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Abstract: Unlocking the secrets of habitable urban areas is crucial to improve the quality of life
for urban dwellers. Accurate assessment of the ever-changing dynamics of a modern metropolis
remains a challenging task. Previous studies have failed to reveal the dynamics of urban building
spatial configuration at the micro-level. By analyzing high-resolution satellite imagery, this study
has developed new direct and indirect metrics to better understand building density dynamics. We
also applied these metrics to a study area located in Nanning City, China, revealing fascinating
insights into the evolving spatial patterns of building density over the past 17 years. Our Q/R
analysis uncovered areas with high habitability and suggested strategic improvements for sustainable
building spatial configuration. This study is a valuable addition to the growing body of urban
development research and provides scientific references for measurements of sustainable urban
planning worldwide.
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1. Introduction

Building density (BD) is a quantitative indicator that reflects the degree of building
occupation on a plot of land. It is of great significance to land use, urban planning, and
human settlements. In recent years, advances in remote sensing and earth observation
techniques have revolutionized the study of building density.

In the 1970s, the European Joint Research Center (JRC) used the GHSL project (Global
Human Settlement Layer, GHSL) to provide GHSL building density mapping products
for Europe and North America after 1975 [1–3]. The development of satellite imaging
technology has enabled the GHSL project to effectively map spatio-temporal patterns and
characteristics of urban buildings, forming the basis for its success in producing building
density mapping datasets [4,5]. This approach has replaced traditional methods relying on
investigations of historical maps of cities.

Building density adjustments have been widely implemented in numerous Asian
cities, including downtown areas and residential neighborhoods, to address the issue of
urban land scarcity. Tall buildings and apartment complexes have become increasingly
prevalent in cities such as Hong Kong, Tokyo, Singapore, Shanghai, Taipei, Beijing, Kuala
Lumpur, Seoul, and others. In China, several researchers have explored the applicability
of GHSL BD mapping products, such as Wang et al., who established a model to estimate
urban building density in China’s five typical cities [6,7], and Huang et al., who proposed a
new kernel building density model to quantify the relationship between building density
and heat island effect [8]. Dong et al. also extended the scope of building density [9] from
an index that quantitatively represents the conditions of building occupancy to a set of
eight quantitative metrics to measure building density from different aspects [9]. These
studies represent frontier studies on building density quantification.
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Many states around the world have implemented building density regulations, such as
restrictions on lot size zoning, building size, and/or floor area ratio, based on study results
that revealed negative environmental and social impacts. Building density measurements
have largely been driven by practical urban planning needs, but attention has shifted
towards digitizing and quantifying the urban design, shape, and spatial configuration in
response to the idea of a habitable city. Building density is closely linked to various aspects
of human settlements, such as urban temperature [10–12], urban ventilation [13–16], indoor
comfort (noise, light) [17], air pollution and PM2.5 concentration [18], and even residents’
health [17]. As a result, it remains an essential focal point in urban studies.

With the emergence of new earth observation techniques, BD investigations previously
depending on ground measurement can now be done more efficiently and continuously
using remote sensing and GIS techniques. Building density remote sensing (BDRS) has
brought four major developments to BD study—data source, data processing, application,
and data visualization, which are also the representative characteristics of BDRS:

(1) Data sources: Today, there are more options for remote sensing platforms, satellite
images, spatial resolutions, spectral resolutions, and sensing time due to the increase
and improvement in remote sensing platforms and satellite sensors. High-resolution
satellite images have become one of the major data sources for BD studies [19–23],
and global satellite image data platforms and big data cloud computing platforms
(such as Google Earth Engine) have diversified the data sources for BD studies [24].

(2) Data processing: As new BD problems and aims emerge, the need for quantitative
analysis has significantly risen, leading to the proposal of new data analysis methods
and models. For example, Huang et al. proposed a kernel building density model,
where the building density at a circle region is the ratio of the total building area
to the circle area [8]. Based on this model, the building density can be measured at
different sizes.

(3) Application: BD study is no longer just about urban land use evaluation but also serves
various functions, including analyzing urban temperature [10–12], ventilation [13–16],
and other urban issues, such as indoor comfort conditions (noise, light) [17], air pollution
and PM2.5 concentration [18], and residents’ health [17]. BD mapping plays an important
role in these applications [6], such as gridded Germany population mapping based on
the data of building density, height, and type [25], mapping of urban features using
TanDEM-X and Sentinel-2 satellite data [26], the upgrading of global urban DEM using
building density data [27], etc. These are all the new developments in the study of
building density.

