Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It
Abstract
:1. Introduction
2. Analysis of CE Transfer Characteristics under the Background of “Double Carbon”
2.1. Calculation of CE Dioxide
2.2. CE Transfer and Carbon Leakage
3. How Climate Policies and Environmental Regulations Affect CE: A Theoretical Model
3.1. Effect of EPRs on CE Transfer
3.2. Model Construction between EPRs and CE Transfer
4. Empirical Analysis of Theoretical Model under the “Double Carbon Background”
4.1. Calculation of CE Transfer
4.1.1. Calculation Method of CE Transfer
4.1.2. Data Source
4.1.3. CE Transfer Calculation Results in China
4.2. Measurement Model Construction and Data Description
4.3. Estimation Results
5. Research on the Relationship between EPR Difference and CL
5.1. Kyoto Protocol and CL
5.2. Construction of Implied Carbon Model of Climate Policy and Bilateral Trade
5.3. Empirical Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, W.; Ahn, J.; Kim, T.; Kim, S.M.; Baik, S. Intertube aggregation-dependent convective heat transfer in vertically aligned carbon nanotube channels. ACS Appl. Mater. Interfaces 2020, 12, 50355–50364. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cai, H.; Zhu, T. Large-scale microanalysis of u.s. household food carbon footprints and reduction potentials. Environ. Sci. Technol. 2021, 55, 15323–15332. [Google Scholar] [CrossRef] [PubMed]
- Oblasov, N.V.; Goncharov, I.V.; Derduga, A.V.; Kunitsyna, I.V. Geochemistry and carbon isotope characteristics of associated gases from oilfields in the nw greater caucasus, Russia. J. Pet. Geol. 2022, 45, 325–341. [Google Scholar] [CrossRef]
- Kasprów, M.; Machnik, J.; Otulakowski, U.; Dworak, A.; Trzebicka, B. Thermoresponsive p(hema-co-oegma) copolymers: Synthesis, characteristics and solution behavior. RSC Adv. 2019, 9, 40966–40974. [Google Scholar] [CrossRef]
- Whitehouse, L.J.; Farihi, J.; Howarth, I.D.; Mancino, S.; Walters, N.; Swan, A.; Wilson, T.G.; Guo, J. Carbon-enhanced stars with short orbital and spin periods. Mon. Not. R. Astron. Soc. 2021, 506, 4877–4892. [Google Scholar] [CrossRef]
- Du, X.; Yang, B.; Lu, Y.; Guo, X.; Zu, G.; Huang, J. Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes. J. Mater. Chem. C 2021, 9, 6760–6765. [Google Scholar] [CrossRef]
- Numata, Y.; Nakajima, K.; Takasu, H.; Kato, Y. Carbon dioxide reduction on a metal-supported solid oxide electrolysis cell. ISIJ Int. 2019, 59, 628–633. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, K. Comment on “Consumption-based versus production-based accounting of CO2 emissions: Is there evidence for carbon leakage?”. Environ. Sci. Policy 2019, 101, 94–96. [Google Scholar] [CrossRef]
- Sun, Y.P.; Xue, J.J.; Shi, X.P.; Wang, K.Y.; Qi, S.Z.; Wang, L.; Wang, C. A dynamic and continuous allowances allocation methodology for the prevention of carbon leakage: Emission control coefficients. Appl. Energy 2019, 236, 220–230. [Google Scholar] [CrossRef]
