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Abstract: This study aimed to develop a predictive maintenance model using machine learning
(ML) techniques to automatically detect equipment failures before line shutdowns due to equipment
malfunctions, explicitly focusing on laser welders in the continuous galvanizing lines (CGLs) of
a steel plant in Korea. The study selected an auto-encoder (AE) as a base model, which has the
strength of applying normal data and a long short-term memory (LSTM) model for application to
time series data, such as equipment operation data. Here, a laser welder predictive maintenance
model (LW-PMM) based on the LSTM-AE algorithm was developed by combining the technical
advantages of both algorithms. Approximately 1500 types of data were collected, and approximately
200 were selected through preprocessing. The training and testing datasets were split at a ratio of
8:2, and the model parameters were optimized using 10-fold cross-validation. The performance
evaluation of the LW-PMM resulted in an accuracy rate of 97.3%, a precision rate of 79.8%, a recall
rate of 100%, and an F1-score of 88.8%. The precision of 79.8% compared to the 100% recall value
indicated that although the model predicted all failures in the equipment as failures, 20.2% of them
were duplicate values, which can be interpreted as one of the five failure signals being not an actual
failure. As a result of the application to an actual CGL operation site, equipment abnormalities
were detected for the first time 27 h before failure, resulting in a reduction of 18 h compared with
the existing process. This study is unique because it started as a proof of concept (POC) and was
validated in a production setting as a pilot system for the predictive maintenance of laser welders.
We expect this study to be expanded and applied to steel production processes, contributing to digital
transformation and innovation in the steel industry.

Keywords: steel industry; predictive maintenance; laser-welder; continuous galvanizing line (CGL);
machine learning; long short-term memory (LSTM); autoencoder (AE); LSTM-AE; digitalization

1. Introduction
1.1. Background of Study

The fourth industrial revolution refers to technological innovations that cause signifi-
cant societal, economic, and cultural shifts. The first through third industrial revolutions
established the basis for the mass production of products in factories through mechaniza-
tion and automation [1].

In a rapidly changing environment, the steel industry, which has the largest facilities
among manufacturing industries, is also demanding many changes, such as the establish-
ment of an optimal production process and the prediction of facility service life using smart
technologies, such as artificial intelligence (AI) and machine learning (ML). Meanwhile, the
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steel industry is concerned about deteriorating profits attributed to the economic downturn
caused by global inflation and slowing industrial demand [2]. Company P, a prominent
Korean steel manufacturer, has been actively introducing smart factories into its manu-
facturing process since 2016. The foundation for this infrastructure was built by training
experts and introducing a standard data analysis platform [2].

Company P, which is the background of this study, is largely divided into iron mak-
ing, steel making, continuous casting, steel rolling, and galvanizing steel production
processes [3]. Iron is a base metal extracted from iron ore, and steel is an iron-based alloy
containing carbon, silicon, manganese, and other elements [4].

Iron making is the process of fabricating molten iron by placing iron ore and coking
coal into a blast furnace and blowing hot air at a temperature of 1200 ◦C. Steel making is the
process of fabricating crude steel by removing impurities, such as carbon (C), phosphorus
(P), and sulfur (S), from the furnace and inserting the molten iron produced in the blast
furnace into a converter and blowing pure oxygen into the converter. Continuous casting
produces solid semi-finished products, such as slabs and blooms, by passing crude steel
into a liquid state through a continuous casting machine. Steel rolling is the process of
producing coil-type products and is further divided into hot rolling, cold rolling, and a
continuous galvanizing line (CGL). Hot rolling produces hot-rolled coils of appropriate
widths and thicknesses (1–22 mm) from slabs fabricated via continuous casting. Cold
rolling is the process of producing cold-rolled coils with a thinner width and thickness
(0.15–3.0 mm) by cold rolling the hot-rolled coils again [5]. Finally, a CGL is used to produce
galvanized iron by plating zinc (Zn) with excellent corrosion resistance on the surface of
cold-rolled iron [6]. This process then produces galvanized iron that is alloyed via heat
treatment to form an intermetallic compound containing 9–13% Fe rather than 100% Zn
in the plating layer. Figure 1 shows the production process of Company P’s iron and steel
products, from making molten iron to producing galvanized iron, as described above.
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In particular, galvanized iron, which requires the most processing in steelwork pro-
duction, must have a sleek surface, as well as excellent weldability and workability. It is
primarily used in the inner and outer panels of automobiles and home appliances that re-
quire corrosion resistance. Company P ensures the weldability by adjusting the components
of the steel making process for the galvanized iron as an automotive steel strip.

Strip tears are a phenomenon in which a part or the whole strip is torn during pro-
duction and are possibly the most fatal loss factor in a CGL, which generates products
continuously. For the cause of such strip tears, welding defects at the connection point of
leading and trailing strips account for the largest portion at 57%, followed by strip material
defects at 38% and process defects at 4%. If strip tears occur, the facility engineer must
manually weld the leading and trailing parts using a portable welding machine to reconnect
them. In addition, if strip tears occur in the welded part, the welder’s performance must be
checked, and a failure action should be taken when an abnormality is found. Therefore,
more time is required before resuming regular operations because it is necessary to check
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for any damage to the surrounding operating environment and adjust the operating con-
ditions. For this reason, if the CGL cannot generate products continuously, an economic
loss of approximately USD 400 K (approximately KRW 400 million) per year will occur;
therefore, strip tears must be prevented.

The leading and trailing strips are connected using a CGL laser welder, and for the
continuous production of the CGL, a welder must be installed. In the early days, the
seam welder—a method of welding by overlapping both ends of the strip, sending a high
current in an electrode-pressurized state, and melting the strip with the resistance heat
generated in the current concentration part—was widely used because of its relatively
simple structure and ease of management. However, with the recent increase in high-
strength steel production, it has been replaced by laser welders with high thermal efficiency.
It can generate a high laser power and minimize welding deformation by adjusting the
laser power and velocity.

As listed in Table 1, the laser welder consists of mechanical parts, such as a header,
carriage, and shear; electrical and control facilities, such as a quality control data system
(QCDS) and heater; and a laser system, such as a laser resonator and high-frequency gener-
ator. The header is a consumable product, and Company P is currently performing main-
tenance through regular replacement. However, the laser resonator and high-frequency
generator form a single facility provided by the supplier. The device itself is black-boxed;
therefore, it takes a long time to repair or replace it in case of failure.