(4) Data visualization: Urban development today requires not only a one-time investiga-
tion but also the dynamics, namely, various quantitative information on BD changes;
for example, LiDAR and GEOBIA data can be used to measure spatial-temporal
changes in 3D building density [28]; high-resolution images can analyze changes
in building density in Shanghai [21], and high-resolution multi-view satellites can
observe subtle changes in China’s megacities [29]. However, few studies have been
reported in this field.

Previous studies on building density have relied mainly on simplistic measurements,
with no comprehensive quantitative measurement framework available. Additionally,
identifying building shape features requires high-resolution satellite imagery, which is
not free for public use. Due to the high cost of image acquisition, studies on building
density remain rare. Quantitative evaluation of habitability within a city facilitates the
identification of urban problems and targeted improvements to the environment. However,
it is an extremely complex procedure, and only a few applications and practical models
have been proposed for micro-scale applications. Previous studies have mostly been limited
to static assessments for a particular phase, making it difficult to reveal the dynamics of
cities at the micro-level.

In this study, we proposed two categories of thirteen models to investigate the changes
in building density and dynamics of the study area in Qingxiu District of China’s Nanning
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City Using high-resolution satellite images. We also assessed the habitability of the study
area to provide new scientific references for the development of an ecologically unique city
in Nanning. Based on remote sensing techniques, our primary aim was to discover macro
trends (spatial and temporal changes) and reveal the macro dynamics of Nanning City.
Based on our results, residents can identify areas with reasonable habitability in the urban
area. Our research can provide a general guidance to facilitate the public’s understanding
of the habitability of the city and help them choose a suitable place to reside. It could also
serve as a reference for the government to evaluate urban development.

2. Methods and Data Sources
2.1. Study Scheme and the Main Elements

This study aimed to establish a remote sensing-based quantitative method for the
quick identification of urban habitable areas. The research scheme consisted of two parts:
a theoretical and an application part. The theoretical part combined proposed theoretical
models with technical studies. This study first proposed a set of metrics for building
density measurement and obtained the dynamics of building density based on time series
of high-resolution satellite images. It then investigated the changing trends and impacts
on the urban environment. Based on these findings, the proposed methods were applied
to the habitability evaluation of the study area. The flowchart of the research scheme is
shown in Figure 1.
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DA/B(t), and CG statistical metrics MA, MB, and MA/B, as well as impetus Ii~j.

2.2. Models for Building Density Measurement
2.2.1. Direct Metrics

There are two direct metrics for building density measurement: building areal density
DA(x, y, t) and building number density DB(x, y, t). These can be directly obtained via direct
measurement. DA(x, y, t) is the ratio of building area to unit size, indicating the degree
of building coverage or building occupancy rate within a certain area. DB(x, y, t) is the
number of buildings in a given unit area. Both can be calculated as follows:

DA(x, y, t) = SA(x, y, t)/S (1)
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DB(x, y, t) = NA(x, y, t)/S (2)

where S represents the total area of the study area; SA(x, y, t) represents the total building
area in the study area; and NA(x, y, t) represents the number of buildings in the study
area. Both SA(x, y, t) and NA(x, y, t) were obtained using remote sensing techniques. The
parameters x, y denote spatial coordinates, while t indicates the specific time considered for
measuring building density.

2.2.2. Indirect Metrics

Indirect metrics are obtained by reanalyzing the direct features. Here we proposed
several indirect metrics, including the ratio of the total area and the corresponding number
of buildings, 7 statistical indices, and 4 measurements of the changes in the center of gravity
(CG metric). These metrics also vary with time (t).

(1) Ratio metric

The ratio metric is defined as the ratio of DA(x, y, t) and DB(x, y, t):

DA/B(x, y, t) = DA(x, y, t)/DB(x, y, t) (3)

It is the ratio of building areal density and building number density.
By integrating Equations (1) and (2), Equation (3) can be modified as follows:

DA/B(x, y, t) = SA(x, y, t)/NA(x, y, t) (4)

where DA/B(x, y, t) represents the ratio of building areal density and building number
density. A lower value denotes a relatively large number of buildings in the study area,
suggesting that most of the buildings are small and compact. Conversely, a higher value
suggests a relatively small number of buildings in the study area, indicating most of the
buildings are bulk ones. Since DA/B(x, y, t) captures dual measurements of both building
areal density DA(x, y, t) and building number density DB(x, y, t), it can better display the
spatio-temporal variations than if it only considered the individual building densities of
DA(x, y, t) or DB(x, y, t). In addition, analysis based on the ratio metric further suggests that
this index is an important measurement for evaluating the habitability of urban areas.

