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Abstract: In recent years, with the increase in global carbon dioxide content, the negative impact
of the greenhouse effect has become increasingly significant. Moreover, countries have gradually
recognized the importance and urgency of carbon emission (CE) reduction. Under the dual-carbon
background, CE transfer has received increasing attention. The study of its characteristics can help
carry out CE reduction. Therefore, the study analyzes the characteristics of CE transfer, hoping
to reduce carbon dioxide emissions. In addition, environmental policies and regulations have a
significant impact on CE transfer. CE transfer under different environmental policies and regulations
varies greatly. The relationship between environmental policies and regulations and CE transfer needs
to be specifically analyzed. Therefore, a theoretical model is built based on environmental policies
and regulations and CE transfer. This model is used to analyze the impact of different environmental
policies and regulations on CE transfer. The measurement is tested via numerical simulation. The
results show that good environmental policies and regulations can effectively reduce global CE. This
study also compares and analyzes the relationship between differences in environmental policies
and regulations and carbon leakage (CL). The results show that positive environmental policies and
regulations can reduce CL, thus achieving the goal of carbon emission reduction. The above results
show that in the context of dual carbon, appropriate environmental policies and regulations can
reasonably regulate CE transfer and CL level. This can reduce the global emissions of carbon dioxide
and the negative impact of the greenhouse effect on the world.

Keywords: carbon neutralization; carbon peak; environmental policies and regulations; CE transfer;
CE reduction; CL

1. Introduction

The amount of CE in each country remains high, and high CE leads to global tempera-
ture rise, which has a significant adverse impact on global ecology [1,2]. Countries have
put forward carbon neutralization and carbon peaking strategies. In the context of dual
carbon, it is important to find an appropriate method to reduce CE [3,4]. CE transfer means
that industries with high CE are transferred to other countries to achieve the goal of global
CE emission reduction. Through CE transfer strategy, the amount of CE can be effectively
reduced, so as to reduce CL and improve the overall global environmental level [5–7].
However, at present, the level of CE transfer around the world is not high, so it is important
to find a method that can effectively improve the level of CE transfer [8,9]. Many scholars
have conducted many studies to reduce carbon emissions. For example, Prativa and Sun
proposed a multi-region input–output model to study carbon emissions in forest product
trade in order to improve the level of carbon emission transfer. Research has found that
carbon emissions from international trade in forest products account for approximately
25% of the total emissions from production activities. Moreover, the emission intensity
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of developing countries is usually much higher than that of developed countries. These
findings help decision-makers understand the economic and environmental relationships
of forest product trade and improve policy and agreement design [10]. In order to improve
China’s carbon emission transfer level, Li et al. proposed a top-down multi-layer emission
attribution model to obtain appropriate sales and supply chain paths. This model is used
to provide a detailed description of the relationship between the main input attribution
and the final production attribution. The results showed that by formulating adaptive
policies, encouraging upstream departments to improve clean production technologies,
and encouraging downstream departments to adjust industrial structure, the domestic
carbon emission transfer level can be effectively improved [11]. Wang et al. proposed a
super efficiency measure based on relaxation to evaluate the carbon emission performance
of Chinese cities. In addition, they constructed traditional Markov probability transfer
matrices and spatial Markov probability transfer matrices based on this. The research
results indicate that the carbon emission performance of Chinese cities has steadily in-
creased during the research period, but there are certain fluctuations. However, the overall
level of carbon emission performance is still relatively low, indicating great potential for
improvement in energy conservation and emission reduction. Therefore, China should
continue to strengthen research and development aimed at improving urban carbon emis-
sions performance and achieving national energy-saving and emission reduction goals. At
the same time, neighboring cities with different neighborhood backgrounds should adopt
a cooperative economic strategy of balanced economic growth, energy conservation and
emission reduction. Therefore, low-carbon construction and sustainable development can
be achieved [12]. Environmental policies and regulations (EPRs) are a series of policies
and regulations formulated by countries to protect the environment. A country’s EPRs can
have an impact on the level of CE transfer in that country, but the impact effect is different
due to the different EPRs of countries [13]. Many scholars have proposed many different
methods to reduce carbon emissions. However, there is a lack of research linking environ-
mental policies and regulations with carbon emission transfer levels. Therefore, the study
will investigate the correlation between climate policies and environmental regulations
and carbon emissions, in order to fill this research gap and analyze the specific impact of
appropriate climate policies and environmental regulations on carbon emissions. We need
to study the construction of multinational models and theoretical models based on climate
policy, trade, and carbon emission transfer to explore the relationship among the three.
Moreover, empirical analysis was conducted on the proposed model, hoping to clarify the
specific relationship between climate and environmental policies and carbon emissions, in
order to provide suggestions for the development of carbon reduction work.

It is hoped to improve the global carbon emission transfer level, reduce global carbon
emissions, and ultimately improve the global ecological environment level. In order to
better analyze the purpose of this study, a question is raised: can appropriate environmental
laws and regulations effectively reduce carbon emissions?

2. Analysis of CE Transfer Characteristics under the Background of “Double Carbon”
2.1. Calculation of CE Dioxide

Before analyzing the characteristics of CE transfer, the accounting of CE volume in
each country is of great significance [14]. With the implementation of the EU’s carbon
trading system and seven carbon trading pilot projects, it is necessary to calculate CE at the
industrial and enterprise levels [15,16]. Generally speaking, there are three guiding methods
for CO2 emission calculation, namely the emission factor method, mass balance method and
measurement method. Among them, the emission factor method is a traditional method for
calculating CO2 emissions [17,18]. The calculation method of the emission factor method is
to analyze the amount of CE dioxide that may be generated through relevant statistical data,
field research, monitoring and other methods. Then, it is multiplied with the emissions
of relevant activities to obtain the total emissions [19,20]. In this series of calculations,
the most important issue is how to obtain the information about emission factors [21,22].
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In addition, the mass balance method is based on the principle of mass conservation in
chemical reactions. The CO2 emission of the device is calculated by improving the quality of
the chemical components of the device. Because this method is based on chemical reactions,
it can be well-used to analyze CO2 emissions of large chemical enterprises such as refineries.
However, this calculation method is only limited to CE in industry or manufacturing, and
is useless for CE in life, transportation and other aspects. Both the emission factor method
and the mass balance method are used to indirectly measure the CO2 emissions, while the
actual measurement method is to directly monitor the CO2 of a device or a region [23,24].
Because the workload of CE accounting for micro-individuals is less, the measurement
method is applicable to micro-objects such as families and micro-buildings. However, it
is obviously not suitable for macro-objects, such as regions or countries. In addition, the
actual measurement method has high requirements for the sensitivity and professionalism
of the instrument, so the cost is high. At present, the actual measurement method has
not been widely used in China. Figure 1 shows the CO2 emission accounting methods at
different scales.
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As shown in Figure 1, the accounting methods for carbon emissions at different scales
vary. However, the emission factor method has a wider scope of application, which is
applicable in three different scales. Therefore, to improve the accuracy of CE quantity
accounting, the emission factor method is selected for CE quantity accounting. In the actual
accounting process, the main sources of CE factors are the IPCC website and National
Reference Library.

