The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Material
2.2. Flora Analysis
2.3. Sample Collection
2.4. Quantitative Analysis of PM on Plants/Leaves
2.5. Quantitative Assessment of PM in the Air
2.6. Statistical Analysis
2.7. SEM Examinations
3. Results
3.1. Flora Analysis
3.2. PM Analysis
3.3. Concentrations of PM in the Air
3.4. SEM Imaging and Analysis
3.5. Semi-Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Ali, M.U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.; Munir, M.A.M. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ. Geochem. Health 2019, 41, 1131–1162. [Google Scholar] [CrossRef] [PubMed]
- Paton-Walsh, C.; Rayner, P.; Simmons, J.; Fiddes, S.L.; Schofield, R.; Bridgman, H.; Beaupark, S.; Broome, R.; Chambers, S.D.; Chang, L.T.-C.; et al. A clean air plan for Sydney: An overview of the special issue on air quality in New South Wales. Atmosphere 2019, 10, 774. [Google Scholar] [CrossRef]
- Alghamdi, M.A. Characteristics and risk assessment of heavy metals in airborne PM10 from a residential area of northern Jeddah City, Saudi Arabia. Pol. J. Environ. Stud. 2016, 25, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Ramli, N.A.; Md Yusof, N.F.F.; Shith, S.; Suroto, A. Chemical and biological compositions associated with ambient respirable particulate matter: A Review. Water Air Soil Pollut. 2020, 231, 120. [Google Scholar] [CrossRef]
- Suzuki, K. Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmos. Environ. 2006, 40, 2626–2634. [Google Scholar] [CrossRef]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Song, Y.; Maher, B.A.; Li, F.; Wang, X.; Sun, X.; Zhang, H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Popek, R.; Haynes, A.; Przybysz, A.; Robinson, S.A. How much does weather matter? Effects of rain and wind on PM accumulation by four species of Australian native trees. Atmosphere 2019, 10, 633. [Google Scholar] [CrossRef]
- Coelho, S.; Ferreira, J.; Rodrigues, V.; Lopes, M. Source apportionment of air pollution in European urban areas: Lessons from the Clair City project. J. Environ. Manag. 2022, 320, 115899. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Luo, X.-S.; Fang, G.; Zhang, D.; Pang, Y.; Huang, W.; Mehmood, T.; Tang, M. Insight into urban PM2.5 chemical composition and environmentally persistent free radicals attributed human lung epithelial cytotoxicity. Ecotoxicol. Environ. Saf. 2022, 234, 113356. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Luo, X.-S.; Huang, W.; Pang, Y.; Yang, J.; Tang, T.; Mehmood, T.; Zhao, Z. Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city. Process. Saf. Environ. Prot. 2022, 162, 859–866. [Google Scholar] [CrossRef]
- Hassan, M.A.; Mehmood, T.; Liu, J.; Luo, X.; Li, X.; Tanveer, M.; Faheem, M.; Shakoor, A.; Dar, A.A.; Abid, M. A review of particulate pollution over Himalaya region: Characteristics and salient factors contributing ambient PM pollution. Atmos. Environ. 2023, 294, 119472. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2017 Report; EEA Technical Report; European Environment Agency: Copenhagen, Denmark, 2017. [CrossRef]
- Hassan, M.A.; Mehmood, T.; Lodhi, E.; Bilal, M.; Dar, A.A.; Liu, J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. Int. J. Environ. Res. Public Health 2022, 19, 13540. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Clim. Atmos. Sci. 2020, 12, 12. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Stankiewicz-Kosyl, M.; Zhu, C.; Małecka-Przybysz, M.; Maulidyawati, T.; Mikowska, K.; Deluga, D.; Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow—Particulate matter accumulation by urban meadows. Sci. Total Environ. 2021, 785, 147310. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef]