To visualize the status of DA(x, y, t*), DB(x, y, t*), and DA/B(x, y, t*) at time t*, a contour
map can be created corresponding to the time t*. These values can be simplified to DA(t*),
DB(t*), and DA/B(t*), which can further be reduced to just DA, DB, and DA/B without
considering the time factor.

(2) Statistical metrics

The statistical metrics include mean values MA, MB, and MA/B, mean square deviation
SDA, SDB, and SA/B, correlation coefficient rA-B, as well as the intercept a and slope b from
the regression equation DA = f (DB), where MA, MB, MA/B can be calculated as follows:

Mx =

M
∑

i=1

N
∑

j=1
Dx(i, j)

MN
(5)

In the formula, M and N represent the image matrix’s row and column numbers,
respectively. When x represents DA, DB, and DA/B, respectively, its corresponding mean
value can be expressed as Mx. The root mean square error (RMSE) can be computed
accordingly as follows:

Sx =

√
[Dx(i, j)−Mx]

2

MN
(6)

Here, the M, N are the same as in Formula (5).
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For the intercept and slope in the regression equation DA = f (DB), we can get it
as follows:

DA = a + bDB (7)

where a and b are the intercept and slope of the regression equation, respectively.

(3) CG metrics

Changes in the center of gravity (CG) can depict variations in building spatial distribution.
In this study, we adopted the concept of CG from physics and geometry. The objective was to
convert the two-dimensional CG of building spatial distribution into the CG’s spatial-temporal
trajectory, which describes the overall spatio-temporal changes in building locations over
the past 17 years. To accomplish this, we needed to determine the position of the CG and
delineate its trajectory. Here we developed a fast algorithm by combining the image pixel
matrix of the study area to obtain the location of the CG as P(X, Y):

X =
(∑M

m=1 m)•(∑N
n=1 fmn)

M•N•
−
M

Y =
(∑M

m=1 n)•(∑N
n=1 fmn)

M•N•
−
M

 (8)

Here, f mn represents the BD value for the pixel location (m, n), while
−
M comprises

three statistical metrics MA, MB, and MA/B, which can be computed using Equation (5).
For instance, if we use an image matrix with a size (M = 10, N = 13), by replacing f mn with
equations DA, DB, and DA/B, respectively, each CG metric for the three different statistical
measurements at different time can be obtained.

The characteristics of CG changes include distance moved, direction of movement,
and movement speed. The distance moved (Li~j) is the length of the CG’s movement from
its position (i, j) at time yi (year) to its new position (i + 1, j + 1) at time yi+1 (year). The
direction (θ) of movement is the direction of the CG moving from the previous location
(i, j) at time yi (year) to the new location (i + 1, j + 1) at time yi+1 (year), although the
measurement of the direction of movement was not used here. The speed of movement vi~j
is the ratio of Li~j to the time interval yi+1-yi:

vi~j = Li~j/(yj − yi) (9)

On the base of the Equation (5), moving speed vi~j at different periods can be computed.
Impetus is a dynamic parameter used in this study to quantitatively describe the

intensity of BD changes. The CG’s impetus serves as an index and its corresponding
formula is as follows:

Ii~j = Mxvi~j (10)

Here, Mx represents the density value at P(X, Y) under building density metric x,
where x could be DA, DB, or DA/B. When x is used as DA, DB, or DA/B, the corresponding
Mx is the mean value of MA, MB, or MA/B, respectively. Ii~j and vi~j are, respectively, the
impetus and velocity of P(X, Y) moving from the time yi (year) to the time yi+1 (year).