2.2. CE Transfer and Carbon Leakage

Although international trade plays a significant role in promoting the development
of the world economy and society, it also brings a series of problems such as CE transfer
and carbon leakage [25]. If these problems are not properly solved, they will seriously
affect the global sustainable development. Developed countries are in a leading position in
the whole industry due to their advantages in capital, technology and other aspects [26].
Moreover, the climate policies in developed countries are usually strict, and the cost of
raw materials and labor is relatively high. Therefore, they are more willing to transfer
industries or manufacturing sectors with high emissions and low added value to developing
countries [27,28]. Specifically, CE transfer has the following three characteristics. First,
it is closely associated with international trade. Because exports need to use mineral
energy, CO2 will be generated in the manufacturing process. However, unlike products
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directly used in China, this energy-containing product is consumed in other countries,
while bilateral trade plays a bridge role [29,30]. Secondly, carbon transfer is directional.
That is, the countries that transfer carbon are the importing countries of products, while
those that passively accept carbon are the exporting countries. The third characteristic is
that the determination of CE transfer means a major adjustment of relevant responsibilities
between countries. At present, the international understanding of CE responsibility is
mainly reflected in the principle of “production responsibility”, that is, whoever produces,
they will bear it. Arguably, this is unfair to developing countries [31].

CL is defined as an increase in CO2 emissions from other countries or regions due
to the implementation of a reduction policy by one country [10]. Therefore, in the study,
the carbon leakage rate is used to indicate the degree of CL, i.e., the ratio of the increase
of CE dioxide in other countries or regions to the reduction of national CO2 emissions. In
general, CL comes from two sources. First, the country has reduced its demand for mineral
energy. Second, due to the different emission reduction policies of different countries,
the climate policies formulated are also different. Therefore, high-polluting enterprises
with high energy consumption and high CE of CO2 have moved to regions with relatively
weak climate policies [32,33]. Although both CE transfer and carbon leakage have negative
externalities, there are essential differences between them. There are many reasons for CE
transfer, including national emission reduction policies and industrial division patterns
of different countries. Carbon leakage highlights that regardless of whether emission
reduction policies are implemented or the differences in their implementation efforts, their
carbon emissions both domestically and internationally will change. Currently, carbon
dioxide is a global public product, which has a causal relationship with different climate
policies [34,35].

3. How Climate Policies and Environmental Regulations Affect CE: A
Theoretical Model
3.1. Effect of EPRs on CE Transfer

CE transfer refers to the transfer of CE rights from one economy to another to achieve
the goal of global CE emission reduction [36]. The impact of EPRs on CE transfer is
relatively obvious. It can not only promote CE emission reduction, but also improve
environmental quality and economic efficiency [37,38]. First, EPRs can promote CE transfer.
EPRs can regulate the scope, mode and conditions of CE transfer and the implementation
mechanism of CE transfer, thus promoting the implementation of CE transfer. Secondly,
EPRs can improve environmental quality. CE transfer can transfer CE rights from high-
emission economies to low-emission economies, thereby reducing CE and improving
environmental quality. In addition, EPRs can also improve economic efficiency. CE transfer
can transfer CE rights from inefficient economies to efficient economies, thus improving
economic efficiency [39,40]. Therefore, the impact of EPRs on CE transfer is relatively
obvious. EPRs can promote the implementation of CE transfer, improve environmental
quality and economic efficiency, thus achieving the goal of global CE emission reduction.
Therefore, countries should strengthen the formulation and implementation of EPRs to
promote the implementation of CE transfer and achieve the goal of global CE emission
reduction. This study mainly analyzes the impact of climate policy and global trade on
CE transfer. Therefore, appropriate climate policies, regulations and trade regulations are
proposed to reduce global CO2 emissions. Therefore, the study proposes a hypothesis that
appropriate climate policies and environmental regulations can promote the transfer of
carbon emissions while reducing carbon emissions.

3.2. Model Construction between EPRs and CE Transfer

The study analyzes how climate policy and trade affect CE by constructing a multina-
tional equilibrium model. Environmental policies and regulations can affect the transfer
of carbon emissions by regulating economic activities and energy consumption. When
environmental policies and regulations are formulated more strictly, such as requiring
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enterprises to meet a certain standard of carbon emission intensity, or requiring the use of
less energy such as oil and coal, this will affect the carbon emission transfer behavior of
enterprises. If companies shift towards more environmentally friendly production tech-
nologies and products, they can reduce carbon emissions and thus reduce their impact
on the environment. When the government implements stricter environmental policies
and regulations, it will reduce the energy consumption of enterprises, thereby reducing
carbon emissions and reducing the impact on the environment. The environmental policies
and regulations are such as setting stricter energy consumption standards or requiring the
use of fewer energy sources such as oil and coal. Under the framework of intra-product
trade, by studying the vertical links of countries in the intra-product division of labor, the
input–output relationship of countries through trade is described in Figure 2.
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Through the trade of intermediate goods, global production can be carried out. How-
ever, differences in climate policies among countries will lead to differences in CE. In
countries with higher trade intensity, stronger climate policies actually only bear part of
the cost of pollution control. The other part is passed on to consumers in other countries
through higher intermediate prices. Based on the traditional model of trade and environ-
ment, the study introduces the vertical link caused by intermediate trade, so as to reflect
the relationship between trade and environment more truly. Under this framework, it
can analyze global pollution and global welfare. Stricter climate policies have reduced
the supply of tradeable intermediates in the world market. Since pollution only occurs
in the process of producing tradeable intermediates, the pollution of countries importing
tradeable intermediates will also be reduced. Specifically, the model is a general equi-
librium model that includes multiple countries, three sectors and multiple input factors.
The biggest difference from the previous models is that the trade of intermediate goods is
introduced into the model, and only the production process of tradable intermediate goods
will produce pollution. From a more essential point of view, it is this vertical link that has
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played an important role in climate policy and cross-border pollution emissions. In the case
of transboundary pollution, a country’s climate policy not only affects its own CE, but also
affects global CE through vertical links and a series of external effects. The coordination
of climate policies among countries will also greatly affect the equilibrium situation, thus
affecting the level of balanced climate policy and CE level. In order to better demonstrate
the relationship between environmental climate policies and carbon emissions, the study
proposes an argument that there is no clear relationship between environmental climate
policies and carbon emissions.