Table 1. Composition of a CGL laser welder by facility category.

Category Facility Main Functions

Mechanical

Header Laser focusing and laser beam power control
Carriage Fixed to weld leading and trailing strips

Shear Cutting the leading strip tail part and the trailing
strip top part

Electrical/Control
QCDS

Welding quality determined by analyzing the
gap between strips, welding spark, bead amount,

and laser output
Heater Strip heating before welding

Laser System
Resonator Laser resonation by mixing gas

(N2, CO2, He, etc.)
High-frequency

generator High voltage generation for laser gas activation

Laser welder failure refers to a situation in which a strip cannot be welded normally
because the required function is degraded or does not function. As the primary data for
this study, the authors compared and analyzed the total strip tears and welder failures
in the CGL, where welders were installed within a period of 21 months from January
2021 to September 2022 at Company P. There were 19 cases of strip tears, a representative
phenomenon caused by welder failure, which took approximately 90 h to resolve. Among
all CGL failures, 52 welder failures, the main cause of strip tears, occurred during the same
period, and it took approximately 71 h to act against them [7].

1.2. Problem Statement and Research Objectives

The reason for the continued occurrence of laser welder failures is that the devices
constituting the facility are diverse, and all devices require precise control. As a result, even
a minor anomaly in the facilities becomes a factor that significantly deteriorates the welding
quality. While other facilities show relatively clear abnormal signs before failure, such as
vibrations or noise, the laser welder displays almost no abnormal signs indicating failure.
Therefore, various IoT sensors have been attached to facilities to monitor conditions and
detect abnormal signs. However, these measures are yet to reach the level of prevention by
detecting anomalies in advance. Despite the significant advances in facility management
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technologies, laser welder failures continue to occur for several reasons. Company P is
experiencing an economic loss of more than 400 K (KRW 400 million) per year owing to the
failure of the CGL laser welder and the failure to produce normal products. In addition, the
workload of the engineer in charge of field safety measures, facility repair, and production
schedule adjustments also increases in the event of a failure. Facility management in the
manufacturing industry should include preventive maintenance to detect anomalies and
signs before failures, rather than breakdown maintenance after the failures. With the spread
of smart factories, there is a need for technology development that actively utilizes AI
technology to detect anomalies and prevent failures of core facilities in the steel industry,
such as laser welders.

This study aims to develop a predictive maintenance model by applying machine
learning (ML) techniques to automatically detect facility failures before line stoppage. To
this end, a model was developed and trained using the operating sensor data of a CGL
laser welder at Company P’s steel making plant in Korea. An auto-encoder (AE) was
selected as the basic algorithm because of the large deviation between the normal and
abnormal data of the laser welder operation. A long short-term memory (LSTM) algorithm
was also applied due to the time series characteristics of the data. This study developed a
laser welder predictive maintenance model (LW-PMM) based on LSTM-AE, integrating the
technical advantages of the two algorithms.

This study differs from the previous studies. Equipment failure cases are very diverse,
but abnormal data are insufficient; therefore, in the case of a training model, when a new
facility failure case appears, it may not be detected. This study differs from previous studies
in this regard. The model developed in this study predicts failures by detecting anomalies
in situations with a significant lack of abnormal data compared with normal data. The
target facility of this study, a CGL laser welder, is used only in steel plants; therefore,
few studies have applied AI to the same type of facility. To overcome these limitations,
its performance was compared with those of existing facilities currently operating at the
actual site, although the LW-PMM is a model at the PoC level. It is also different from
other studies by showing the economic benefits of the developed technology through an
economic analysis of the model developed in this study.

1.3. Literature Review

The prior research first summarized the ML studies regarding maintenance, repair,
and operation (MRO). In addition, the deep learning applications of predictive maintenance
and anomaly detection models in the steel industry were reviewed.

1.3.1. ML Application for Maintenance, Repair, and Operation (MRO)

Studies have been conducted in facility maintenance, repair, and operation (MRO)
using ML to detect anomalies by applying various ML algorithms. Liu et al. performed
research to predict the quality of molten metals by developing a support vector machine
(SVM)-based anomaly detection model using 14 types of data such as temperature and
composition data that can be measured during blast furnace operation [8]. Yan and Zhou,
using text data from aircraft maintenance history management, confirmed that it was
possible to build a predictive maintenance system based on random forest (RF) and term
frequency–inverse document frequency (TF-IDF) methods [9]. Quiroz et al. developed
a model to predict the motor and rotor bar failures using a random forest based on the
current signal generated during a line start permanent magnet synchronous motor (LS-
PMSM) [10]. Gohel et al. proposed a predictive maintenance framework that applied SVM
and logistic regression algorithms based on the data of intelligent drivers, controllers, and
monitors of nuclear power plants to perform predictive maintenance of nuclear power
plants with few failure samples [11]. Go et al. developed a prediction model of rolling
bearing water corrosion based on the SVM algorithm by using vibration data obtained
from the rolling bearing acceleration sensor to diagnose the failure of the rotating body [12].
Choi et al. developed a support vector regression (SVR)-based tap temperature prediction
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model (TTPM) using EAF operation data to automatically set the amount of power input
by predicting tap temperatures in real time in the electric arc furnace (EAF) process of an
integrated steelworks [13]. These studies aimed to control this process more precisely and
improve productivity by minimizing deviations or errors that occur while engineers control
the process.