- Haynes, A.; Popek, R.; Boles, M.; Paton-Walsh, C.; Robinson, S.A. Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient Than a Common Native Tree Species. Atmosphere 2019, 10, 224. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces Across Three Levels of Ambient Atmospheric Pollution. Int. J. Environ. Res. Public Health 2019, 16, 402. [Google Scholar] [CrossRef]
- Popek, R.; Mahawar, L.; Shekhawat, G.S.; Przybysz, A. Phyto-cleaning of Particulate Matter from Polluted Air by Woody Plant Species in the Near-Desert City of Jodhpur (India) and the Role of Heme Oxygenase in Their Response to PM Stress Conditions. Environ. Sci. Pollut. Res. 2022, 29, 70228–70241. [Google Scholar] [CrossRef]
- Bottalico, F.; Chirici, G.; Giannetti, F.; De Marco, A.; Nocentini, S.; Paoletti, E.; Salbitano, F.; Sanesi, G.; Serenelli, C.; Travaglini, D. Air Pollution Removal by Green Infrastructures and Urban Forests in the City of Florence. Agric. Sci. Procedia 2016, 8, 243–251. [Google Scholar] [CrossRef]
- Viecco, M.; Vera, S.; Jorquera, H.; Bustamante, W.; Gironás, J.; Dobbs, C.; Leiva, E. Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates. Sustainability 2018, 10, 2431. [Google Scholar] [CrossRef]
- Popek, R.; Przybysz, A. Precipitation plays a key role in the processes of accumulation, retention and re-suspension of particulate matter (PM) on Betula pendula, Tilia cordata and Quercus robur foliage. Desalination Water Treat. 2022, 275, 14–23. [Google Scholar] [CrossRef]
- Wittig, R.; Becker, U. The spontaneous flora around street trees in cities—A striking example for the worldwide homogenization of the flora of urban habitats. Flora-Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 704–709. [Google Scholar] [CrossRef]
- Li, X.-P.; Fan, S.-X.; Guan, J.-H.; Zhao, F.; Dong, L. Diversity and influencing factors on spontaneous plant distribution in Beijing Olympic Forest Park. Landsc. Urban Plan. 2019, 181, 157–168. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Yang, L.; Yao, Y.; Cheng, J.; Chen, H.; Yu, S. PM accumulation and repartitioning in vegetation species in Beijing, China. Environ. Pollut. 2016, 212, 358–365. [Google Scholar]
- Weber, F.; Kowarik, I.; Säumel, I. A walk on the wild side: Perceptions of roadside vegetation beyond trees. Urban For. Urban Green. 2014, 13, 205–212. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Parc National Suisse, Zernez et Bernina. Bull. Soc. Bot. Fr. 1951, 98, 54–58. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Guide to the Identification of Plant Communities in Poland (Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski); PWN: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Mirek, Z.; Zając, M.; Zając, A.; Piękoś-Mirkowa, H. Vascular Plants of Poland. A Checklist; W. Szafer Institute of Botany: Cracow, Poland, 1995. [Google Scholar]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Saebø, A.; Gawroński, S. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Popek, R.; Fornal-Pieniak, B.; Chyliński, F.; Pawełkowicz, M.; Bobrowicz, J.; Chrzanowska, D.; Piechota, N.; Przybysz, A. Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests. Sustainability 2022, 14, 2973. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Stangierska, D.; Fornal-Pieniak, B.; Szumigała, P.; Widera, K.; Zarska, B.; Szumigała, K. Green Physical Activity Indicator: Health, Physical Activity and Spending Time Outdoors Related to Residents Preference for Greenery. Int. J. Environ. Res. Public Health 2023, 20, 1242. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, H.; Zhang, G.; Wang, L.; Zheng, D.; Li, S. Perceptions of ecosystem services, disservices and willingness-to-pay for urban green space conservation. J. Environ. Manag. 2020, 260, 110140. [Google Scholar] [CrossRef]
- Łukowski, A.; Popek, R.; Karolewski, P. Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: Deposition and ecophysiology. Environ. Sci. Pollut. Res. 2020, 27, 10296–10307. [Google Scholar] [CrossRef]
- Wang, X.; Teng, M.; Huang, C.; Zhou, Z.; Chen, X.; Xiang, Y. Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmos. Environ. 2020, 240, 117739. [Google Scholar] [CrossRef]
- Patra, A.; Colville, R.; Arnold, S.; Bowen, E.; Shallcross, D.E.; Martin, D.; Price, C.S.; Tate, J.; ApSimon, H.; Robins, A. On-street observations of particulate matter movement and dispersion due to traffic on an urban road. Atmos. Environ. 2008, 42, 3911–3926. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Jia, J.; Chen, Y.; Xue, J.; Liang, H. Urban spontaneous vegetation helps create unique landsenses. Int. J. Sustain. Dev. World Ecol. 2021, 28, 593–601. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Przybysz, A.; Wińska-Krysiak, M.; Małecka-Przybysz, M.; Stankiewicz-Kosyl, M.; Skwara, M.; Kłos, A.; Kowalczyk, S.; Jarocka, K.; Sikorski, P. Urban wastelands: On the frontline between air pollution sources and residential areas. Sci. Total Environ. 2020, 721, 137695. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Viippola, V.; Yli-Pelkonen, V.; Järvi, L.; Kulmala, M.; Setälä, H. Effects of Forests on Particle Number Concentrations in Near-Road Environments across Three Geographic Regions. Environ. Pollut. 2020, 266, 115294. [Google Scholar] [CrossRef] [PubMed]
Zone I | |||||||
Plant Species | % Cover of Species in Plot No. 1 | Plant Species | % Cover of Species in Plot No. 2 | Plant Species | % Cover of Species in Plot No. 3 | Plant Species | % Cover of Species in Plot No. 4 |
Herbaceous layer | |||||||
Poa annua (sm) | 80 | Poa annua (sm) | 90 | Poa annua (sm) | 85 | Poa annua (sm) | 85 |
Sonchus arvensis (s) | 5 | Plantago lanceolata (sm) | 5 | Sonchus arvensis (s) | 5 | Medicago falcata (sm) | 5 |
Medicago falcata (sm) | 5 | Sonchus arvensis (s) | 2 | Trifolium pratense (sm) | 5 | Sonchus arvensis (s) | 5 |
Taraxacum officinale (sm) | 2 | Trifolium pratense (sm) | 2 | Tanacetum vulgare (s) | 5 | Tanacetum vulgare (s) | 2 |
Plantago lanceolata (sm) | 2 | Tanacetum vulgare (s) | 1 | Trifolium arvense (sm) | 2 | Centaurea cyanus (s) | 1 |
Melilotus albus (s) | 1 | - | - | - | - | - | - |
Trifolium arvense (sm) | 5 | - | - | - | - | - | - |
Zone II | |||||||
Plant Species | % Cover of Species in Plot No. 1 | Plant Species | % Cover of Species in Plot No. 2 | Plant Species | % Cover of Species in Plot No. 3 | Plant Species | % Cover of Species in Plot No. 4 |
Herbaceous layer | |||||||
Equisetum arvense (s) | 5 | Poa annua (sm) | 80 | Poa annua (sm) | 85 | Poa annua (sm) | 80 |
Medicago falcata (sm) | 5 | Equisetum arvense (s) | 5 | Hieracium pilosella (sm) | 5 | Hieracium pilosella (sm) | 10 |