4. Empirical Analysis of Theoretical Model under the “Double Carbon Background”
4.1. Calculation of CE Transfer
4.1.1. Calculation Method of CE Transfer

The study uses the input–output method to calculate the CE transfer. Two countries in
the economy with M countries are set as country r and country s. Both countries include N
industrial sectors. Each industrial sector will produce a certain amount of trade products
and consume resources to produce CE, and there are trade exchanges between the two
countries. In Equation (1), the expression of CE transfer volume Crs caused by the export
of country r to country s.

Crs = Fr(1 − Ar)−1Ers (1)

In Formula (1), Fr represents the CE intensity vector of country r, Ar is the intermediate
input coefficient matrix of country r, and Ers represents the export vector of country r to
country s. Similarly, the expression of CE transfer caused by the export of country s to
country r is shown in Equation (2).

Csr = Fs(1 − As)−1Esr (2)

Fs is the CE intensity vector of country s in Formula (2). As is the intermediate input
coefficient matrix of country s. Esr is the export vector of country s to country r. Therefore,
Formula (3) shows the expression of net CE transfer from country r to country s.

Crs
n = Csr − Crs (3)

Through Equation (3), the CE transfer Cr expression of country r’s total exports to the
world can be obtained, as shown in Equation (4).

Cr = Fr(1 − Ar)−1Er (4)

Er represents the total export vector of country r in Formula (4). In addition to the
CE transfer at the total level, the study also calculates the transfer amount cr of pollutant
emissions per unit of export. Equation (5) represents its expression.

cr = Fr(1 − Ar)−1(Er/Xr) (5)

In Formula (5), Xr is the total export volume of country r.

4.1.2. Data Source

The data used to calculate China’s CE transfer are all from the WIOD database devel-
oped by the European Union. The database is composed of 35 industrial sectors, covering
major fields such as agriculture, manufacturing and service industries. Table 1 shows the
specific industry names in the WIOD database.
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Table 1. Specific Industrial Names and Corresponding Serial Numbers in the WIOD Database.

Code Industry Name Code Industry Name

1 Agriculture, forestry and fishery 19 Automobile and motorcycle sales and
maintenance, fuel retail

2 Extractive industry 20 Wholesale trade, brokerage trade

3 Food, beverage and tobacco 21 Retail and household goods maintenance

4 Textiles 22 Catering

5 Leather and footwear products 23 Inland transportation

6 Wood and its products 24 Water transportation industry

7 Pulp, paper, paper products, printing
and publishing 25 Air transport industry

8 Coke, refining crystal and nuclear fuel 26 Other auxiliary transportation activities,
travel agency activities

9 Chemicals 27 Post and telecommunication

10 Rubber and plastic products 28 Finance

11 Other non-metallic mineral products 29 Real estate industry

12 Base metals and metal products 30 Machinery and equipment leasing and
related business activities

13 Other machinery and equipment 31 Public administration and national defense,
basic social security

14 Electrical and optical products 32 Education

15 Transportation equipment 33 Health and social work

16 Other manufacturing industries,
renewable products 34 Other community, social and

personal services

17 Power, gas and water supply 35 Family service industry

18 Construction

The WIOD database includes the 40 major economies in the world and other countries
in the world. The CE data of each industry in each country can be obtained by using
the environmental account in the database. Then, the output data of each industry in
each country can be obtained through the input–output table in the database. Moreover,
the CE intensity vector can be calculated based on it. In addition, the intermediate input
coefficient matrix and export vector of each country are derived from each country’s own
input–output table. The export vector between countries is obtained through the world
input–output table of the database.

4.1.3. CE Transfer Calculation Results in China

Based on the information obtained from WIOD database, the CE transfer volume
and CE intensity caused by China’s exports from 2001 to 2020 are calculated by using
Formulas (2) and (3). In addition, the study also calculates the proportion of export CE
of each industry to analyze the differences of export CE among industries. The volume
and intensity of CE transfer caused by China’s exports and the proportion of CE transfer in
various industries are shown in Figure 3.

Figure 3a shows the change of CE transfer volume and CE intensity caused by China’s
exports from 2001 to 2021. From Figure 3a, the total CE transfer volume caused by China’s
exports increased from about 1 million tons in 2001 to 3 million tons in 2011, and reached
7.2 million tons in 2021. In addition, the export of CE intensity in China showed an overall
downward trend from 2001 to 2021, and it dropped from 3.0 tons/100 dollars in 2001
to 1.6 tons/100 dollars in 2021. This shows that with the development of modern times,
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China’s resource costs and environmental costs in international trade have been reduced.
This is of great significance to promote the sustainable development of China’s foreign
trade and the green and low-carbon development of China’s economy. Figure 3b shows the
proportion of export CE transfer of Chinese industries in 2001 and 2021. The three industries
with the highest proportion of CE transfer in 2001 are non-metallic mineral products (0.38),
agriculture, forestry, animal husbandry and fishery (0.21) and chemical products (0.11). The
three industries with the highest proportion of export CE transfer in 2021 are electrical and
optical equipment (0.44), base metals and metal products (0.13) and textiles (0.08). From
the above comparison, China’s export of CE is mainly concentrated in a few industries.
Moreover, with the growth of time, the proportion of agriculture, forestry, fishery and
other industries has decreased significantly. However, the number of CE in power, optical
devices and other industries has increased significantly. The change in the CE volume
of industrial products, to a certain extent, shows that China’s export industry structure
has changed. The proportion of traditional resource-based industries is decreasing, while
the proportion of industries with high capital and technology content is increasing. To
achieve the goal of energy conservation and emission reduction in the future, China must
comprehensively consider the differences between industries and formulate differentiated
emission reduction strategies and measures. WIOD data include 40 economies, that is,
China has 39 trading partners. In order to simplify the CE transfer of China’s foreign trade,
the study only uses the trade data of China and the United States to describe it. Figure 4
shows the CE transfer and CE intensity caused by US exports to China and China’s exports
to the US from 2001 to 2021.
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Figure 4. Carbon Dioxide Emission Transfer and Intensity Caused by US Exports to China and
China’s Exports to the US.