1.3.2. Predictive Maintenance Applying Deep Learning Technology

Biswa and Sabareesh developed an ANN-based condition monitoring system for
wind turbines using vibration signals from bearings, gearboxes, and shafts that imitated
the operating conditions of actual wind turbines [14]. De Benedetti et al. developed an
ANN-based PV systems failure detection model using solar irradiance and PV panel tem-
perature data of photovoltaic (PV) systems [15]. This model detected an anomaly through
the difference between the predicted value of AC power production and the actual mea-
sured value, and showed a positive predictive detection rate of over 90%. Zhang et al.
conducted a comprehensive survey of data-driven methods for predictive maintenance
using public datasets such as intelligent maintenance systems (IMS). Especially, specific
industrial applications were classified based on six algorithms from ML and deep learn-
ing [16]. Sampaio et al. developed a failure prediction system using various ML techniques,
such as ANN, regression tree (RT), random forest (RF), and SVM, using vibration data
measured in a motor operation simulation system. Compared to the root mean square
error (RMSE), ANN demonstrated superior performance in periodic fluctuations, such as
vibration [17]. Renström et al. proposed an AE-based wind turbine condition monitoring
and failure detection system using supervisory control and data acquisition (SCADA) data
to detect wind turbine faults and anomalies [18]. However, this system has a limitation
if the model does not detect an anomaly; it selects a model with high recall even at the
cost of precision. Van et al. secured operational data from an IoT sensor for laser trans-
mission welding equipment. They developed a web-based real-time abnormal monitoring
framework applying a supervised learning-based ML algorithm [19]. Zhao et al. analyzed
and optimized a multivariate statistical process control (MSPC) model for missing alarms
or delay prediction in the anomaly detection of the traditional blast furnace iron making
process to develop a TOSIS and gray (GT-MSPC)-based model [20]. Yang et al. proposed
a new method based on SAE-LSTM and the sliding window method by combining A
sparse auto-encoder (SAE) and LSTM for the early alarming of overheating defects of stator
winding of water-cooled turbo generators [21]. However, this study was conducted on
only one turbo generator of a single type, and the limitation was that the performance for
other types of turbo generators could not be confirmed. Esmaeili et al. developed predic-
tive models based on unidirectional LSTM (U-LSTM) and bidirectional LSTM (Bi-LSTM)
auto-encoders (AEs) to automatically detect anomaly data recorded from electro-chemical
aptasensors [22]. However, their study had limitations in preprocessing due to the lack
of sufficient normal data. Compared to other integrated models, their model also has a
limitation in that the effect of the conventional autoencoder model is not applicable. The
developed model showed a higher anomaly detection rate than the manual observation
method, and it was found to activate an sound alarm 16.4861 min earlier than the manual
detection. However, this model has limitations in being applied only to the blast furnace
production process and not to other industrial fields.

1.3.3. Anomaly Detection Models in the Steel Industry

A study on the automation of anomaly detection applying ML techniques in the
steel industry is as follows. Kothari applied the U-Net architecture algorithm to train
a model to classify normal and abnormal conditions based on welding quality and X-
ray photography results of welds [23]. He developed a system for detecting welding
quality and showed an unsafe welding detection rate of 94.3%. Bacioiu et al. suggested
a welding quality detection model based on CNN and fully connected neural networks
(FCN) using high dynamic range (HDR) sensor data after conducting tungsten inert gas
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welding on stainless steel 304 plates [24]. Du et al. proposed a model to evaluate the
welding quality of friction stir-welded joints of three aluminum alloys based on a decision
tree and Bayesian neural network (BNN) using welding variables and material property
data [25]. Zhang et al. proposed a condition monitoring system for laser welding based on
deep belief network (DBN) by utilizing various visual sensor data generated during the
high-power disc laser welding process [26]. Fu et al. proposed an end-to-end SqueezeNet-
based model that applied CNN to classify the defect classification of the steel surface [27].
This study used the publicly available Northeastern University (NEU) steel surface defects
dataset. The proposed lightweight model is expected to enable online steel production
inspection tasks. Zhao et al. proposed a faster R-CNN model integrating faster R-CNN
network structure reconstruction and a network with multiscale fusion to detect steel
surface defects using six types of steel surface defect image data [28]. This proposed
method has better detection performance, and the precision is 0.752, which is 0.128 higher
than the original algorithm. Wang et al. developed a model for recognizing edge defects of
hot-rolled coil based on LeNet-5, AlexNet, and VggNet-16 using a CNN as a core, applying
a dataset of edge defect images of hot-rolled strips [29]. The accuracy of the AlexNet-based
recognition model was 93.5%, and a single defect image’s average recognition time was
0.0035 s. Wang et al. proposed a model that detects abnormalities in welding quality by
applying the LSTM algorithm of a deep neural network to monitor the welding quality
results of ultrasonic welding (USW) [30]. De Paepe et al. developed an incremental grey
box welding current prediction model by combining knowledge-based techniques and
existing statistical models based on industrial welding data to detect welding defects in
the steel production process [31]. The strengths and limitations of this model stem from its
dependence on physical knowledge. In this study, satisfactory results were obtained using
universally known physical rules. Their difficulty is that the physics knowledge for other
cases is incomplete or not easily available to experts. Meyer and Mahalec developed an
anomaly detection model for detecting welding defects using a single-class neural network
autoencoder and a principal component analysis (PCA) algorithm based on standard
process data for resistive seam welding [32].

On the other hand, the method proposed in this paper has the advantage of working
well with a relatively small amount of data. Most of the previous studies on anomaly
detection were performed to monitor or detect welding defects of strips, and such studies
have focused on post-repair maintenance (in other words, traditional preventive) rather
than on preventive maintenance MRO, as is the focus of this paper research. In addition,
the data used in previous research on welding defects of steel strips were unstructured
image pictural data. On the other hand, the operating data of the laser welder applied in
our study are structured data, and furthermore there is a difference between the anomaly
detection model of the welding and the characteristics of the data. As a result of reviewing
previous studies, ML is used in several innovative ways to improve production efficiency.
In particular, studies on facility failure prediction, which were attempted in only a few
industries, have been researched using ML technology to develop IoT sensors based on a
large amount of data. However, with the exception of a few studies, a significant number of
studies have been implemented to validate a model’s accuracy and availability, as opposed
to applying operational data from production sites to develop a commercially usable
system. In addition, various studies have proposed models that determine mainly the
welding quality, upon which the welding results are based. Previous studies on monitoring
the operation and controlling status of welding devices, which is the fundamental cause of
deteriorating welding quality and detecting anomalies, are scarce.

In summary, this paper presents an ML-based facility anomaly detection model using
the operation data of a laser welder from an actual production site, which is essential for
enabling continuous production in a CGL. Therefore, it is expected that this model can
minimize or prevent the failure of the laser welder operation, which is the fundamental
cause of degradation in the welding quality. Table 2 shows the recent studies on predictive
maintenance and anomaly detection for this study.
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Table 2. A summary of the recent studies for predictive maintenance and anomaly detection.