- Prativa, S.; Sun, C. Carbon emission flow and transfer through international trade of forest products. For. Sci. 2019, 65, 439–451. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Li, Y.; Liu, L.; Sun, C. Unveiling carbon emission attributions along sale chains. Environ. Sci. Technol. 2020, 55, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, S.; Huang, Y.; Shi, C. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends. J. Geogr. Sci. 2020, 30, 757–774. [Google Scholar] [CrossRef]
- Al, A.; Djaj, A.; El, B. Negative CO2 emissions—An analysis of the retention times required with respect to possible carbon leakage. Int. J. Greenh. Gas Control 2019, 87, 27–33. [Google Scholar] [CrossRef]
- Che, C.; Chen, Y.; Zhang, X.; Zhang, Z. The impact of different government subsidy methods on low-carbon emission reduction strategies in dual-channel supply chain. Complexity 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Ji, L.; Huang, G.H.; Niu, D.X.; Cai, Y.P.; Yin, J.G. A stochastic optimization model for carbon-emission reduction investment and sustainable energy planning under cost-risk control. J. Environ. Inform. 2020, 36, 107–118. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Wu, F. Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renew. Energy 2020, 155, 456–468. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Investigation of an integrated system with industrial thermal management options for carbon emission reduction and hydrogen and ammonia production. Int. J. Hydrogen Energy 2019, 44, 12971–12982. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Xie, R. Does income inequality facilitate carbon emission reduction in the us? J. Clean. Prod. 2019, 217, 380–387. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W. Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China’s building sector during the 13th five-year plan period. Energy Policy 2019, 131, 281–294. [Google Scholar] [CrossRef]
- White, B.W.; Niemeier, D. Quantifying greenhouse gas emissions and the marginal cost of carbon abatement for residential buildings under California’s 2019 title 24 energy codes. Environ. Sci. Technol. 2019, 53, 12121–12129. [Google Scholar] [CrossRef]
- Emodi, N.V.; Chaiechi, T.; Beg, A.B.M.R.A. Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the leap-osemosys model. Appl. Energy 2019, 236, 1183–1217. [Google Scholar] [CrossRef]
- Nabernegg, S.; Bednar-Friedl, B.; Munoz, P.; Titz, M.; Vogel, J. National policies for global emission reductions: Effectiveness of carbon emission reductions in international supply chains. Ecol. Econ. 2019, 158, 146–157. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Q.; Zhang, X.; Qian, Y.; Qian, X. China’s black carbon emission from fossil fuel consumption in 2015, 2020, and 2030. Atmos. Environ. 2019, 212, 201–207. [Google Scholar] [CrossRef]
- Zhang, T. Which policy is more effective, carbon reduction in all industries or in high energy-consuming industries?—From dual perspectives of welfare effects and economic effects. J. Clean. Prod. 2019, 216, 184–196. [Google Scholar] [CrossRef]
- Fan, J.L.; Xu, M.; Yang, L.; Zhang, X.; Li, F. How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45q tax credit provisions. Energy Policy 2019, 132, 1229–1240. [Google Scholar] [CrossRef]