Figure 4a shows the transfer and intensity of CE dioxide caused by US exports to
China from 2001 to 2021. The amount of CE transfer passively undertaken by the United
States has shown an overall upward trend with the increase of years, from 18,000 tons in
2001 to 184,000 tons in 2021. The corresponding export CE transfer intensity decreased
from 0.57 tons/100 dollars in 2001 to 0.38 tons/100 dollars in 2021. Figure 4b shows the
transfer of CE dioxide and its intensity caused by China’s exports to the United States
from 2001 to 2021. The amount of CE transfer passively undertaken by China also shows
an overall upward trend with the increase over the years, from 198,000 tons in 2001 to
1,213,000 tons in 2021. The corresponding export CE transfer intensity decreased from
3.03 tons/100 dollars in 2001 to 1.95 tons/100 dollars in 2021. By comparing the CE transfer
data caused by Sino-US trade, the CE transferred from China to the United States is very
small, when it is compared with the CE transferred from the United States to China. In
addition, through the comparative analysis of the data results of CE transfer intensity, the
quality of China’s export products to the United States is continuously improving, and the
CE caused by its production is gradually decreasing. However, China’s export technology
still has a lot of room for improvement. It can improve the quality of export products by
reducing the energy consumption intensity of the export sector.

4.2. Measurement Model Construction and Data Description

The gravity model initially assumed that the larger the economic scale of both sides,
the greater the trade volume. The farther the distance between the two sides is, the smaller
the trade volume will be. The research expands the traditional gravity model, adds climate
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policy variables to the expanded gravity model, and constructs an econometric model for
empirical analysis. Formula (6) shows the expanded gravity model.

ysr =
xrxs

xW (
Trs

pr ps )
1−σ

(6)

In Formula (6), ysr is the export amount from country s to country r. xr is the income
level of consumers in country r. xs is the income level of consumers in country s. xW is
the nominal income of world consumers. pr and ps represent the consumer price index of
country r and country s. Combining Formulas (2) and (6), the expression of Csr is shown in
Formula (7).

Csr = A
xrxs

xW (
Trs

pr ps )
1−σ

(7)

A is a constant in Formula (7). The research uses the transnational panel data to
conduct empirical research by expanding the basic gravity model. The impact of domestic
and foreign climate policy intensity and intra-product trade on China’s export CE transfer is
analyzed. The strength of environmental policy and the development level of product trade
are included in the expanded gravity model. Formula (8) shows the specific expression.

ln Csr = β0 + β1 ln xr + β2 ln xs + β3 ln popr + β4 ln pops + β5 ln distrs + β6 ln lands+
β7 ln FDIrs + β8 ln CCPIr + β9 ln CCPIs + β10 ln VSsr + εrs (8)

pop is the population, dist is the distance between countries, FDI is the external
investment, CCPI is the environmental policy intensity index, VS is the trade index, and ε
is the error term in Formula (8). The CE transfer amount is taken as the dependent variable.
In fact, taking CE transfer intensity as a dependent variable can also be used to analyze
the impact of other factors. Therefore, in the empirical analysis, the study also replaced
the dependent variable with CE transfer intensity and then made a regression. For the
convenience of the study, 38 trading partner countries are selected as samples. In Table 2,
the statistical description of the variable data used in the empirical analysis is shown.

Table 2. Specific Industrial Names and Corresponding Serial Numbers in the WIOD Database.

Variable Name Variable Interpretation Data Source Average Value Standard Deviation

lnC Logarithmic trading partner countries of carbon
emission transfer WIOD 22.32 1.52

lnGDP The logarithm of the GDP WDI 26.59 1.38
lnGDPC The logarithm of China’s GDP WDI 27.17 0.59

lnPOP The logarithm of the population of
trading countries WDI 16.87 1.25

lnPOPC The logarithm of China’s population WDI 20.26 0.07
lndist The logarithm of the distance CEPII 9.23 0.53
lnland The logarithm of the land area WDI 13.56 1.87
lnFDI The logarithm of the FDI CEIC 24.58 0.44

lnCCPI Environmental policy level of trading countries Germanwatch 44.38 5.71
lnCCPIC China’s environmental policy level Germanwatch 46.22 6.13

lnVS Intra-product trade index WIOD 20.48 12.51

4.3. Estimation Results

Because a country’s climate policy is related to its economic situation and trade level,
it is inevitable to encounter endogenous problems such as two-way causality in the process
of regression. To solve the endogenous problem in the econometric model, the GMM
method is studied to minimize the endogenous problem. The GMM method uses the lag
of the inherent variables in the model as the instrumental variables. According to the
Chichi–Schwarz criterion, which is the basis for the selection of lagging items, the climate
policy variables lag 2, 3 and GDP variables are selected as instrumental variables. GMM
estimation is performed for the extended gravity model. To make the GMM estimation
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results more robust and reliable, the Hansen test and autoregressive test are used to test the
robustness of the results. The regression results with export CE transfer as the dependent
variable are shown in Table 3. Among them, models 1–6 represent the extended Gravity
model in which all control variables are gradually reduced until only core explanatory
variables are left.

Table 3. Regression Results with Export Carbon Emission Transfer as the Dependent Variable.