Category Proposed Methods Data or Signals Research Goal References Year

Machine Learning
based approaches

Support Vector Machine (SVM) Blast furnace operation data such
as temperature

Anomaly detection in the quality of
molten metal Liu et al. [8] 2011

Random Forest (RF), Term
Frequency–Inverse Document
Frequency (TF-IDF)

Text data from aircraft maintenance
history management

Detection and predictive maintenance of
aircraft anomalies Yan and Zhou [9] 2017

Random Forest (RF)
Current signal generated during a line
start permanent magnet synchronous
motor (LS-PMSM)

Prediction of motor and rotor bar failures Quiroz et al. [10] 2018

Support Vector Machine (SVM),
Logistic Regression

Data of intelligent drivers, controllers,
and monitors of nuclear power plants

Predictive maintenance of
nuclear facilities Gohel et al. [11] 2020

Support Vector Machine (SVM) Vibration data obtained from the rolling
bearing acceleration sensor

Prediction of moisture-induced
corrosion in rolling bearings Go et al. [12] 2021

Support Vector Regression (SVR) Operation data of an electric arc
furnace (EAF)

Real-time prediction of tap temperature
and automatic setting of power input
for EAF

Choi et al. [13] 2023

Deep Learning based
approaches

Artificial Neural Network (ANN)

Vibration signals from bearings,
gearboxes, and shafts that imitated the
operating conditions of actual
wind turbines

Detection of gear-related faults such as
cracks or bearing inner race cracks Biswa and Sabareesh [14] 2015

Artificial Neural Network (ANN)
Solar irradiance and PV panel
temperature data of photovoltaic
(PV) systems

Anomaly detection in photovoltaic
(PV) systems De et al. [15] 2018

Artificial Neural Network (ANN), Deep
Neural Network (DNN),
Auto-encoder (AE)

Public datasets such as intelligent
maintenance systems (IMS)

Classification of specific
industrial applications Zhang et al. [16] 2019

Artificial Neural Network (ANN),
Regression Tree (RT), Random Forest
(RF), Support Vector Machine (SVM)

Vibration data measured in a motor
operation simulation system Predictive maintenance for motors Sampaio et al. [17] 2019

Auto-encoder (AE) Supervisory control and data acquisition
(SCADA) data

Detection of wind turbine faults and
anomalous behavior Renstrom et al. [18] 2020
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Table 2. Cont.

Category Proposed Methods Data or Signals Research Goal References Year

Supervised Learning Operational data from an IoT sensor to
laser transmission welding equipment

Real-time anomalous condition
monitoring of laser transmission
welding machines

Van et al. [19] 2022

Multivariate Statistical Process Control
(MSPC), Technique for Order of
Preference by Similarity to Ideal Solution
(TOPSIS), GT-MSPC

Field data collected from a blast furnace
ironmaking production process

Anomaly detection and early warning in
blast furnace ironmaking processes Zhao et al. [20] 2022

Sparse Auto-encoder (SAE) and Long
Short-Term Memory (LSTM)

Operation data of a water-cooled
turbo-generator stator winding collected
by a distributed control system (DCS)

Early warning for overheating faults in
stator windings of water-cooled
turbo generators

Yang et al. [21] 2023

Unidirectional LSTM (U-LSTM),
Bidirectional LSTM (Bi-LSTM),
Auto-encoder (AE)

Anomaly data recorded from
electro-chemical aptasensors Anomaly detection for sensor signals Esmaeili et al. [22] 2023

Anomaly Detection in
the Steel Industry

U-Net Architecture Algorithm Welding quality and X-ray photography
results of welds

Quality discrimination and defect
detection of welded joints Kothari. [23] 2018

Convolutional Neural Networks (CNN),
Fully-connected Neural Networks (FCN)

High dynamic range (HDR) sensor data
from tungsten inert gas welding on
stainless steel 304 plates

Evaluation of welding quality Bacioiu et al. [24] 2019

Decision tree, Bayesian Neural
Network (BNN)

Welding variables and material
properties data

Evaluation of welding quality for
friction stir welded joints Du et al. [25] 2019

Deep Belief Network (DBN)
Various visual sensor data generated
during the high-power disc laser
welding process

Real-time condition monitoring of
laser welding Zhang et al. [26] 2019

Convolutional Neural Networks (CNN)
Publicly available northeastern
university (NEU) steel surface
defect dataset

Defect recognition and grade
classification of steel surface Fu et al. [27] 2019

Faster R-CNN Six types of steel surface defect
image data Detection of defects on steel surface Zhao et al. [28] 2021

Convolutional Neural Networks (CNN),
LeNet-5, AlexNet, and VggNet-16 Edge defect images of hot-rolled strips Recognition of edge defects in

steel plates Wang et al. [29] 2021
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Table 2. Cont.

Category Proposed Methods Data or Signals Research Goal References Year

Deep Neural Network (DNN) Time series signal data of ultrasonic
welding (USW)

Anomaly detection in ultrasonic welding
(USW) quality Wang et al. [30] 2021

Combination of statistical models and
knowledge-based techniques

Industrial welding data from the steel
production process

Prediction of welding current in
incremental grey box models De et al. [31] 2022

Auto-encoder (AE), Principal
Component Analysis (PCA) Resistive seam welding data Monitoring and detection of

welding defects Meyer and Mahalec [32] 2022
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1.4. Research Framework and Overall Process

The overall model development process is shown in Figure 2. Section 2 describes
the collection of operation data for the laser welder to be used in developing the failure
prediction model. The authors excluded data not directly related to the failure of the
laser welder and preprocessed it to select missing values and outliers. In Section 3, the
authors review algorithms suitable for the operation data of laser welders. After selecting
and training the LSTM-AE model that combines the AE and LSTM algorithms, the laser
welder predictive maintenance model (LW-PMM), a failure prediction model of the laser
welder, was finally developed. The performance of the LW-PMM model is evaluated using
a confusion matrix in Section 4. In addition, the authors verified the model’s anomaly
detection performance by using the operation data of the actual CGL site in Company
P. Section 5 reviews the economic effects of the LW-PMM by applying the concept of
opportunity cost.
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2. Data Collection and Data Preprocessing
2.1. Data Collection

For this study, the laser welder operating data of “A” CGL at Company P was first
collected. Operation-related data were collected in real-time using the data storage and
analysis system of ibaAG in Germany. The saved data were imported into Excel and Python
before conversion to a .csv file for analysis.

This study utilized the laser welder operation data for three months, from 1 January
2021 to 31 March 2021. The data consisted of 1448 items of measurement data in seconds,
such as the operation status of the device comprising the laser welder position and speed
and signals from the sensors attached to the front and back of the laser welder. There were
266 items of continuous analog data and 1222 items of digital data representing repetitive
operation signals, such as the operation and stopping of the device. The collected data are
categorized by type in Table 3 as mechanical, electrical or control, utility, and other devices,
along with the numbers and types of devices.