Trifolium pratense (sm) | 5 | Trifolium pratense (sm) | 5 | Medicago falcate (sm) | 5 | Medicago falcata (sm) | 5 |
Sonchus arvensis (s) | 3 | Hieracium pilosella (sm) | 5 | Tanacetum vulgare (s) | 3 | Trifolium pratense (sm) | 5 |
Tanacetum vulgare (s) | 2 | Sonchus arvensis (s) | 3 | Trifolium pratense (sm) | 2 | - | - |
- | - | Taraxacum officinale (sm) | 2 | - | - | - | - |
Zone III | |||||||
Plant Species | % Cover of Species in Plot No. 1 | Plant Species | % Cover of Species in Plot No. 2 | Plant Species | % Cover of Species in Plot No. 3 | Plant Species | % Cover of Species in Plot No. 4 |
Herbaceous layer | |||||||
Solidago virgaurea (s) | 85 | Solidago virgaurea (s) | 60 | Solidago virgaurea (s) | 70 | Solidago virgaurea (s) | 70 |
Calamagrostis epigejos (sm) | 10 | Calamagrostis epigejos (sm) | 15 | Calamagrostis epigejos (sm) | 20 | Calamagrostis epigejos (sm) | 25 |
Tanacetum vulgare (s) | 5 | Tanacetum vulgare (s) | 15 | Tanacetum vulgare (s) | 5 | Rubus sp. (sm) | 4 |
- | - | Achillea millefolium (sm) | 3 | Daucus carota (sm) | 2 | Phleum pratense (sm) | 1 |
- | Trifolium pratense (sm) | 2 | Rubus sp. (sm) | 3 | - | - | |
Zone IV | |||||||
Plant Species | % Cover of Species in Plot No. 1 | Plant Species | % Cover of Species in Plot No. 2 | Plant Species | % Cover of Species in Plot No. 3 | Plant Species | % Cover of Species in Plot No. 4 |
Herbaceous layer | |||||||
Phalaris arundinacea (n) | 70 | Rubus sp. (sm) | 70 | Rubus sp. (sm) | 60 | Rubus sp. (sm) | 60 |
Rubus sp. (sm) | 20 | Juglans regia (s) | 30 | ||||
Urtica dioica (s) | 10 | ||||||
Shrub layer | |||||||
Salix sp. (n) | 80 | Salix sp. (n) | 60 | Salix sp. (n) | 60 | Salix sp. (n) | 60 |
Tree layer | |||||||
- | - | - | - | - | - | Juglans regia (s) | 20 |
Zone V | |||||||
Plant Species | % Cover of Species in Plot No. 1 | Plant Species | % Cover of Species in Plot No. 2 | Plant Species | % Cover of Species in Plot No. 3 | Plant Species | % Cover of Species in Plot No. 4 |
Herbaceous layer | |||||||
Phalaris arundinacea (n) | 70 | Phalaris arundinacea (n) | 70 | Phalaris arundinacea (n) | 70 | Phalaris arundinacea (n) | 90 |
- | - | Rubus sp. (sp) | 30 | Rubus sp. | 30 | - | - |
Shrub layer | |||||||
- | - | - | - | Sambucus nigra (s) | 30 | Salix sp. (n) | 60 |
Tree layer | |||||||
Alnus incana (n) | 95 | Alnus incana (n) | 90 | Alnus incana (n) | 90 | Alnus incana (n) | 70 |
Acer negundo (s) | 5 | Acer negundo (s) | 5 | Acer negundo (s) | 5 | Salix sp. (n) | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popek, R.; Fornal-Pieniak, B.; Dąbrowski, P.; Chyliński, F. The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area. Sustainability 2023, 15, 7568. https://doi.org/10.3390/su15097568
Popek R, Fornal-Pieniak B, Dąbrowski P, Chyliński F. The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area. Sustainability. 2023; 15(9):7568. https://doi.org/10.3390/su15097568
Chicago/Turabian StylePopek, Robert, Beata Fornal-Pieniak, Piotr Dąbrowski, and Filip Chyliński. 2023. "The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area" Sustainability 15, no. 9: 7568. https://doi.org/10.3390/su15097568
APA StylePopek, R., Fornal-Pieniak, B., Dąbrowski, P., & Chyliński, F. (2023). The Role of Spontaneous Flora in the Mitigation of Particulate Matter from Traffic Roads in an Urbanised Area. Sustainability, 15(9), 7568. https://doi.org/10.3390/su15097568