes could be identified using different types of
enzyme assay plates: (i) amylase on starch agar plates, (ii) cellulase on Czapek-dox-cellulose
agar plates, (iii) protease on nutrient gelatin agar plates, and (iv) lipase on Tween-20,
tributyrin, and LBT agar plates [76]. On the other hand, qualitative assays are a common
tool used for screening microbial sources such as fungi and bacteria, providing positive or
negative results indicating microbial enzyme production using a microbial. The expected
positive and negative results are shown in Figure 6a. Pointing [77] revealed that qualitative
assays are very useful method for screening large amounts of fungal isolates for several
enzyme classes, because definitive quantitative data are unnecessary. Such tests require
only some reagents that are usually inexpensive and readily available. Many factors
must be considered for enzyme assays such as pH, temperature, substrate concentration,
concentration of the enzyme buffer and ionic strength. These factors cannot be standardized
because they differ depending on the types of enzymes testing and the method used.
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7.1. Pinpoint Inoculum Assay on Agar Plate

The pinpoint inoculum method is a qualitative assay used to screen microbial sources
such as fungi and bacteria for enzyme production. Previously, enzyme screening studies
were performed by Gopinath et al. [78], using different substrates on an agar plate with
pinpoint inoculum. Fungi and bacteria were screened for their ability to produce microbial
enzymes on solid media such as amylase, cellulase, protease, and lipase. The microbial
inoculum was inoculated at the center of the plate, containing the substrates for testing,
and then incubated at the optimum temperature for the desired period. The relative activity
of microbial enzymes can be estimated by measuring the diameter of the clear zone and
microbial growth by the radial limit [76]. The procedure for a pinpoint inoculum assay is
shown in Figure 6b.

7.2. Well Diffusion Assay on Agar Plate

The well diffusion assay is the most straightforward method for identifying enzyme
activity on solid media. The indicator component is casted onto agar or other suitable
gel plates. After that, the supernatant without cells is inoculated into a well in the agar
plate [79]. Enzymatic activity can be identified by the zone of clearing or color reaction
using a suitable indicator compound. The enzyme concentration is directly proportional to
the square of the true zone radius. There is a relationship between the incubation time and
clearing area [79]. The procedure for the pinpoint inoculum assay is shown in Figure 7a.
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7.3. Disc Diffusion Assay on Agar Plate

The principle of the disc diffusion assay is similar to that the well diffusion assay.
This is a test of enzyme activity. In this test, filter paper discs containing the enzymes are
placed on an agar plate where substrate is placed, and the plate is incubated. If the enzyme
reacts with the substrate by diffusion, there is an area around the filter paper disc where
the substrate is degraded. This is called the clear zone, and the procedure for the pinpoint
inoculum assay is illustrated in Figure 7b.

8. Applications of Immobilized Enzyme to Nanocarriers

Various applications of nanoimmobilized enzymes can be found in the biomedical,
biosensor, bioremediation, biofuel, and food industries. Table S1 provides a brief discussion
of the potential applications of nanoimmobilized enzymes.

8.1. Biomedical Applications

Therapeutic enzymes are among the most fascinating biomedical applications in the
pharmaceutical industry. Collagenase, deoxyribonucleic acid, ribonucleic acid, hyaluronidase,
pancreatic, L-asparaginase, L-glutaminase, lipases, urokinase, and streptokinase, are used
as therapeutic agents and have great potential in the treatment of cardiovascular, viral,
hereditary, oncological, intestinal, and other illnesses [80]. The properties of therapeu-
tic enzymes can be improved using enzyme immobilization on nanocarriers, resulting
in enhanced therapeutic power, stability, reusability, life span, and targeting of specific
cells (tissues) [81]. The immobilization of therapeutic enzymes on nanomaterials, such
as carbon-based nanomaterials, gold nanoparticles, magnetite nanoparticles, maghemite
nanoparticles, mesoporous silica nanoparticles, silver nanoparticles, and single-enzyme
nanoparticles, has been tested for controlled administration.
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8.1.1. Biosensor—A Detection System