2.3. Habitability Evaluation Based on Q/R Analysis

Building habitability refers to the degree or level of comfort, safety, and livability
of a building or structure [10,11]. A habitable building provides a healthy, comfortable
living or working environment for occupants, with adequate ventilation, lighting, and
protection from environmental hazards like noise pollution, air pollution, and natural
disasters. Building habitability is a critical consideration in urban planning and develop-
ment for creating sustainable, resilient, and livable cities. Environmental factors such as
temperature, ventilation, noise, and illuminance, which are closely related to BD, often
affect the habitability of a city. Therefore, analyzing the spatio-temporal distribution of
DA/B, which contains information on both DA and DB, can help determine the habitability



Sustainability 2023, 15, 7659 6 of 20

of a city. On the basis of the spatio-temporal distribution of DA/B, here we proposed a
habitability evaluation method using Q/R analysis.

According to the definition of DA/B and Equation (4) provided in Section 2.2.2, the
building spatial pattern corresponding to a low value of DA/B is referred to as an R-type
building configuration, whereas the building spatial pattern corresponding to a high value
of DA/B is called a Q-type building configuration. A small value of DA/B represents a
large number of small and compact buildings, while a high value of DA/B corresponds to a
small number of sparse and large buildings, as suggested in Section 2.2.2. We express these
observations using the Q/R combination provided in Table 1.

Table 1. Habitability evaluation based on Q/R analysis.

Scheme ID 1 2 3 4

SA H H L L
NA H L H L

DA/B = SA/NA L H L L
Type R Q R R

Result Not habitable Habitable Not habitable Not habitable

For simplification, we classified SA and NA into H/L classes instead of numerical
values, resulting in four possible combinations (as shown in Table 1). If we integrate the
four results into Equation (4), we obtain only two DA/B results, which are represented by
H/L values. In the “Type” row, we used R-type and Q-type to define the corresponding
categories of DA/B. It can be concluded that only column 2 belongs to the Q-type category,
suggesting buildings with this configuration are habitable, while the other three options
are all in the R-type category, suggesting that buildings with these three combinations are
probably not habitable.

Table 1 shows a clear relationship between building spatial configuration and the
mathematical model for the Q-type building configuration based on Equation (4). The
habitable condition only holds when SA has an H value and NA has an L value, denoting
that only buildings with spacious rooms and sufficient open outdoor environments are
more habitable, while the R-type buildings have no such correspondence. Specifically, the
Q-type buildings must meet at least the following four criteria:
1© Low heat island effect;
2© Adequate ventilation;
3© Low noise and light pollution;
4© Low solid waste and air pollution.

These rules are the prerequisites for a habitable urban area.

2.4. Information Extraction and Building Density Mapping
2.4.1. The Study Area

This study focused on a rectangular urban area (between 108◦20′00′ ′~108◦20′48′ ′ E
and 22◦49′08′ ′~22◦49′39′ ′ N) in the middle of Qingxiu District, Nanning City of China’s
Guangxi Province, as shown in Figure 2. This study investigated the dynamics in building
density within the 1.3 km2 study area, which primarily consists of dense urban buildings
and newly built blocks. The three-dimensional enlargement of the study area is shown in
Figure 3. The study area has undergone fast upgradation of old buildings over the past
decades. The study area is divided into six parts by two major NE-directed roads and two
major NW-directed roads, with numerous smaller streets further segmenting each part (as
shown in Figure 4). The building distribution in the new urban area is relatively organized,
whereas the old urban area exhibits more disorganization. Notably, there are no lakes,
rivers, or forests in the study area. This representative study area exemplifies Nanning’s
rapid urban development over the past 30 years. It also represents the typical development
process of most Chinese cities in the 21st century.
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2.4.2. Building Density Mapping

In this study, we used the QuickBird-2 high-resolution images obtained on 13 October 2002,
16 November 2007, 11 February 2019, 4 November 2013, and 24 October 2019 to map changes
in building density over the past 17 years. After performing image geometric correction and
enhancement, we created an image matrix with a block size of ∆x = ∆y = 100 m, consisting of
10 rows and 13 columns (as shown in Figure 4). Using the measurement method outlined in
Figure 4, we calculated DA and DB for each grid and established the two-dimensional matrixes
for DA(tn) and DB(tn) for the five periods (n = 2002, 2007, 2009, 2013, 2019). Here, DA and DB
represent the total building area and the number of buildings in a given grid, respectively. If
a building is partially located within a grid, the number of the building is its areal proportion
within the grid, with a range of 0.0~1.0 (Figure 5).
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2.4.3. Visualization of Building Density Changes

Using the methods proposed in the previous section, we generated contour maps of
DA(tn), DB(tn), and DA/B(tn) for different periods (n = 2002, 2007, 2009, 2013, and 2019)
(Figure 6). The figures clearly illustrate the spatial changes in building density over time.