Table 3. Data collected from the laser welder system by category.

Category Define Quantity
(Analogue/Digital) Types

Mechanical
Driving devices 539 (125/414) Position, Speed, Torque, etc.
Welding devices 254 (32/222) Welding Time, Temperature, etc.

Cutting devices 135 (24/111) Cutting Time, Position,
Centering, etc.

Electrical/Control
Laser system 108 (20/88) Laser, Chiller, Resonator, etc.

Sensor, Signal 265 (0/265) Camera, Strip Position
detector, etc.

Utility and Other Devises 147 (25/122) Pump Start/Stop, Filter, etc.

2.2. Data Preprocessing and Data Selection

The collected data consisted of 1448 items in seconds. Because the performance of the
analysis server was insufficient to analyze all the data, additional data preprocessing was
necessary to select the operation data that could affect the failure of the actual laser welder.
Data preprocessing significantly affects the performance of the implemented model and
removes unnecessary or outlier data to suit the purpose and method of analysis [33]. In
this study, data were analyzed and selected during preprocessing by utilizing the domain
knowledge of facility engineers and basic Python libraries such as pandas, numpy, scikit-
learn, and matplotlib. Preprocessing was performed on all the collected data to remove
unnecessary or abnormal data from the analysis, as shown in Figure 3.
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Figure 3. Data preprocessing and data selection processes.

Data preprocessing was performed in a two-step sequence, in which data not nec-
essary for realizing the laser welder failure prediction model were removed. Similarly,
missing values and outliers were analyzed and removed. Data removal was performed in
collaboration with a facility engineer with more than ten years of experience and sufficient
domain knowledge of laser welders based on extensive experience and know-how. As
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described above, the operating data of the laser welder collected in “A” CGL included
1448 items. From the perspective of facility operation, data can be classified into two types.
Line-connected data allows the entire CGL and laser welding process, which is a single
facility, to operate organically, and exclusive data are generated from the laser welder
system facilities.

The measurable data from the device directly related to the regular operation of the
laser welder were selected as input values for the LW-PMM. However, line-linked data,
such as the CGL process line-connected data, which send and receive signals between
facilities so that the production process can be conducted smoothly; items related to utility
and roll operation auxiliary facilities that are not directly related to laser welder failures;
and missing model implementation value items that may cause distortion were removed
through preprocessing.

Line-connected data contain information related to the overall operation of the CGL,
including operational data on the production speed and tension, and product information,
such as on the width and thickness of the strip being produced. The laser welder was
operated based on these data; however, because the data were not directly related to the
failure of the actual laser welder, the corresponding 421 items were excluded from the
analysis. In addition, in the laser welder system, 147 items related to supplying utility to
the laser welder and driving the surrounding rolls were excluded from the data analysis
because they were not directly related to the failure of the laser welder. Finally, 1001 items
were preferentially excluded from the analysis by additionally screening 433 items unrelated
to the failure of the welder among the digital data, which consisted of the operation signal
of the laser welder and the front and back facilities for the welding sequence inside the
laser welder system.

Next, when implementing the laser welder failure prediction model, the missing
values and outliers, which were the main causes of significant distortion and deterioration
in accuracy, were identified. As a result of analyzing the data using the Python library’s
analysis tool, there were many items for which data were not normally collected. Conse-
quently, 256 data items that were not normally collected owing to sensor failure or cable
disconnection were excluded from the analysis.

An outlier refers to an excessively large or small value outside the normal range of col-
lected data. The most common method of removing outliers is to use an interquartile range
(IQR). The IQR is the difference (Q3 − Q1) between the Q3 value representing the upper
75% of the quartile and the Q1 value representing the lower 25% of the quartile. The range
of values between the minimum Q1 − 1.5 × IQR and the maximum Q3 + 1.5 × IQR consti-
tuted normal data, and values outside this range were considered outliers and removed or
replaced with the average value of normal data [34]. In this study, the data analysis was
performed by including outliers without removing them because the possibility that these
outliers could be related to actual failures cannot be ruled out.

Therefore, through three stages of preprocessing, 191 data items were selected for
modeling, excluding 1001 items deemed unnecessary for the analysis and 256 items with
missing values.

3. Modeling and Training for the CGL Laser Welder

It is necessary to select an algorithm suitable for the operating characteristics of the
facility to develop a failure prediction model. This section explains the ML algorithm and
its training for developing a failure prediction model for laser welders.

3.1. Classification of ML Techniques for Anomaly Detection

The work rate (time required for production) of CGLs in which laser welders are used
exceeds 98%, and unplanned downtime owing to breakdowns occurs only when there
is a problem with the planned repair time. As a result, obtaining abnormal data from a
laser welder can take longer than expected. In addition, the abnormal data collected in
this manner constitute a minor portion of the total operation data. Therefore, a significant
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deviation occurs between normal and abnormal data. The basic concept of anomaly
detection is to distinguish between normal and abnormal data. Anomaly detection is
classified into supervised, semi-supervised, and unsupervised depending on whether
abnormal data are used when training the model and whether labeling is performed to
distinguish normal from abnormal data [35].

Supervised anomaly detection model is applied when sufficiently normal and abnor-
mal data are present in a given training dataset, and distinct labels exist for both. This
method has high accuracy compared to other methods because it has been trained by secur-
ing sufficient normal and abnormal data and shows higher performance as the amount of
abnormal data increases. However, the frequency of abnormal data at general industrial
sites is significantly lower than that of normal data. Therefore, considerable time and money
are required to secure abnormal data, and the class imbalance problem between normal
and abnormal data must be solved. Semi-supervised anomaly detection is used when
the training dataset has a significant imbalance between normal and abnormal data. This
method was developed to overcome the disadvantage of supervised anomaly detection,
which requires better learning accuracy when the imbalance between data is significant.
When the imbalance between the data was severe, a discriminative boundary surrounding
the normal data was set, and all data outside the boundary were considered abnormal
and assigned a maximum. This method can be applied even when there is a significant
imbalance between the data. However, even in this case, a label that distinguishes normal
data from numerous other data points is required. In addition, compared to supervised
anomaly detection, it is relatively less accurate; therefore, its usability is low.