Model 1 2 3 4 5 6

lnCCPI
3.41 3.68 3.52 4.63 3.15 2.24

(1.18) (1.52) (1.03) (1.25) (1.06) (0.88)

lnCCPIC
−2.72 ** −2.99 *** −2.53 ** −2.67 −2.63 *** −3.33 ***

(−2.07) (−4.24) (−2.12) (−0.97) (−3.73) (−5.52)

lnVS
5.23 4.33 6.46 7.41 7.05 6.43

(1.32) (1.21) (1.34) (0.78) (0.83) (0.96)

lnGDP
0.52 ** 0.69 ** 0.63 *** 0.72 *** 0.59 ***

/
(2.22) (1.96) (3.32) (4.53) (5.42)

lnGDPC
1.52 *** 1.62 *** 1.19 ** 1.79 *** 1.43 ***

/
(3.19) (5.01) (2.08) (6.31) (8.15)

lnPOP
0.41 * 0.32 * 0.45 0.33

/ /
(1.71) (1.32) (1.22) (1.37)

lnPOPC
−0.67 −0.58 −0.79 −0.73 **

/ /
(−1.19) (−1.51) (−1.48) (−2.21)

lndist
−1.42 −1.08 ** −1.53 ***

/ / /
(−1.22) (−1.87) (−2.85)

lnland
−0.41 −031

/ / / /
(−0.92) (−1.22)

lnFDI
0.81 **

/ / / / /
(1.98)

Constant term
6.21 *** 5.63 *** 6.39 *** 5.71 *** 6.11 *** 5.41 ***

(5.09) (4.03) (3.91) (4.77) (5.26) (4.52)

AR(1) 0.07 0.01 0.05 0.02 0.06 0.02

AR(2) 0.42 0.41 0.59 0.60 0.59 0.53

Hansen
checkout 37.82 46.13 41.97 37.39 38.62 36.43

Note: The values in brackets are Z statistics of corresponding coefficients. ***, **, * means that the corresponding
coefficients have passed the significance test at the level of 1%, 5% and 10%.

As shown in model (6), after removing all control variables, the coefficient of China’s
climate policy intensity is significantly negative. That is, for every 1% increase in the
degree of China’s climate policy, the export CE transfer will decrease by 3.33% on average.
Moreover, the coefficient of climate policy level and intra-product trade index of trading
partner countries are positive, but not significant. From the data of model (1) to (5), with
the reduction of control variables, the coefficient of China’s climate policy intensity is still
negative, and the absolute value of the coefficient has increased. The coefficient of climate
policy level and intra-product trade index of trading partner countries are positive, but
not significant. In addition, the coefficient between China’s GDP and the GDP of trading
partners is significantly positive. When the GDPs of the two countries are higher, the trade
volume between them is greater, and the CE transfer is higher. From the data in model (1) to
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(4), the coefficients of the two countries’ populations are positive, but not significant. From
the data in models (2) and (3), the coefficient of the distance between the two countries is
significantly negative, indicating that the distance is a factor impeding the trade between
the two countries. In model (1), the coefficient of FDI is significantly positive, indicating
that the main performance between FDI and trade is complementary. The increase of FDI
in China and its trading partner countries will promote China’s export CE transfer. Taking
the export CE transfer intensity as the dependent variable, the regression results are shown
in Table 4. Models 7–12 represent the extended gravity model with all control variables
added and gradually reduced to only core explanatory variables.

Table 4. Regression Results with Export Carbon Emission Transfer Intensity as the Dependent Variable.

Model 7 8 9 10 11 12

lnCCPI
0.26 * 0.25 * 0.15 * 0.21 0.25 0.13

(1.78) (1.91) (1.83) (0.88) (1.46) (1.22)

lnCCPIC
−0.68 ** −1.11 ** −1.23 ** −0.71 −0.21 * −0.45

(−2.17) (−1.91) (−2.12) (−0.97) (−1.71) (−1.18)

lnVS
1.35 1.53 2.25 1.31 1.14 2.41

(1.55) (1.21) (1.14) (1.48) (1.43) (1.36)

lnGDP
0.23 ** 0.12 0.15 0.06 0.04

/
(1.22) (0.96) (0.27) (1.43) (1.22)

lnGDPC
0.99 0.58 1.29 0.55 0.43

/
(0.79) (1.01) (0.91) (0.71) (1.13)

lnPOP
0.31 * 0.32 * 0.15 0.13

/ /
(1.71) (1.76) (1.21) (1.41)

lnPOPC
−0.71 −0.18 −0.81 −0.73 **

/ /
(−0.59) (−0.23) (−0.42) (−0.21)

lndist
−0.41 * −0.98 ** −0.53 ***

/ / /
(−1.73) (−2.39) (−4.09)

lnland
−0.15 −0.13

/ / / /
(−0.52) (−1.12)

lnFDI
0.28

/ / / / /
(0.99)

Constant term
1.91 *** 1.52 *** 1.19 *** 1.53 *** 2.08 *** 1.23 ***

(3.29) (4.13) (3.33) (4.87) (3.26) (4.21)

AR(1) 0 0 0 0 0 0

AR(2) 0.45 0.29 0.15 0.12 0.57 0.13

Hansen
checkout 17.83 16.93 26.13 17.39 37.75 13.96

***, **, * means that the corresponding coefficients have passed the significance test at the level of 1%, 5% and 10%.

In model (12), after removing all control variables, the coefficient of the intensity of
the country’s climate policy is negative. Moreover, the coefficients of climate policy level
and intra-product trade index of trading partner countries are positive, and the coefficients
of the three core explanatory variables are not significant. From the data in models (7) to
(11), with the reduction of control variables, the coefficient of climate policy intensity in the
country is still negative, but the significance level is gradually decreasing. Furthermore,
the coefficient of climate policy intensity of trading countries is still positive, and the
significance level is gradually decreasing. The strengthening of the climate policy of the
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trading partner country will increase the intensity of export CE transfer of the country.
However, when the climate policy of the country is strengthened, the intensity of export
and CE transfer of the country will decline. In addition, if the development level of intra-
product trade between the two countries further increases, the intensity of CE transfer in
the country will increase. Among the control variables, only the population variable of
the trading partner country and the distance variable of the two countries are significant,
while other control variables are not significant in model (7). The strengthening of climate
policy will not only improve the CE transfer of the country, but also reduce its export CE
transfer intensity. This can reduce CL by strengthening climate policy, so as to achieve the
goal of carbon emission reduction. This result also indirectly demonstrates the validity
of the hypotheses proposed in the study and provides answers to the questions raised in
the study.