The contour maps for the three building densities in Figure 6 revealed that the overall
changes in DA and DB over the past 17 years have similar spatio-temporal characteristics,
that is, with high-value areas located in the blocks surrounded by the major roads. The
distribution of DB is similar to that of DA. Additionally, there have also been some changes
in the spatial distribution of both variables over the past 17 years, but the changes are not
clearly evident on the contour maps. Therefore, further quantitative analysis is needed to
investigate such changes.
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3. Results
3.1. Changes Based on Direct Metrics

The mean is an essential statistical concept that reflects the central tendency of the
building density. We generated histograms for MDA and MDB for their corresponding
five periods (Figure 7). It can be seen that MDA changed with small fluctuations over the
17 years from 2002 to 2019 but showed a slight overall increasing trend. The MDA in 2019
was 3500.87, which is much higher than that of 2022 (MDA = 2921.70), with an increase of
approximately 19.82%. Thus, it can be inferred that urban building areas have achieved
significant development over the past 17 years. MDB showed a steady, increasing trend
and peaked at 13.19 in 2019. The value of MDB in 2019 is 7.11 higher than that in 2002
(MDB = 6.08), or equivalent to a 116.94% of increase over the 17 years. Therefore, it also
reflects rapid development in the urban buildings in the study area over the past 17 years
in terms of the number of buildings.
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3.2. Changes Based on Indirect Metrics

The statistical characteristics were measured based on the metrics, including mean val-
ues MA, MB, and MA/B, mean square deviation SDA, SDB, and SA/B, correlation coefficient
rA-B, as well as the intercept a and slope b from the regression equation DA = f (DB).

(1) MA/B(t)

MA/B(t) represents the mean value of building area DA/B(t). The MA/B(t) changing
trend was depicted in Figure 8. It can be seen from Figure 8 that MA/B(t) initially displayed
a decreasing trend from 2002 to 2007, followed by a long decreasing trend from 2007
to 2019. In 2019, the MA/B(t) value (543.46) compared to that in 2002 has dropped by
approximately 15.2%. Based on the definition of MA/B(t) in equation (4), the changes in
MA/B(t) suggested that the upgraded buildings have developed from small and compact
buildings to sparse and voluminous buildings. Therefore, a higher MA/B(t) indicates
that the urban building configuration is more reasonable and habitable, while a lower
MA/B(t) suggests the opposite. Figure 8 revealed that the influence of the building spatial
configuration in the study area on habitability has fluctuated over the past 17 years. It used
to be in better condition in 2007–2009 but has slightly decreased since then. It is worth
noting that more attention should be paid to this aspect in future urban planning.
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(2) SDA(t), SDB(t) and SA/B(t)

The RMSE is a commonly used measurement of the differences between values pre-
dicted by a model and the values observed. In this study, SDA(t), SDB(t), and SA/B(t) are
the RMSE for DA, DB, and DA/B, respectively, to examine the degree of dispersion in the
changes of the three building densities. Regarding the difference in the role of the statistical
metrics, the changes in SDA(t), SDB(t), and SA/B(t) also imply meanings. A high value
reflects that the urban buildings in the study area have great differences and diversity in
size and shape and thus are able to provide a better building pattern and higher habitability.
Conversely, a low value reflects small differences in buildings, resulting in monotony in
spatial configuration and a lack of habitability for residents. From this, we analyzed the
changes in the three RMSEs over the past 17 years.

SDA(t): SDA(t) fluctuated slightly from 2002 to 2013 and then increased significantly
from 2013 to 2019. In 2019, it reached 1638.61, which is 467.93 (~40%) higher than in
2002 (1170.68), reporting a large change in urban building area density—including greater
diversity in building size. The building spatial configuration has also undergone significant
changes, and the new building spatial pattern is more inhabitable.

SDB(t): The overall trend of SDB(t) is quite similar to SDA(t). Its value in 2019 (12.54)
is 7.41 (~144.4%), higher than that in 2002 (5.13). There has been a substantial increase in
SDB(t) from 2013 to 2019, implying that a dramatic change in the number of buildings has
happened too. Therefore, regarding the number of buildings, it revealed that the spatial
configuration of buildings has undergone significant changes. It also suggested that the
new building spatial pattern is more inhabitable.