Unsupervised anomaly detection was devised to eliminate the inconvenience of se-
curing labels for normal and abnormal data in semi-supervised anomaly detection. This
learning method assumes that most of the data are normal without securing labels. A rep-
resentative method is required to detect abnormal data by applying dimension reduction
and restoration using a principal component analysis (PCA) to the given data. Recently,
AE-based neural networks have become the most commonly used [36]. Table 4 classifies
the anomaly detection methods described above into three types according to the learning
method and briefly explains the characteristics of the normal and abnormal data used to
determine whether normal data labeling is necessary for accuracy.

Table 4. Classification of anomaly detection data.

Category Normal Data Abnormal
Data Labels Accuracy

Supervised
Anomaly Detection Use Unused Need Excellent

Semi-supervised
Anomaly Detection Use Unused Need Lowness

Unsupervised
Anomaly Detection Use Unused Unnecessary Moderation

3.2. Model Selection for the CGL Laser Welder

Considering situations in which laser welders fail, in many cases, failures are not
caused by instantaneous facility failures but rather by small facility failures accumulating
and exceeding the allowable range. For failure prediction, it is necessary to predict the
possibility of future failures by analyzing the sequence data collected from the laser welder.
RNN and LSTM methods, which are variants of RNN, are commonly used for sequence
data analysis. LSTM has more advantages than an RNN; however, it is necessary to select
an appropriate algorithm according to the problem type. The characteristics of the RNN
and LSTM were compared to select an algorithm suitable for analyzing the characteristics
of the laser welder operation data.

An RNN is a type of artificial neural network that forms a directed cycle by sending
the result value from the activation function to the hidden state in the output direction and
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sending it to the next computational input value of the hidden state. RNNs that sequentially
receive previous output values as inputs do not structurally remember information far
from the output and are designed to reflect more recent information in the prediction. The
disadvantage is that a vanishing gradient problem occurs such that the learning ability
deteriorates significantly as the distance between the relevant data and currently used data
increases [37]. The LSTM was devised to overcome these disadvantages. The LSTM is
designed to continuously use important past data for analysis by adding a cell state to the
hidden state of an RNN.

In this study, because the deviation between normal and abnormal data for laser welder
operation data is significant, the AE, the most commonly used unsupervised anomaly
detection method with strength in implementing a model using only normal data, was
selected as the basic algorithm. Furthermore, because laser welder failure detection must
be able to handle time series data with prior and post-relationships, an LSTM algorithm
was used for the analysis by correlating past data with additional selected data. Using the
LSTM-AE, which combines the strengths of the two algorithms, the LW-PMM model was
created to predict laser welder failure.

3.3. LW-PMM Modeling

The most prominent feature of the selected LSTM-AE-based LW-PMM model is that it
uses an unsupervised learning-based AE as the basic algorithm for failure prediction. The
AE aims to output the same data as the input data when the input data are encoded and
decoded again. Techniques for anomaly detection based on AE use this learning goal, such
that an AE trained only with normal data outputs the same input value if normal data are
input. However, if abnormal data that have not been previously learned are used as inputs,
the restored output value differs from the input value.

The LSTM-AE is a combination of the LSTM and AE and has a structure in which the
network cells of the AE are replaced with LSTM cells to consider the temporal characteristics
of the time series data. For anomaly detection, the concept of reconstruction error, which
judges anomalies when the input data are over a threshold, is used, whereby the input data
are output again through the encoder and decoder.

The detailed functions of the LSTM-AE algorithm used in the LW-PMM model in this
study are as follows:

• Encoder: The encoder of the LSTM-AE algorithm refers to the part that receives and
processes the sensor data from the laser welder as the input. Since the sensor measure-
ments are time series data, an encoder based on recurrent neural networks such as
LSTM is suitable. During training, the encoder learns the patterns and structures of the
input time series data and projects them onto a latent space as vector representations.
By utilizing the encoder, information from the input data is extracted while preserving
the key features of the original data, enabling more efficient data processing and
analysis through dimensionality reduction.

• Latent space: The time series data of the laser welder, represented as vectors through
the encoder, can be projected onto a latent space. The latent space refers to a vector
space that encompasses the vectors generated by the encoder.

• Decoder: The decoder is used to restore the compressed time series data to their origi-
nal form by utilizing the encoder. The decoder takes the time series data represented
as vectors through the latent space and converts them back into the original data.
During training, the LSTM-AE model sets the goal of correctly restoring the input data
as the training objective.

• Loss function: The loss function measures the difference between the actual time
series data and the data restored by the decoder of the LSTM-AE model. The training
objective set during the training process is to minimize this loss function. This study
used the mean squared error (MSE) as the loss function. The MSE is a commonly used
loss function for analyzing time series data, such as sensor data from a laser welder,
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which calculates the average of the squared differences between predicted values and
actual values [38]. It is used to evaluate the model’s performance.

• Prediction: The LSTM-AE model, trained with completed training, receives sensor
data from a laser welder as input and classifies normal and abnormal states using
the encoder layer (or the entire layer). Through this process, the LSTM-AE model is
capable of detecting faults in the laser welder.

In this study, the LSTM-AE model was trained using the normal data of 191 items
selected from the laser welder operation input. Figure 4 shows the laser welder data
input and output structures of the LSTA-AE model used to create a laser welder failure
prediction model.
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In the CGL, which require continuous production, interruptions from facility failure
cause severe losses, including time to recover failed facilities and adjust operating condi-
tions for regular production. Therefore, the manufacturing industry must be able to detect
the signs of failure before a facility fail happens. In this study, AE and LSTM algorithms
were selected considering the facility’s characteristics and the features derived from the
facility’s operation data. Due to the nature of the facility, the laser welder can have a failure
breakdown, but it occurs extremely rarely, with 1 to 2 cases per year. Therefore, most data
are normal operating data, and abnormal data are rare. As a result, when training the
model, it is extremely difficult (almost practically impossible) to label the distinguishes
between normal and abnormal data. In this case, the AE, an unsupervised learning model,
is suitable for training, assuming that most data are normal, without securing a label. In
addition, by applying the LSTM algorithm, a model that can predict the possibility of
failure in the future was developed by analyzing the time series data generated during the
operation of the laser welder.