5. Research on the Relationship between EPR Difference and CL
5.1. Kyoto Protocol and CL

The Kyoto Protocol is an international agreement signed in Kyoto, Japan, on 11
December 1997. It aims at reducing global greenhouse gas emissions and mitigating global
climate change. The agreement stipulates that all parties should take measures to reduce
greenhouse gas emissions to mitigate global climate change [41,42]. The signing of the
Kyoto Protocol marks the recognition of the importance of the global climate change issue
by the international community, and also provides an important framework for the solution
of the global climate change issue. CL refers to the phenomenon that greenhouse gas
emissions exceed the planned emissions, resulting in global climate change. CL is an
important cause of global climate change. It will lead to global temperature rise, sea level
rise, and increase extreme weather phenomena, thus bringing serious impact on human
and natural environment. The signing of the Kyoto Protocol marks the recognition of
the importance of the global climate change issue by the international community, and
also provides an important framework for the solution of the global climate change issue.
The Kyoto Protocol stipulates that all parties should take measures to reduce greenhouse
gas emissions in order to mitigate global climate change. However, the existence of CL
makes it difficult to achieve the objectives of the Kyoto Protocol. The main reason for CL
is that greenhouse gas emissions exceed the planned emissions, which is due to the lack
of effective control measures and effective monitoring mechanism. In addition, CL is also
affected by the level of economic development, technology and policy. To explore the
specific relationship between EPR differences and CL, the study takes the Kyoto Protocol
as an example, and builds a corresponding model to explore the relationship between EPR
differences and CL.

5.2. Construction of Implied Carbon Model of Climate Policy and Bilateral Trade

A simple local equilibrium model for calculating the implied carbon in bilateral trade
is established. Through this model, a gravity equation for calculating the implied carbon
in bilateral trade is constructed. A consistent accounting framework is provided for the
research of trade implied carbon. In the process of establishing this model, it is necessary to
take into account the situation of domestic and imported products as intermediate inputs
and the technical differences between departments and countries. Under this model, the
effect of carbon emission reduction policy can be decomposed into scale effect, technology
effect and structure effect. First, under the expenditure constraint, the demand expression
of imported products and exported products is maximized as shown in Equation (9).

dmx = Nx
µωLm

Pm
(

pmx

Pm
)
−σ

(9)

Lm is the income of country m, µωLm
Pm

is the real expenditure, and pmx
Pm

is the relative
price of the differentiated products of country x relative to all products of country m in
Formula (9). The import of country m from country x is shown in Formula (10).
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Qmx = Z(1 + gm)Lm(Pm)
σ−1Nx(cx[.])

−σ(τmx)
−σ (10)

Z is a constant, gm is the intermediate trade multiplier, Lm(Pm)
σ−1 is the market capac-

ity of country m, and Nx(cx[.])
−σ is the supply capacity of country x in Formula (10). The

expression of import implied carbon of country m from country x is shown in Equation (11).

Es
mx = ηs

xQs
mx (11)

ηs
x represents CE coefficient in Formula (11). Before the empirical analysis, the implicit

CE effect of climate policy is decomposed into technology effect and scale effect. Moreover,
the implicit CE effect of climate policy is decomposed into technology effect and scale
effect. Among them, technology effect refers to the improvement of energy efficiency in
the production process. Furthermore, scale effect refers to the change of production costs
relative to other countries, so the import volume will also change. The technology effect
and scale effect of the importing country are affected by the carbon tax of the country and
other countries at the same time. It is written as x̂ = dx/x and Emx = ηxQmx is linearized,
so Equation (12) can be obtained.

Êmx = kη,m t̂m + kη,x t̂x + kQ,m t̂Q + kQ,x t̂x (12)

kη,m t̂m and kη,x t̂x represent technical effects in Formula (12). kQ,m t̂Q and kQ,x t̂x repre-
sent scale effects. On this basis, the use of measurement methods to analyze carbon leakage
is studied. The logarithm of Formulas (10) and (11) is taken to obtain the standard gravity
equation model of implied carbon in bilateral trade. The established regression model is
shown in Equation (13).

ln Ymxt = kY,mKyotomt + kY,xKyotoxt + βm ln GDPmt + βx ln GDPxt + γPOLmxt
+µMRmxt + vmx + umxt

(13)

Ymxt and POL represent a series of dummy variable vectors reflecting trade policy
in Formula (13). MRmxt represents a series of variables reflecting the resistance factors of
bilateral trade.

5.3. Empirical Analysis

Before the empirical analysis of carbon leakage, it is necessary to calculate the implied
carbon in bilateral trade. The study takes whether the import and export countries sign the
Kyoto Protocol as a variable. The value of import, CE intensity and import implied carbon
of each country can be calculated through the transnational data panel. The specific value
of each sector can be recorded in Table 5.

From Table 5, the characteristics of different sectors are quite different, and the trade
implied carbon of different sectors also has many differences. Sector 2 (electricity, natural
gas and water supply, mining and quarrying), sector 3 (base metals) and sector 5 (other
non-metallic mineral products) have significantly higher CE intensity. In contrast, sector
6 (transportation equipment) and sector 11 (textiles and leather) have significantly lower
carbon emission intensity. Sector 3 (base metals), sector 4 (chemical and petrochemical),
sector 7 (equipment manufacturing) and sector 12 (non-specific industries) have relatively
high import implied carbon. In contrast, sector 5 (other non-metallic mineral products)
and sector 10 (wood and wood products) have relatively low import implied carbon. From
the perspective of country to group, on average, imports from non-signatory countries
of the Kyoto Protocol are higher than those from signatory countries. In addition, their
import CE intensity is significantly higher than that of signatory countries. The research
conducted empirical analysis through regression of Formula (13), which represents the
basic model. Table 6 shows the regression results of the fixed effect model, and Table 7
shows the regression results of the first-order difference model. The regression model
numbered odd (A1, A3, B1, B3, C1, C3) controls the national characteristic factors that may
affect whether a country signs the Kyoto Protocol over time, and can analyze the impact
of climate policy on importing and exporting countries. The regression model numbered
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even (A2, A4, B2, B4, C2, C4) contains a series of interactive items of country and year
characteristics. Therefore, the coefficient of characteristic variable can be determined, which
changes with country pair and time. The dependent variables in Tables 6 and 7 include
imported Qmx and CE strength Cηx and import implied carbon Emx.

Table 5. Descriptive Statistics of Dependent Variables.