Biosensors are analytical devices used for analyte detection. Biosensors consist of three
parts: biological sensing components (e.g., enzymes), transducers, and physicochemical
detectors. The types of electrochemical transducers used in biosensors include amper-
ometry, conductometry, and potentiometry [82]. Recently, nanoparticles have been used
as nanocarriers for enzyme immobilization on biosensor electrodes owing to their high
specific area for enzyme binding, high loading capacity and stabilization of enzyme activity
by fixing their structural conformation. Enzyme-based biosensors with nanoimmobilized
enzymes enable sensitive, fast, timely, and exact detection of compounds. In contrast,
traditional detection methods (for example, chromatography) has a slow testing speed,
and is often difficult to perform during field operations [83]. Several nanomaterials or
nanoparticles, such as carbon, silver, gold nanoparticles, ceria nanospheres, and Fe3O4
magnetic nanoparticles have been used for the development of biosensors to detect target
molecules [83]. Currently, many biosensor devices associated with numerous enzymes,
such as glucose oxidase, horseradish peroxidase, cholesterol oxidase, urease, penicillin
acylase, and nanoparticles are widely used in biomedical, clinical, pharmaceutical, environ-
mental, and industrial applications. Considering the enzyme–substrate or enzyme–receptor
reactions/interactions, many sensor options are available, including electrical, electrochem-
ical, optical, and mass-based options. Within a sensor, the transducer makes different
types of sensing, such as amperometry, voltammetry, conductometry, and potentiometry.
However, the biological reaction remains the same for any desired molecule, as observed
for the interdigitated electrode sensor, which operates based on the dipole moment among
ions on the sensing surface (Figure 8).

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

Figure 8. Detection of enzyme on interdigitated electrode sensor. Displayed with probe and target 

(enzyme) interaction. 

8.1.2. Biofuel Production 

Biomass is a promising raw material for biofuel production to fulfil current and fu-

ture demands for sustainable and renewable fuels. Cellulases and lipases are the primary 

enzymes for widespread applications in enzymatic biodiesel and biofuel production [84]. 

The rapid growth in biofuel production with enzyme applications has been increasingly 

observed. Cellulases (EC 3.2.1.4) are used effectively in saccharifying lignocellulosic ma-

terials (i.e., plant biomass) for bioethanol production. Cellulase is a combination of three 

different enzymes, 𝛽-glucosidase, endoglucanase, and exoglucanase, working together to 

yield glucose from lignocellulosic materials and subsequently fermented into bioethanol. 

Enzyme-based hydrolysis of biomass can be enhanced economically by improving the re-

usability, thermal stability, and efficiency of enzymes. All of these characteristics can be 

achieved by immobilizing enzymes on nanomaterials [8]. Nanoimmobilization of cellu-

lases for biofuel production applications has been developed using nanomaterials, such 

as silica and polymeric nanoparticles [8]. 

8.1.3. Food Industry 

In the food industry, specific characteristics of enzymes, such as storage, reusability, 

and thermal stability, are essential and should be ensured when employing enzymes un-

der harsh conditions. These characteristics can be achieved by immobilizing enzymes onto 

nanomaterials. So far, some food-related enzymes, namely α-amylase, β-amylase, dia-

stase, papain, pectinase, lactase, and lipase, have been immobilized on numerous types of 

nanomaterials comprising nano zinc oxide, graphene oxide–carbon nanotube 

Figure 8. Detection of enzyme on interdigitated electrode sensor. Displayed with probe and target
(enzyme) interaction.



Sustainability 2023, 15, 7511 17 of 22

8.1.2. Biofuel Production

Biomass is a promising raw material for biofuel production to fulfil current and future
demands for sustainable and renewable fuels. Cellulases and lipases are the primary
enzymes for widespread applications in enzymatic biodiesel and biofuel production [84].
The rapid growth in biofuel production with enzyme applications has been increasingly
observed. Cellulases (EC 3.2.1.4) are used effectively in saccharifying lignocellulosic ma-
terials (i.e., plant biomass) for bioethanol production. Cellulase is a combination of three
different enzymes, β-glucosidase, endoglucanase, and exoglucanase, working together to
yield glucose from lignocellulosic materials and subsequently fermented into bioethanol.
Enzyme-based hydrolysis of biomass can be enhanced economically by improving the
reusability, thermal stability, and efficiency of enzymes. All of these characteristics can be
achieved by immobilizing enzymes on nanomaterials [8]. Nanoimmobilization of cellulases
for biofuel production applications has been developed using nanomaterials, such as silica
and polymeric nanoparticles [8].