Many previous studies have examined models for determining mainly the welding
quality by applying AI in the steel industry [23–32]. A study to assess welding quality
involved the characteristics of corrective maintenance to detect defects after they occur [39].
On the other hand, the differentiating point of this study is predictive maintenance, which
detects failures before facility failures and can allow predictive actions to be taken in
advance. In addition, this study developed a model by applying actual operation data from
facilities generated in steel plant production sites rather than imitation data or public data.
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3.4. Model Training and Fine Tuning
3.4.1. Dataset for Model Training

The laser welder data that could be analyzed include operation and non-operation
periods of three months, from 1 January 2021 to 31 March 2021. In other words, these data
were from 191 items selected after removing unnecessary items through preprocessing for
the analysis but included both normal and abnormal data. The detection of abnormalities
in laser welders using LW-PMM, as described above, requires normal data for training. All
data from the corresponding period were considered normal; however, it was necessary to
exclude the data associated with failures during training to further improve the accuracy of
the model. Therefore, as shown in Figure 5, for the section where an actual failure or fault
signal occurred, the data from 1 h before and after were excluded from the training dataset.
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For the dataset selected in this method, the training and test datasets were separated
at a ratio of 8:2 through random sampling, and model training was performed as described
in the next section.

3.4.2. Model Training and Fine Tuning

Hyperparameters refer to the values the model user sets directly in the deep learning
model and are used to control the training process [40]. Furthermore, hyperparameters are
optimized to maximize the performance of deep learning models. Examples include the
epoch, learning amount, and learning rate, determining how far to proceed. In addition,
the performance of the deep learning model varies depending on the combination of these
values. In this way, exploring the combination of hyperparameters to maximize model
performance is called hyperparameter optimization [41].

Epochs are defined as the number of times the model has been repeatedly trained
once for the entire dataset through feed forwarding and backpropagation [42]. In addition,
the epochs of LW-PMM in this study amounted to 200. The batch size is the size of
the data sample given for each batch. If there are problems learning the entire dataset
in terms of the system or time, then the dataset is trained by dividing it into a specific
size. As a result, the size of the divided dataset becomes the batch size. Furthermore,
the batch size of this study was 128. When optimizing hyperparameters, the parameter
that changes the model performance most dramatically and easily is the optimizer. This
study used adaptive moment estimation (Adam) as the optimizer. Adam is a widely
used optimization algorithm for improving accuracy in deep learning because it is easy to
implement, computationally efficient, and has few memory requirements [43]. The learning
rate is a rate for converging to an appropriate value. If the value is low, it takes a long
time to converge, and if it is high, it fluctuates near the minimum value or even deviates
from preventing convergence. Therefore, in this study, 0.001 was applied as the learning
rate. The LW-PMM model was developed with the Python programming language and the
TensorFlow library. Table 5 shows the hyperparameters applied to the LW-PMM model.
For other parameters, the authors used the TensorFlow library’s default settings.
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Table 5. Hyperparameter of LW-PMM using the LSTM-AE.

Hyper Parameters Value Determined

Epochs 200
Batch size 128
Optimizer Adam

Learning rate 0.001

The predicted value also changed drastically depending on how the model was trained.
It is important to select a balanced trained model rather than an overfitting or underfitting
model to obtain good results. Model parameter optimization was performed using K-fold
cross-validation, which is a model training method that divides the data into K folds
according to the situation, whereby the K-1 fold data were used as training data, and the
remaining unselected data were classified as test data [44]. Subsequently, the training and
test data are changed by repeating the exact process K times. The data were divided into
K groups according to the trends displayed. Parameter optimization was performed by
classifying the training and test data using K = 10, which is a commonly used value.

The window size of the LSTM affects the accuracy of the LW-PMM model. This factor
determines the number of data windows used to predict the dataset. When the factor is
too small or large, the accuracy can be reduced. Therefore, a value with demonstrated
effectiveness through repeated tests according to the characteristics of the data must be
selected, such as setting K to 10 in the K-fold cross-validation. The window size was tested
by dividing the window into 30, 60, 90, 120, 150, and 180 windows. Figure 6 shows the
results of checking the anomaly detection frequency according to the window size. It was
confirmed that more anomalies were detected with a window size of 60 than with a window
size of 30, and even more with a window size of 90 than with 60. However, the window
size of 120 did not significantly differ from the window size of 90 for anomaly detection.

The test results showed that the abnormality detection frequency increased for window
sizes below 90, which was similar to the time of one cycle of the laser welder. For the
120, 150, and 180 cycles (exceeding one welding cycle), results similar to those for 90 were
obtained. In conclusion, learning was performed with a final window size of 90, which is
similar to one welding cycle.

Finally, a threshold value, which was the reference value for the reconstruction error,
was set for the AE algorithm. The optimal threshold value was experimentally determined
by repeating the test and changing the threshold value of the model. Figure 7 shows
the case in which the threshold value was set to 0.05, indicating that errors in detecting
anomalies occurred frequently because the sensitivity was too high.

The threshold value was determined to be 100 by comparing the data at the time of
the actual fault or failure with those of the implemented LW-PMM (Figure 8), reflecting the
final model.
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4. Validation through Case Study
4.1. Performance Metrics for Model Test

In this study, the performance of LW-PMM was evaluated using a validation dataset.
Verification was achieved using the F1-score, which evaluates the model performance when
there is a significant data imbalance between the objects to be classified [45]. A confusion
matrix was used to confirm the precision, recall, and accuracy required for the F1-score
verification. Table 6 lists the confusion matrix of the four variables.

Table 6. Confusion matrix for the LW-PMM model.

Predictive Value

Positive Negative

The Actual
Value

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

A true positive (TP) refers to a case in which an actual failure has occurred, and it is
predicted that an actual failure has occurred. A false negative (FN) is a case in which an
actual failure has occurred, but it is incorrectly predicted that no failure has occurred. A
false positive (FP) is a case in which an actual failure has not occurred, but it is incorrectly
predicted that a failure has occurred. Finally, a true negative (TN) is a case in which an
actual failure has not occurred, and it is correctly predicted that no failure has occurred.
The accuracy, precision, and recall were evaluated using the TP, FN, FP, and TN. Accuracy
was defined as the number of correctly predicted data points divided by the total number
of data points. Precision is the ratio of the data predicted by the model to the actual data
that failed. Recall is the ratio of data in which the model predicts the failure of the data as a
failure. Finally, the F1-score is the harmonic average of precision and recall. The formulae
for calculating the accuracy, precision, recall, and F1-score using information from the
confusion matrix are as follows [46]:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)

Precision =
TP

(TP + FP)
× 100% (2)

Recall =
TP

(TP + FN)
× 100% (3)
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F1 − Score = 2 × (Precision × Recall)
(Precision + Recall)

× 100% (4)

In parallel with the F1-Score, which is widely used, an additional verification process
was conducted to determine whether failures of the laser welder could be predicted during
actual use in the CGL site. Verification was achieved using the operation data of the laser
welder in “A” CGL for six months, from 1 January 2022 to 30 June 2022. The verification of
the actual operation data confirmed whether a failure was predicted at the time of failure
or whether a failure signal appeared before failure.