SA/B(t): The change in SA/B(t) over the past 17 years is dramatically different from the
trends of SDA(t) and SDB(t). It does not just show a steady rise or fall, but instead starts with
an initial increase from 2002 to 2007, followed by a stable status from 2007 to 2009, and then
ends with a decreasing trend from 2009 to 2019. Overall, SA/B(t) changed from 2002 (354.66)
to 2019 (199.85), with a drop of 43.65%. According to the explanation in Formula (4), the
changes in SA/B(t) revealed that the buildings in the study area have developed from small
and compact buildings to large and sparse buildings. This provides quantitative evidence
of the consistent improvement in building spatial configuration, towards a more habitable
future (Figure 9).
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(3) DA—DB regression analysis

The slope and intercept of the regression equations for the five periods are shown
in Equation (11) and Figure 10. It can be seen that the slope b(t) has generally shown a
decreasing trend from 2002 (128.55) to 2019 (69.35), with a relative drop of 46%, indicating
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that the impact of DB on DA is statistically decreasing over time. The intercept values a(t),
varying between 2100 and 2600, are of little significance in this study.

2002 : DA = 2140 + 128.55DB
2007 : DA = 2745 + 92.24DB
2009 : DA = 2548 + 77.54DB
2013 : DA = 2839 + 85.51DB
2019 : DA = 2537 + 69.35DB

 (11)
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(4) Correlation analysis

The correlation coefficients rDA—DB between DA-DB for the five periods are plotted
in Figure 11. Overall, the year 2009 marked a turning point in the coefficient change, with
the correlation coefficient decreasing from 2002 to 2009 and subsequently increasing from
2009 to 2019. This suggests that rDA—DB is not constant but changes with building spatial
pattern development.
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Figure 11. The DA—DB correlation coefficient changes from 2002 to 2019.

A correlation test was also performed on rDA—DB. The thresholds of the correlation
coefficient for a statistically significant correlation at significance levels α = 0.05 and α = 0.01
are α = 0.05 and α = 0.01 are rα=0.05 = 0.172 and rα=0.01 = 0.225, respectively. Based on the
results in Figure 11, all correlation coefficients rDA—DB for DA-DB in the five periods are all
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much higher than the two thresholds. This indicates that during the period from 2002 to 2019,
the correlation between DA and DB in the study area was in a significantly positive correlation
at both significance levels of α = 0.05 and α = 0.01. The positive relation denoted that an
increase in building area density happened concurrently with an increase in the number of
buildings and vice versa.

3.3. CG Metrics

We obtained the CG coordinates of the three building densities in the five periods
based on Formulas (8)–(10), as shown in Figure 12. However, in a small-scale map of the
study area, it is difficult to depict the dynamics of the CG. Therefore, we have created
an enlargement of the local area with the CG locations (Figure 13) to clearly describe the
trajectories of the CG of the three densities over the past 17 years.

Combining Figures 12 and 13, it can be seen that over the past 17 years, the positions
and trajectories of the CG of the three building densities have mainly been located in the
mid-northwest part of the study area. This indicates that the spatio-temporal distribution
of buildings in the study area is not uniform, which is a key characteristic of rapid urban
development. Among the three CG clusters, the CG cluster of DB is in the most northwest
direction, while the CG cluster of DA is arranged in the southeast, and the CG cluster of
DA/B is located in the middle of the two clusters of DA and DB. These three CG clusters have
different movement speeds, which reflect the spatio-temporal movement of the buildings
in the study area and provide an essential reference for analyzing the overall changes in
urban buildings.
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Figure 12. The dynamics of the CG of the three building densities for the five periods between
2002 and 2019; the enlargement of the local area with legend is shown in Figure 13. The detailed
explanation on the letters and different color squares are also given in Figure 13.
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The concept of impetus (I) is the product of an object’s mass (m) and its velocity
(v). Here, impetus was used to measure the intensity of overall spatial changes in urban
buildings. The higher the value of I, the greater the intensity and magnitude of changes
in the buildings, providing an overall measurement of the magnitude of changes in the
buildings. Using Equation (10), the impetus (I) of three BDs in five in periods is calculated,
which is referred to as algorithm 1. As the CP moves from the previous location to the next,
the density and speed of the CP also changes. Therefore, the calculation of impetus must
consider these changes accordingly. The corresponding calculation method is established
in Figure 14 and Equation (12), which is referred to as algorithm 2.