- Dwyer, T.; Ali, S.F.; Gillich, A. Opportunities to decarbonize heat in the UK using urban wastewater heat recovery. Build. Serv. Eng. Res. Technol. 2021, 42, 715–732. [Google Scholar] [CrossRef]
- Nong, D. A general equilibrium impact study of the emissions reduction fund in Australia by using a national environmental and economic model. J. Clean. Prod. 2019, 216, 422–434. [Google Scholar] [CrossRef]
- Tian, L.; Ye, Q.; Zhen, Z. A new assessment model of social cost of carbon and its situation analysis in China. J. Clean. Prod. 2019, 211, 1434–1443. [Google Scholar] [CrossRef]
- Banerjee, S.; Khan, M.A.; Husnain, M. Searching appropriate system boundary for accounting India’s emission inventory for the responsibility to reduce carbon emissions. J. Environ. Manag. 2021, 295, 112907. [Google Scholar] [CrossRef]
- Tang, B.J.; Wang, X.Y.; Wei, Y.M. Quantities versus prices for best social welfare in carbon reduction: A literature review. Appl. Energy 2019, 233–234, 554–564. [Google Scholar] [CrossRef]
- Rui, W.A.; Hd, B.; Yong, G.; Yang, X.F.; Xu, T.C. Impacts of export restructuring on national economy and CO2 emissions: A general equilibrium analysis for China. Appl. Energy 2019, 248, 64–78. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Sun, Q.; Shi, W.; Tao, T.; Fu, Y. Moxifloxacin detection based on fluorescence resonance energy transfer from carbon quantum dots to moxifloxacin using a ratiometric fluorescence probe. New J. Chem. 2022, 46, 4226–4232. [Google Scholar] [CrossRef]
- Liang, Y.; Cai, W.; Ma, M. Carbon dioxide intensity and income level in the chinese megacities’ residential building sector: Decomposition and decoupling analyses. Sci. Total Environ. 2019, 677, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Gao, G. Research on the carbon emission regulation and optimal state of market structure: Based on the perspective of evolutionary game of different stages. RAIRO Oper. Res. 2022, 56, 2351–2366. [Google Scholar] [CrossRef]
- De, O.J.P.M. Effect of generation capacity factors on carbon emission intensity of electricity of Latin America and the Caribbean, a temporal ida-lmdi analysis. Renew. Sustain. Energy Rev. 2019, 101, 516–526. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, W.; Ma, N.; Chen, Z.; Zhou, M.; Xiong, Y. Game analysis of carbon emission verification: A case study from Shenzhen’s cap-and-trade system in China. Energy Policy 2019, 130, 418–428. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, H.; Shi, S. Relationship between social civilization forms and carbon emission intensity: A study of the Shanghai metropolitan area. J. Clean. Prod. 2019, 228, 1552–1563. [Google Scholar] [CrossRef]
- Yang, X.; Xu, M.; Zhao, Y.; Bao, T.; Ren, W.; Shi, Y. Trampling disturbance of biocrust enhances soil carbon emission. Rangel. Ecol. Manag. 2020, 73, 501–510. [Google Scholar] [CrossRef]