Department SN/Variable

Whether the Exporting Country Has Signed
the Kyoto Protocol

Whether the Importing Country Has Signed
the Kyoto Protocol

YES NO YES NO

1

Import 56.9 49.8 70.8 42.5

Carbon emission intensity 0.6 0.8 0.6 0.7

Import implied carbon 21.8 28.9 30.7 24.7

2

Import 41.8 50.9 52.3 45.6

Carbon emission intensity 3.0 5.5 3.7 5.4

Import implied carbon 106.5 248.3 206.3 199.8

3

Import 206.3 138.2 214.6 133.6

Carbon emission intensity 1.3 2.6 1.9 2.8

Import implied carbon 212.3 332.5 290.1 299.4

4

Import 512.5 251.6 478.6 268.3

Carbon emission intensity 0.8 1.5 1.2 1.6

Import implied carbon 193.3 249.3 251.3 223.6

5

Import 56.8 38.5 56.9 39.3

Carbon emission intensity 1.2 2.4 1.6 2.3

Import implied carbon 54.5 76.3 69.8 69.9

6

Import 331.5 234.2 333.4 236.9

Carbon emission intensity 0.3 0.7 0.5 0.7

Import implied carbon 66.8 94.6 100.2 81.5

7

Import 831.9 644.8 820.3 661.3

Carbon emission intensity 0.4 0.9 0.6 0.8

Import implied carbon 165.8 381.6 330.4 308.2

8

Import 180.4 119.8 196.2 113.5

Carbon emission intensity 0.3 0.6 0.5 0.8

Import implied carbon 52.9 279.7 70.6 59.1

9

Import 103.2 368.3 106.2 76.3

Carbon emission intensity 0.3 1.0 0.5 0.9

Import implied carbon 33.4 215.3 39.2 38.2

10

Import 27.1 114.6 29.6 19.9

Carbon emission intensity 0.4 0.9 0.5 0.8

Import implied carbon 9.6 124.3 15.4 13.9

11

Import 126.5 693.4 168.3 125.4

Carbon emission intensity 0.4 0.8 0.4 0.6

Import implied carbon 30.1 922.3 100.1 99.2

12

Import 322.8 1101.5 338.2 241.9

Carbon emission intensity 0.5 1.6 0.8 1.2

Import implied carbon 102.6 1699.5 181.5 206.3
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Table 6. Regression Results of the Fixed Effect Model.

Model A1 A2 B1 B2 C1 C2

Dependent Variable Ln Imports, Qmx Ln CO2 Intensity of
Imports, ηx Ln CO2 Imports, Emx

Kyotom
0.03

/
0.00

/
0.03

/
(0.02) (0.00) (0.01)

Kyotox
−0.09 ***

/
−0.09 *

/
−0.16 ***

/
(0.03) (0.00) (0.03)

Kyotom-Kyotox /
0.04 ***

/
0.02 *** 0.07 ***

(0.02) (0.00) (0.02)

lnGDPm
1.83 **

/
0.04 ***

/
1.88 ***

/
(0.09) (0.03) (0.05)

lnGDPx
1.12 ***

/
−1.11 ***

/
−0.02

/
(0.07) (0.01) (0.06)

Jiont FTA
0.00 −0.02 0.02 0.01 *** 0.00 0.02

(0.03) (0.02) (0.01) (0.02) (0.03) (0.03)

Jiont WTO
−0.06 −0.15 0.03 0.00 −0.04 −0.12

(0.19) (0.18) (0.02) (0.03) (0.15) (0.16)

Jiont EU
−0.008 *** −0.10 *** 0.00 0.00 −0.11 *** −0.10 ***

(0.05) (−0.02) (0.02) (0.00) (0.02) (0.04)

MR Yes / Yes / Yes /

Year effects Yes / Yes / Yes /

Country-pair sector Yes Yes Yes Yes Yes Yes

Adj.R2 0.16 0.20 0.62 0.73 0.06 0.08

RMSE 0.83 0.82 0.18 0.19 0.84 0.86

***, **, * means that the corresponding coefficients have passed the significance test at the level of 1%, 5% and 10%.

From Table 6, in the fixed effect models A1, B1 and C1, the impact of the Kyoto
Protocol on the trade implied carbon of importing countries is not significant. The impact
on trade implied carbon of exporting countries is significantly negative. The signing of the
Kyoto Protocol by importing countries will not affect their import and CE intensity from
non-signatory countries. However, the signing of the Kyoto Protocol by exporting countries
will lead to a significant decline in their export and CE intensity. If the Kyoto Protocol is not
signed, it will easily lead to carbon leakage. The above results indicate that environmental
policies and regulations can significantly affect the intensity of carbon emissions that
have passed. It contradicts our argument that the relationship between environmental
climate policies and carbon emissions is not significant. Therefore, it can be concluded
that the argument proposed in the study is incorrect. Moreover, it can be concluded
that there is a significant relationship between environmental climate policies and carbon
emissions. Therefore, changing environmental and climate policies can reduce carbon
emission intensity and thereby improve global environmental standards. In addition, it
can also be seen that the GDP level of both countries and whether to join the EU have a
significant impact on imports, CE intensity and import implied carbon. The regression
results of the first-order difference model are shown in Table 7.

From Table 7, in the first-order difference models A3, B3 and C3, the Kyoto Protocol
has no significant impact on the trade import and CE intensity of importing countries. The
impact on trade implied carbon is significantly positive. However, the Kyoto Protocol has
a significant negative impact on trade imports and CE intensity of exporting countries,
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but has no significant impact on trade implied carbon. In addition, it can also be seen
that the GDP level of both countries has a significant impact on imports, CE intensity and
import implied carbon. The above results show that as an exporter, signing the Kyoto
Protocol can effectively reduce the CE intensity of the country and improve the overall
environmental level. To sum up, the signing of appropriate environmental and climate
policies can effectively reduce CE intensity and improve CE transfer. Then the level of
carbon dioxide and contribute to the greenhouse effect are reduced. To test the robustness
of the above results, the alternative calculation method of trade implied carbon MRIO is
used for regression. The results of the robustness test are shown in Table 8.

The regression results of the D1–D4 model in Table 8 are compared with those oftheB1,
B2, C1, and C2 models in Table 6. The coefficients of Kyotom are not significant, the
coefficients of Kyotox are significantly negative, and the coefficients of Kyotom-Kyotox are
significantly positive. The result shows that using different calculation methods to calculate
trade implied carbon will not lead to obvious differences in the regression results, which to
some extent can show that the basic regression results of this method are robust.