Ii = 0.25(Mi + Mi+1)(vi + vi+1) (12)
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The changes in impetus (I) for the three BDs over the past 17 years are shown in
Figure 15. The figure shows that IDA has experienced two fluctuations with a low-high-
low-high trend. The impetus (I) of IDB was still low until 2007, but it increased sharply
after 2007, indicating that the DB has experienced a dramatic change during these periods
after 2007. IDA/B was still high from 2002 to 2007, followed by a constant decrease since
2007, suggesting that the building spatial pattern has changed significantly after 2007, from
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densely populated small buildings to large and sparsely populated buildings. This change
is consistent with the actual urban development in the study area. Therefore, based on the
analysis of the impetus (I) of the three building densities of IDA, IDB, and IDA/B, the new
observed conclusion and technical report on building dynamics can be valuable for the
development of unique ecological cities and smart cities in Nanning.
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4. Applications
4.1. The Varied Building Density across Large Cities

Yu et al. [30] investigated building density in downtown Houston by analyzing high-
resolution airborne LiDAR data. Compared to Nanning, the downtown area of Houston is
characterized by a more complex urban landscape, where buildings and other man-made
structures are densely concentrated. The building density in downtown Houston is more
diverse as the urban economic, social, and cultural functions of various districts differ,
leading to variations in building size, height, volume, density, morphological heterogeneity,
and vertical roughness across districts. Using LiDAR data, they displayed the planimetric
and horizontal density of buildings, as well as the 3D density of buildings. Similarly, the
study results by Yan and Li [31] for Hong Kong also indicated that the building density
in downtown Hong Kong is much higher than that in Nanning, and the situation is still
worsening. Regarding the changes in building density, the situation in Nanning is better
than in many other large Asian cities such as Hong Kong, Tokyo, Singapore, Shanghai,
Taipei, Beijing, Kuala Lumpur, Seoul, and others [32,33].

The urban development in Nanning, as represented by building density, is quite
different from that of other large Asian cities. In representative large Asian cities (i.e., Hong
Kong, Shanghai, Beijing, Singapore, Tokyo), due to extremely limited land availability,
high-density compact communities are often developed, which can compromise livability
and quality of life [34]. However, Nanning’s city planning allows for a more balanced
approach to urban development.

Building density is closely related to the ambient urban environment. Unreasonable
building distribution can affect environmental conditions such as ambient temperature,
ventilation, noise, lighting, solid pollution, and air pollution, which can have a negative
impact on the city’s habitability. In the context of an urban environment, service quality has
been found to have a positive correlation with building density. The more compact a city
is, the greater the degree of engagement between individuals and their surroundings [35].
However, high building density alone is not enough to ensure positive social interactions
for daily activities like living, working, and recreation. To ensure a healthy and habitable
community, it is crucial to evaluate how building density affects the urban environment
through quantitative analysis [36].
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4.2. Identification of Habitable Urban Areas

In this paper, the urban building areas that meet the aforementioned four rules are
referred to as habitable areas. We used the Q/R analysis and the DA/B contour map to
determine the extent of DA/B. According to Table 1, combined with the actual conditions
in the study area, the areas with the contour lines DA/B ≥ 400 are regarded as habitable
areas, such as Q1, Q2, . . . , and Q9, highlighted by boxes in Figure 16. Since this is only an
initial delineation without in situ verification, it is also referred to as the initial habitable
area. The regions that fail to meet the rules will be removed after in situ verification.
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Figure 16. Example of identification of habitable urban areas based on DA/B contour map of 2019;
the initial delineations were highlighted using solid boxes, while after in situ verification, the regions
that failed to meet the rules were highlighted using dotted boxes.