- Hu, D.; Fang, Y.; Feng, C.; Cheng, J. City-level carbon emission abatement in the subtropics of China: Evaluation and reallocation for Zhejiang. Trop. Conserv. Sci. 2019, 12, 365–372. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, K.J.; Bi, H.M.; Xue, J.J. Changes in carbon intensity globally and in countries: Attribution and decomposition analysis. Appl. Energy 2019, 235, 1492–1504. [Google Scholar] [CrossRef]
- Xu, C.; Yan, C. Silicon-hybrid carbon dots derived from rice husk: Promising fluorescent probes for trivalent rare earth element ions in aqueous media. New J. Chem. 2021, 45, 20575–20585. [Google Scholar] [CrossRef]
- Murugan, N.; Prakash, M.; Jayakumar, M.; Sundaramurthy, A.; Sundramoorthy, A.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl. Surf. Sci. 2019, 476, 468–480. [Google Scholar] [CrossRef]
Code | Industry Name | Code | Industry Name |
---|---|---|---|
1 | Agriculture, forestry and fishery | 19 | Automobile and motorcycle sales and maintenance, fuel retail |
2 | Extractive industry | 20 | Wholesale trade, brokerage trade |
3 | Food, beverage and tobacco | 21 | Retail and household goods maintenance |
4 | Textiles | 22 | Catering |
5 | Leather and footwear products | 23 | Inland transportation |
6 | Wood and its products | 24 | Water transportation industry |
7 | Pulp, paper, paper products, printing and publishing | 25 | Air transport industry |
8 | Coke, refining crystal and nuclear fuel | 26 | Other auxiliary transportation activities, travel agency activities |
9 | Chemicals | 27 | Post and telecommunication |
10 | Rubber and plastic products | 28 | Finance |
11 | Other non-metallic mineral products | 29 | Real estate industry |
12 | Base metals and metal products | 30 | Machinery and equipment leasing and related business activities |
13 | Other machinery and equipment | 31 | Public administration and national defense, basic social security |
14 | Electrical and optical products | 32 | Education |
15 | Transportation equipment | 33 | Health and social work |
16 | Other manufacturing industries, renewable products | 34 | Other community, social and personal services |
17 | Power, gas and water supply | 35 | Family service industry |
18 | Construction |
Variable Name | Variable Interpretation | Data Source | Average Value | Standard Deviation |
---|---|---|---|---|
lnC | Logarithmic trading partner countries of carbon emission transfer | WIOD | 22.32 | 1.52 |
lnGDP | The logarithm of the GDP | WDI | 26.59 | 1.38 |
lnGDPC | The logarithm of China’s GDP | WDI | 27.17 | 0.59 |
lnPOP | The logarithm of the population of trading countries | WDI | 16.87 | 1.25 |
lnPOPC | The logarithm of China’s population | WDI | 20.26 | 0.07 |
lndist | The logarithm of the distance | CEPII | 9.23 | 0.53 |
lnland | The logarithm of the land area | WDI | 13.56 | 1.87 |
lnFDI | The logarithm of the FDI | CEIC | 24.58 | 0.44 |
lnCCPI | Environmental policy level of trading countries | Germanwatch | 44.38 | 5.71 |
lnCCPIC | China’s environmental policy level | Germanwatch | 46.22 | 6.13 |
lnVS | Intra-product trade index | WIOD | 20.48 | 12.51 |
Model | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
lnCCPI | 3.41 | 3.68 | 3.52 | 4.63 | 3.15 | 2.24 |
(1.18) | (1.52) | (1.03) | (1.25) | (1.06) | (0.88) | |