8.1.3. Food Industry

In the food industry, specific characteristics of enzymes, such as storage, reusability,
and thermal stability, are essential and should be ensured when employing enzymes
under harsh conditions. These characteristics can be achieved by immobilizing enzymes
onto nanomaterials. So far, some food-related enzymes, namely α-amylase, β-amylase,
diastase, papain, pectinase, lactase, and lipase, have been immobilized on numerous
types of nanomaterials comprising nano zinc oxide, graphene oxide–carbon nanotube
nanocomposite, gold nanoparticles, silica-coated magnetite (SiO2-Fe3O4) nanoparticles,
silica porous nanoparticles, and silica nanospheres.

8.1.4. Bioremediation

Bioremediation of polluted sites using nanoimmoblized enzymes is a new tool for
removing environmental contaminants. Enzymatic approaches have gained much attention
for decolorizing and degrading azo dyes in wastewater. Enzyme-based bioremediation is a
straightforward, easy, fast, environmentally friendly, and nonsocial method for removing
recalcitrant xenobiotic compounds from the natural environment [85]. Bioremediation-
related enzymes (i.e., horseradish peroxidase, laccase, and lignin peroxidase) have been
nanoimmobilized onto various nanomaterials, including chitosan–halloysite nanotube
nanocomposites, chitosan-coated magnetite nanoparticles, chitosan nanoparticles, and
Fe3O4 nanoparticles. The use of nanoimmobilized enzymes in bioremediation has several
advantages over traditional approaches. First, it offers a more controlled and sustainable
approach to bioremediation. It is possible to create enzymes that are more effective and
stable in challenging environmental circumstances, such as high temperatures and low
pH levels. Furthermore, the use of nanoimmobilized enzymes enables improved accuracy
and selectivity in focusing on certain contaminants, minimizing the impact on nontarget
organisms [84]. In addition, enzyme-immobilized nanomaterials have been electrochemi-
cally used to detect and destroy water contaminants such as phenolic chemicals, pigments,
plastics, medicines, and pesticides [86].

9. Conclusions and Future Perspectives

The creation of novel immobilized enzymes in recent years has resulted in the de-
velopment of nanomaterials as novel nanocarriers for enzyme immobilization. Recent
scientific advances in bionanotechnology have enabled enzyme immobilization on a variety
of nanomaterials (nanoparticles, nanofibers, nanoporous, nanotubes, and nanocomposites)
with unique and tunable properties. Furthermore, these nanomaterials have desirable
properties, such as chemical and thermal stability, biocompatibility, hydrophilicity, inert-
ness towards enzymes, mechanical resistance, antimicrobial capabilities, and low cost,
making them the ideal carriers for enzyme immobilization. The enzymatic activity of
enzyme-bound nanomaterials is greater than that of unbound enzymes, which is proven
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by the fact that nanoimmobilized enzymes exhibit Brownian movement when dispersed in
aqueous solutions. Nonetheless, an ideal enzyme immobilization technique requires the
construction of a nanoimmobilized enzyme with no loss of enzyme activity after immobi-
lization. Enzyme immobilization in/on nanocarriers can be further developed to enlarge
the catalytic repertoire of nanoimmobilized enzymes for widespread application in various
fields, such as biomedicine, biosensors, biofuels, bioremediation, and the food industry.

In general, direct precursor reduction under ambient conditions is a standard method
for generating nanomaterials that can be undertaken in low-resource laboratories. The cap-
ping of compounds from plants seems promising and can be scaled up easily. For scaling-up
purposes, the optimum conditions, such as temperature, reaction time, and usage of the
right precursor, are mandatory. Various nanostructures have been created in several down-
stream enzyme-based applications. In general, conventionally generated nanoparticles are
spherical in shape; however, their size might vary depending on the intended condition(s).
However, owing to several practical requirements, different nanostructures are required
to enhance surface areas. Surface expansion by modifying the nanostructure has been
implemented in biomolecular capture and nanosensors for enzyme development. The
crucial part of generating different nanostructures requires the development of additional
methods. The popular techniques include lithography, nanoprinting, exposure by laser,
and ionic implantation as bottom-up approaches.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15097511/s1, Table S1: Potential applications of nanoimmobilized
enzymes. References [87–109] are cited in the supplementary materials.
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