In situ surveys are an ideal way to identify fake habitable areas from the initial habitable
areas. However, in situ surveys can be laborious. As an alternative, we used high-resolution
satellite images to visually identify fake habitable areas. Here, the QuickBird-2 images obtained
in 2019 were used as the base map, and the nine initial habitable areas were overlaid with the
base map accordingly (Figure 17). Through visual interpretation, the building spatial patterns
in each initial habitable area were analyzed to check if the combination of SA and NA values
is a Q-type combination. A comparison of Figures 16 and 17 revealed that the areas with high
values in the DA/B contour map displayed a significant relationship with the combination of
SA’s H value and NA’s L value. The high-value areas Q1, Q2, and Q8 are dominated by large
buildings with spacious indoor rooms and sufficient open outdoor environments. Although
major roads provided sufficient open outdoor environments for the ambient buildings, the
traffic noise destroyed habitability, and thus they cannot be identified as habitable areas. The
buildings in high-value areas Q3, Q4, Q5, Q6, and Q9 are large buildings with spacious indoor
rooms and sufficient open outdoor environments, resulting in better ventilation and lighting,
lower traffic noise, and less mutual interference between residents. These five areas should
be classified as habitable areas (solid boxes). Based on this, the complex identification of
habitable areas involves the delineation of the high-value areas of the DA/B contour map using
remote sensing techniques, which can be implemented at large scales to identify habitable
urban areas.
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The data presented in Figures 16 and 17 show that the buildings within the range
of DA/B [0, 200] are primarily small and compact buildings. This finding aligns with the
Q-type problem statement, which suggests that a small value of DA/B indicates a relatively
large number of buildings with limited room space.

4.3. Limitations of the Current Study

The four proposed rules in Section 2.3 are based on satellite data without additional
information about individual buildings (e.g., height, number of rooms, etc.). As a result, it
is difficult to ascertain whether a building is a low and flat one or a high and compact one.
Thus, our rules may not be applicable under certain conditions: for example, increased
exposure of buildings and ground to sunlight could elevate heat island temperatures, while
shaded areas reduce them. This means densely arranged low buildings could provide
more shade, resulting in lower overall air temperature. Moreover, flat building profiles
preserve wind flow overtop the buildings, while dispersed tall buildings create turbulence
and reduce the overall wind speed. Unfortunately, in this study, the lack of information on
building height in this study precluded us from considering this factor.

Here, some critical information about individual buildings (e.g., height, number of
rooms, etc.) was not available for further evaluation based on the three-dimensional
structures of the buildings. Future studies could consider using three-dimensional data on
the spatial distribution of buildings as complementary data to overcome these limitations.
Additionally, future approaches should aim to integrate building height into habitability
evaluation. The methods proposed in this study can also be duplicated in other cities since
they provide a simple and efficient way to delineate habitable urban areas using remote
sensing techniques. However, several challenges may arise when applying these techniques
to different cities, including a lack of data on building configurations in different cities or the
fact that the study only focused on a specific urban area. Therefore, future research should
collect and analyze data from various cities to understand how remote sensing techniques
can accurately identify habitable urban areas across different geographical regions.

5. Conclusions

Understanding cities’ habitability facilitates the identification of urban problems and
targeted improvements to the urban environment. Building Density serves as an important
indicator of the spatio-temporal changes in building spatial configuration. This study
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proposed two categories of models based on high-resolution satellite images to measure
building density dynamics. These include direct metrics such as building area density (DA)
and building number density (DB), as well as indirect metrics such as the ratio of total area
and the corresponding number of buildings, nine statistical indices, and six measurements
of changes in the center of gravity. Using these metrics, we investigated the dynamics and
changes in building density in Nanning, China, across five periods from 2002 to 2019, based
on high-resolution satellite images. By examining the changes in building density over
time, we can better understand how urban development has impacted the city’s habitability
and identify areas that require intervention or further investigation.

This study has obtained the following key findings: over the past 17 years, MDA has
changed with small fluctuations but has shown an overall slight increase, implying that
urban building areas in the study period have undergone significant development. The
changes in SA/B also revealed an evolution from small and compact structures to larger
and more sparsely arranged buildings. This quantitative evidence suggests a consistent
improvement in building spatial configuration and a more habitable future. Additionally,
we analyzed the positions and trajectories of the three building density centers of gravity
(CG), which describe the spatio-temporal movement of buildings in the study area. The
observed trends in building dynamics provide valuable insights for the development of
unique ecological cities in Nanning City. Furthermore, we have conducted a habitability
evaluation based on Q/R analysis to identify habitable areas within the study area. The
availability of reliable quantitative building density data will prove to be beneficial for
examining the urban environment and facilitating the management of future urban land
development and expansion projects.
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