lnCCPIC | −2.72 ** | −2.99 *** | −2.53 ** | −2.67 | −2.63 *** | −3.33 *** |
(−2.07) | (−4.24) | (−2.12) | (−0.97) | (−3.73) | (−5.52) | |
lnVS | 5.23 | 4.33 | 6.46 | 7.41 | 7.05 | 6.43 |
(1.32) | (1.21) | (1.34) | (0.78) | (0.83) | (0.96) | |
lnGDP | 0.52 ** | 0.69 ** | 0.63 *** | 0.72 *** | 0.59 *** | / |
(2.22) | (1.96) | (3.32) | (4.53) | (5.42) | ||
lnGDPC | 1.52 *** | 1.62 *** | 1.19 ** | 1.79 *** | 1.43 *** | / |
(3.19) | (5.01) | (2.08) | (6.31) | (8.15) | ||
lnPOP | 0.41 * | 0.32 * | 0.45 | 0.33 | / | / |
(1.71) | (1.32) | (1.22) | (1.37) | |||
lnPOPC | −0.67 | −0.58 | −0.79 | −0.73 ** | / | / |
(−1.19) | (−1.51) | (−1.48) | (−2.21) | |||
lndist | −1.42 | −1.08 ** | −1.53 *** | / | / | / |
(−1.22) | (−1.87) | (−2.85) | ||||
lnland | −0.41 | −031 | / | / | / | / |
(−0.92) | (−1.22) | |||||
lnFDI | 0.81 ** | / | / | / | / | / |
(1.98) | ||||||
Constant term | 6.21 *** | 5.63 *** | 6.39 *** | 5.71 *** | 6.11 *** | 5.41 *** |
(5.09) | (4.03) | (3.91) | (4.77) | (5.26) | (4.52) | |
AR(1) | 0.07 | 0.01 | 0.05 | 0.02 | 0.06 | 0.02 |
AR(2) | 0.42 | 0.41 | 0.59 | 0.60 | 0.59 | 0.53 |
Hansen checkout | 37.82 | 46.13 | 41.97 | 37.39 | 38.62 | 36.43 |
Model | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|
lnCCPI | 0.26 * | 0.25 * | 0.15 * | 0.21 | 0.25 | 0.13 |
(1.78) | (1.91) | (1.83) | (0.88) | (1.46) | (1.22) | |
lnCCPIC | −0.68 ** | −1.11 ** | −1.23 ** | −0.71 | −0.21 * | −0.45 |
(−2.17) | (−1.91) | (−2.12) | (−0.97) | (−1.71) | (−1.18) | |
lnVS | 1.35 | 1.53 | 2.25 | 1.31 | 1.14 | 2.41 |
(1.55) | (1.21) | (1.14) | (1.48) | (1.43) | (1.36) | |
lnGDP | 0.23 ** | 0.12 | 0.15 | 0.06 | 0.04 | / |
(1.22) | (0.96) | (0.27) | (1.43) | (1.22) | ||
lnGDPC | 0.99 | 0.58 | 1.29 | 0.55 | 0.43 | / |
(0.79) | (1.01) | (0.91) | (0.71) | (1.13) | ||
lnPOP | 0.31 * | 0.32 * | 0.15 | 0.13 | / | / |
(1.71) | (1.76) | (1.21) | (1.41) | |||
lnPOPC | −0.71 | −0.18 | −0.81 | −0.73 ** | / | / |
(−0.59) | (−0.23) | (−0.42) | (−0.21) | |||
lndist | −0.41 * | −0.98 ** | −0.53 *** | / | / | / |
(−1.73) | (−2.39) | (−4.09) | ||||
lnland | −0.15 | −0.13 | / | / | / | / |
(−0.52) | (−1.12) | |||||
lnFDI | 0.28 | / | / | / | / | / |
(0.99) | ||||||
Constant term | 1.91 *** | 1.52 *** | 1.19 *** | 1.53 *** | 2.08 *** | 1.23 *** |
(3.29) | (4.13) | (3.33) | (4.87) | (3.26) | (4.21) | |
AR(1) | 0 | 0 | 0 | 0 | 0 | 0 |
AR(2) | 0.45 | 0.29 | 0.15 | 0.12 | 0.57 | 0.13 |
Hansen checkout | 17.83 | 16.93 | 26.13 | 17.39 | 37.75 | 13.96 |
Department SN/Variable | Whether the Exporting Country Has Signed the Kyoto Protocol | Whether the Importing Country Has Signed the Kyoto Protocol | |||
---|---|---|---|---|---|
YES | NO | YES | NO | ||
1 | Import | 56.9 | 49.8 | 70.8 | 42.5 |
Carbon emission intensity | 0.6 | 0.8 | 0.6 | 0.7 | |
Import implied carbon | 21.8 | 28.9 | 30.7 | 24.7 | |
2 | Import | 41.8 | 50.9 | 52.3 | 45.6 |
Carbon emission intensity | 3.0 | 5.5 | 3.7 | 5.4 | |
Import implied carbon | 106.5 | 248.3 | 206.3 | 199.8 | |
3 | Import | 206.3 | 138.2 | 214.6 | 133.6 |
Carbon emission intensity | 1.3 | 2.6 | 1.9 | 2.8 | |