Table 7. Regression Results of the First-Order Difference Model.

Model A3 A4 B3 B4 C3 C4

Dependent Variable Ln Imports, Qmx Ln CO2 Intensity of
Imports, ηx Ln CO2 Imports, Emx

Kyotom
0.03

/
0.00

/
0.04 ***

/
(0.02) (0.00) (0.02)

Kyotox
−0.02 ***

/
−0.02 ***

/
0.00

/
(0.02) (−0.00) (0.02)

Kyotom-Kyotox /
0.02

/
0.01 ***

/
0.01 **

(0.01) (0.01) (0.01)

lnGDPm
2.93 ***

/
−0.01 *

/
2.89 ***

/
(0.08) (0.02) (0.09)

lnGDPx
0.77 ***

/
−1.07 ***

/
−0.29 ***

/
(0.05) (0.03) (0.07)

Jiont FTA
0.00 0.00 0.00 0.01 0.01 0.01

(0.02) (0.04) (0.00) (0.00) (0.02) (0.02)

Jiont WTO
−0.06 −0.11 −0.02 0.01 0.09 −0.10

(0.15) (0.18) (0.01) (0.01) (0.13) (0.18)

Jiont EU
−0.03 −0.03 0.00 0.00 −0.03 −0.01

(0.03) (0.02) (0.00) (0.00) (0.01) (0.02)

MR Yes / Yes / Yes /

Year effects Yes / Yes / Yes /

Country-pair sector Yes Yes Yes Yes Yes Yes

Adj.R2 0.03 0.02 0.03 0.41 0.02 0.03

RMSE 0.84 0.87 0.85 0.14 0.89 0.88

***, **, * means that the corresponding coefficients have passed the significance test at the level of 1%, 5% and 10%.
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Table 8. Robustness test of the trade implied carbon substitution algorithm.

/ D1 D2 D3 D4 D5 D6 D7 D8

Computing Method MRIO Technique Fixed MRIO I-O Fixed

Dependent Variable Ln Intensity Ln CO2 Imports Ln CO2 Imports Ln CO2 Imports

Kyotom
0.01

/
0.03

/
0.03

/
0.01

/
(0.00) (0.03) (0.02) (0.02)

Kyotox
−0.06 ***

/
−0.15 ***

/
−0.02 ***

/
−0.15 ***

/
(0.01) (0.01) (0.03) (0.03)

Kyotom-Kyotox /
0.03 ***

/
0.08 ***

/
0.04 ***

/
0.08 ***

(0.01) (0.02) (0.02) (0.02)

lnGDPm
0.04 **

/
−1.91 ***

/
1.88 ***

/
1.88 ***

/
(0.02) (0.05) (0.06) (0.0)

lnGDPx
−1.18 ***

/
−0.15 **

/
1.10 ***

/
0.12 *

/
(0.02) (0.06) (0.07) (0.05)

Jiont FTA
0.00 0.02 0.00 0.02 0.00 −0.02 0.02 0.02

(0.02) (0.01) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

Jiont WTO
0.01 −0.01 −0.05 −0.15 −0.08 −0.15 −0.08 −0.13

(0.02) (0.02) (0.14) (0.15) (0.16) (0.18) (0.14) (0.16)

Jiont EU
0.00 −0.01 −0.08 *** −0.10 *** −0.09 *** −0.10 *** −0.09 *** −0.08 ***

(0.02) (0.02) (0.04) (0.02) (0.04) (0.03) (0.02) (0.03)

MR distance
0.00 *

/
−0.01 ***

/
−0.02 ***

/
−0.01 *

/
(0.00) (0.01) (0.00) (0.01)

MR contiguity
−0.07 ***

/
−0.15 **

/
0.19 ***

/
−0.18 ***

/
(0.02) (0.05) (0.07) (0.05)

Year effects YES / YES / YES / YES /

Country-year FE / YES / YES / YES / YES

Adj.R2 0.66 0.72 0.08 0.09 0.17 0.22 0.06 0.05

***, **, * means that the corresponding coefficients have passed the significance test at the level of 1%, 5% and 10%.

6. Conclusions

Due to the increasing awareness of environmental protection, the emission of CO2 and
the global warming caused by it have received widespread attention. CE is global pollution.
If countries do not work together, the differences in climate policies of different countries
are likely to cause CE transfer and carbon leakage. While countries work together to reduce
greenhouse gas emissions, the impact of trade on the amount of CE dioxide cannot be
ignored. In particular, with the continuous development of intra-product trade, trade plays
an important role in the global CE model and dynamic changes. Carbon emission transfer
mainly has scale characteristics, direction characteristics, correlation characteristics, and
adaptability characteristics. This study first measured the CE transfer of China’s foreign
trade. The results show that the volume of CE transfer caused by China’s exports is on the
rise, but the overall change trend of export CE transfer intensity is decreasing year by year.
Secondly, an extended gravity model is constructed to analyze the impact of climate policy
and intra-product trade on export CE transfer. Using export CE transfer as the dependent
variable for regression, the empirical analysis results show that China’s strengthened
climate policy has significantly reduced the CE transfer. Finally, by constructing the gravity
equation of carbon dioxide, we empirically test whether the difference between signing
the Kyoto Protocol and not will lead to carbon leakage. The regression results show that
when only exporting countries sign the Kyoto Protocol or only importing countries sign
the Kyoto Protocol, the import implied carbon of bilateral trade will increase. The CE
of countries that have not signed the Kyoto Protocol has increased. The inconsistency
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of countries signing the Kyoto Protocol will lead to the problem of carbon leakage. In
view of this, countries need to work together to deal with the issue of climate warming.
Only when countries reach a coordinated agreement on emission reduction can carbon
leakage be avoided. According to the above results, to improve the development of China’s
low-carbon economy and the level of China’s ecological environment, China can encourage
the increase in the technical content of export products and improve China’s position
in the global value chain. Moreover, the inclusive development of resource-saving and
environment-friendly trade can be promoted. It will optimize the regional distribution of
industries and enterprises in China and strengthen regional climate policy. The coordination
of carbon emission reduction policies among countries can be promoted. Furthermore,
the concerted emission reduction measures can be taken under the new global emission
reduction agreement to avoid CE transfer and carbon leakage.
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