Import implied carbon | 212.3 | 332.5 | 290.1 | 299.4 | |
4 | Import | 512.5 | 251.6 | 478.6 | 268.3 |
Carbon emission intensity | 0.8 | 1.5 | 1.2 | 1.6 | |
Import implied carbon | 193.3 | 249.3 | 251.3 | 223.6 | |
5 | Import | 56.8 | 38.5 | 56.9 | 39.3 |
Carbon emission intensity | 1.2 | 2.4 | 1.6 | 2.3 | |
Import implied carbon | 54.5 | 76.3 | 69.8 | 69.9 | |
6 | Import | 331.5 | 234.2 | 333.4 | 236.9 |
Carbon emission intensity | 0.3 | 0.7 | 0.5 | 0.7 | |
Import implied carbon | 66.8 | 94.6 | 100.2 | 81.5 | |
7 | Import | 831.9 | 644.8 | 820.3 | 661.3 |
Carbon emission intensity | 0.4 | 0.9 | 0.6 | 0.8 | |
Import implied carbon | 165.8 | 381.6 | 330.4 | 308.2 | |
8 | Import | 180.4 | 119.8 | 196.2 | 113.5 |
Carbon emission intensity | 0.3 | 0.6 | 0.5 | 0.8 | |
Import implied carbon | 52.9 | 279.7 | 70.6 | 59.1 | |
9 | Import | 103.2 | 368.3 | 106.2 | 76.3 |
Carbon emission intensity | 0.3 | 1.0 | 0.5 | 0.9 | |
Import implied carbon | 33.4 | 215.3 | 39.2 | 38.2 | |
10 | Import | 27.1 | 114.6 | 29.6 | 19.9 |
Carbon emission intensity | 0.4 | 0.9 | 0.5 | 0.8 | |
Import implied carbon | 9.6 | 124.3 | 15.4 | 13.9 | |
11 | Import | 126.5 | 693.4 | 168.3 | 125.4 |
Carbon emission intensity | 0.4 | 0.8 | 0.4 | 0.6 | |
Import implied carbon | 30.1 | 922.3 | 100.1 | 99.2 | |
12 | Import | 322.8 | 1101.5 | 338.2 | 241.9 |
Carbon emission intensity | 0.5 | 1.6 | 0.8 | 1.2 | |
Import implied carbon | 102.6 | 1699.5 | 181.5 | 206.3 |
Model | A1 | A2 | B1 | B2 | C1 | C2 |
---|---|---|---|---|---|---|
Dependent Variable | Ln Imports, Qmx | Ln CO2 Intensity of Imports, ηx | Ln CO2 Imports, Emx | |||
Kyotom | 0.03 | / | 0.00 | / | 0.03 | / |
(0.02) | (0.00) | (0.01) | ||||
Kyotox | −0.09 *** | / | −0.09 * | / | −0.16 *** | / |
(0.03) | (0.00) | (0.03) | ||||
Kyotom- Kyotox | / | 0.04 *** | / | 0.02 *** | 0.07 *** | |
(0.02) | (0.00) | (0.02) | ||||
lnGDPm | 1.83 ** | / | 0.04 *** | / | 1.88 *** | / |
(0.09) | (0.03) | (0.05) | ||||
lnGDPx | 1.12 *** | / | −1.11 *** | / | −0.02 | / |
(0.07) | (0.01) | (0.06) | ||||
Jiont FTA | 0.00 | −0.02 | 0.02 | 0.01 *** | 0.00 | 0.02 |
(0.03) | (0.02) | (0.01) | (0.02) | (0.03) | (0.03) | |
Jiont WTO | −0.06 | −0.15 | 0.03 | 0.00 | −0.04 | −0.12 |
(0.19) | (0.18) | (0.02) | (0.03) | (0.15) | (0.16) | |
Jiont EU | −0.008 *** | −0.10 *** | 0.00 | 0.00 | −0.11 *** | −0.10 *** |
(0.05) | (−0.02) | (0.02) | (0.00) | (0.02) | (0.04) | |
MR | Yes | / | Yes | / | Yes | / |
Year effects | Yes | / | Yes | / | Yes | / |
Country- pair sector | Yes | Yes | Yes | Yes | Yes | Yes |
Adj.R2 | 0.16 | 0.20 | 0.62 | 0.73 | 0.06 | 0.08 |
RMSE | 0.83 | 0.82 | 0.18 | 0.19 | 0.84 | 0.86 |
Model | A3 | A4 | B3 | B4 | C3 | C4 |
---|---|---|---|---|---|---|
Dependent Variable | Ln Imports, Qmx | Ln CO2 Intensity of Imports, ηx | Ln CO2 Imports, Emx | |||
Kyotom | 0.03 | / | 0.00 | / | 0.04 *** | / |
(0.02) | (0.00) | (0.02) | ||||
Kyotox | −0.02 *** | / | −0.02 *** | / | 0.00 | / |
(0.02) | (−0.00) | (0.02) | ||||
Kyotom- Kyotox | / | 0.02 | / | 0.01 *** | / | 0.01 ** |
(0.01) | (0.01) | (0.01) | ||||
lnGDPm | 2.93 *** | / | −0.01 * | / | 2.89 *** | / |
(0.08) | (0.02) | (0.09) | ||||
lnGDPx | 0.77 *** | / | −1.07 *** | / | −0.29 *** | / |
(0.05) | (0.03) | (0.07) | ||||
Jiont FTA | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
(0.02) | (0.04) | (0.00) | (0.00) | (0.02) | (0.02) | |
Jiont WTO | −0.06 | −0.11 | −0.02 | 0.01 | 0.09 | −0.10 |
(0.15) | (0.18) | (0.01) | (0.01) | (0.13) | (0.18) | |
Jiont EU | −0.03 | −0.03 | 0.00 | 0.00 | −0.03 | −0.01 |
(0.03) | (0.02) | (0.00) | (0.00) | (0.01) | (0.02) | |
MR | Yes | / | Yes | / | Yes | / |
Year effects | Yes | / | Yes | / | Yes | / |
Country- pair sector | Yes | Yes | Yes | Yes | Yes | Yes |
Adj.R2 | 0.03 | 0.02 | 0.03 | 0.41 | 0.02 | 0.03 |
RMSE | 0.84 | 0.87 | 0.85 | 0.14 | 0.89 | 0.88 |
/ | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
---|---|---|---|---|---|---|---|---|
Computing Method | MRIO | Technique Fixed | MRIO I-O Fixed | |||||
Dependent Variable | Ln Intensity | Ln CO2 Imports | Ln CO2 Imports | Ln CO2 Imports | ||||
Kyotom | 0.01 | / | 0.03 | / | 0.03 | / | 0.01 | / |
(0.00) | (0.03) | (0.02) | (0.02) | |||||
Kyotox | −0.06 *** | / | −0.15 *** | / | −0.02 *** | / | −0.15 *** | / |
(0.01) | (0.01) | (0.03) | (0.03) | |||||
Kyotom- Kyotox | / | 0.03 *** | / | 0.08 *** | / | 0.04 *** | / | 0.08 *** |
(0.01) | (0.02) | (0.02) | (0.02) | |||||
lnGDPm | 0.04 ** | / | −1.91 *** | / | 1.88 *** | / | 1.88 *** | / |
(0.02) | (0.05) | (0.06) | (0.0) | |||||
lnGDPx | −1.18 *** | / | −0.15 ** | / | 1.10 *** | / | 0.12 * | / |
(0.02) | (0.06) | (0.07) | (0.05) | |||||
Jiont FTA | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | −0.02 | 0.02 | 0.02 |
(0.02) | (0.01) | (0.03) | (0.03) | (0.03) | (0.02) | (0.03) | (0.03) | |
Jiont WTO | 0.01 | −0.01 | −0.05 | −0.15 | −0.08 | −0.15 | −0.08 | −0.13 |
(0.02) | (0.02) | (0.14) | (0.15) | (0.16) | (0.18) | (0.14) | (0.16) | |
Jiont EU | 0.00 | −0.01 | −0.08 *** | −0.10 *** | −0.09 *** | −0.10 *** | −0.09 *** | −0.08 *** |
(0.02) | (0.02) | (0.04) | (0.02) | (0.04) | (0.03) | (0.02) | (0.03) | |
MR distance | 0.00 * | / | −0.01 *** | / | −0.02 *** | / | −0.01 * | / |
(0.00) | (0.01) | (0.00) | (0.01) | |||||
MR contiguity | −0.07 *** | / | −0.15 ** | / | 0.19 *** | / | −0.18 *** | / |
(0.02) | (0.05) | (0.07) | (0.05) | |||||
Year effects | YES | / | YES | / | YES | / | YES | / |
Country- year FE | / | YES | / | YES | / | YES | / | YES |
Adj.R2 | 0.66 | 0.72 | 0.08 | 0.09 | 0.17 | 0.22 | 0.06 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Guo, X.; Wang, Y. Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It. Sustainability 2023, 15, 7528. https://doi.org/10.3390/su15097528
Yang X, Guo X, Wang Y. Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It. Sustainability. 2023; 15(9):7528. https://doi.org/10.3390/su15097528
Chicago/Turabian StyleYang, Xiaowan, Xiaoyu Guo, and Yanan Wang. 2023. "Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It" Sustainability 15, no. 9: 7528. https://doi.org/10.3390/su15097528
APA StyleYang, X., Guo, X., & Wang, Y. (2023). Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It. Sustainability, 15(9), 7528. https://doi.org/10.3390/su15097528