4.2. Evaluation Results and Validation

Table 7 lists the values of the TP, FN, FP, and TN, and the corresponding accuracy,
precision, recall, and F1-score are listed using the confusion matrix.

Table 7. Validation results of the LW-PMM model.

Value Performance

TP FN FP TN Accuracy (%) Precision (%) Recall (%) F1-Score (%)

265,140 0 66,930 2,142,790 97.3 79.8 100 88.8

For the validation results using the confusion matrix, of the 2,474,860 data points,
265,140 failures were correctly classified (TP). Among the verification results listed in
Table 7, the FN and FP indicate prediction errors. An FN of zero indicates that there are
zero cases where a failure occurred; however, the LW-PMM model did not predict the
failures. Of the 2,474,860 test data points, 66,930 were predicted as failures, although they
were not actual failures (FP). The authors determined that 2,142,790 of the total test data did
not have actual failures and that no failures would have occurred in the predictions (TN).
Accordingly, the accuracy of the LW-PMM model implemented in this study was 97.3%,
the precision was 79.8%, and the recall was 100%. As a result, the F1 score was 88.8%.

The failure prediction model aims to detect anomalies before actual failures occur and
provides them to facility engineers. In other words, actual failures can be predicted. As the
numerical value related to this is the recall, the LW-PMM developed in this study showed a
numerical value of 100%. Next, we assume that the data judged as abnormal by the failure
prediction model do not lead to actual failures. In such cases, it is essential to determine
the number of times that a facility engineer can tolerate such errors. The related number is
the precision. A precision of 79.8% compared to a recall value of 100% indicates that the
actual equipment failure is predicted by the model as well, but approximately 20.2% of
the prediction results are duplicate values; that is, the precision of the LW-PMM model of
79.8% indicates that the actual predicted value and the model’s failure prediction match
rate are approximately 80%. When five failure signals are provided, one can be interpreted
as not an actual failure.

Therefore, it is essential to develop and use a failure prediction model. If the threshold
value is strictly adjusted to increase the precision value, there is a high risk of dysfunction,
such that an actual failure can be missed. Considering that this study was a proof of concept
(POC), in the developed LW-PMM model, an error of approximately one out of five was
tolerable with the current technology, as confirmed through an interview with an actual
facility engineer.

To compare the failure prediction performance of the LW-PMM model, the authors
attempted to compare the performance of the proposed model with the results of other
studies, but there was no previous study on failure prediction of the corresponding facility
using AI. Therefore, it is presumed that the research results are lacking due to the limitations
of their use because the facility is used only for steel plants, not general industrial plants. If
similar studies on steel facilities are published in the future, the results of these studies can
be compared.
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4.3. Performance on the Operation Site

Instead of comparing the CGL laser welder with previous studies, the model per-
formance was compared with existing equipment used in the operation process at the
actual site.

To verify whether failure can be predicted in the actual field, in addition to the
verification using the F1-score described above, the operation data of the laser welder for
six months from 1 January 2022 to 30 June 2022 were entered into the LW-PMM.

The field operation conditions for the actual site test were as follows. The production
line for the test was the CGL, the minimum temperature was −14.4 ◦C and the maximum
was 37.9 ◦C, rainfall and snowfall did not occur as the test was conducted indoors, the
maximum wind speed was 35 m/s, the maximum relative humidity was 89%, and the line
speed was 180 mpm. In addition, a product welded using a laser welder was required to
test the LW-PMM model. The test strip was a galvanized iron strip produced via welding
with a laser welder at ‘A’ CGL in Company P. Table 8 lists the site operating conditions for
the LW-PMM model test.

Table 8. Operation conditions for the LW-PMM model test in the site.

Operation Condition for Site Test Strip for Site Test

Temperature: Min. −14.4 ◦C, Max. 37.9 ◦C Material: Galvanized steel

Rainfall and snowfall: Indoors Production Line: Welding with laser welder
in ‘A’ CGL

Wind: Max. 35 m/s Strip Thickness: 0.4–3.2 mm
Relative Humidity: Max. 89% Strip Width: 800–1900 mm

Line Speed: 180 mpm Strip Weight: Max. 45 ton

While no special anomaly detection occurs for most of the period, as shown in Figure 9,
during the verification period, the first anomaly is detected 27 h before the occurrence
of the actual failure, and an additional anomaly is detected 12 h before the actual failure.
This shows the performance for detecting a signal approximately 18 h earlier than the
existing facility monitoring system detecting a fault signal for the first time 9 h before actual
failure, confirming that the system detected anomalies that are not recognized as faults. It
is expected that this method can be applied to a field with higher accuracy than existing
systems if continuous abnormalities can be detected before failures occur and alarms can
be generated in time.

Sustainability 2023, 15, 7676 24 of 28 
 

actual failure, confirming that the system detected anomalies that are not recognized as 

faults. It is expected that this method can be applied to a field with higher accuracy than 

existing systems if continuous abnormalities can be detected before failures occur and 

alarms can be generated in time. 

 

Figure 9. Actual performance in anomaly detection on the operation site. 

After the model validation process, the authors analyzed other related studies of laser 

welder anomaly detection for benchmarking. Company P has recently studied the 

detection of anomalies before equipment failures occur. Among them, the authors 

examined the method of detecting equipment anomalies using pattern-matching 

technology for benchmarking in this study [47]. It is inefficient to compare each piece of 

data individually to analyze the operation data from the facilities for the comprehensive 

detection of the anomalies. In this situation, it is necessary to create a normal operation 

pattern that integrates all operational data, considering the fact that each piece of data is 

organically connected.  

Pattern-matching technology is a method in which the permissible upper and lower 

limit threshold values are set based on the normal operation pattern generated, and as 

such flags abnormalities if the pattern created during actual facility operation deviates 

from the standard value. First, based on the data collected from various sensors attached 

to the laser welder, a statistical analysis was conducted to establish a normal operation 

pattern, setting upper and lower limit thresholds. Thus, an anomaly detection method 

using pattern matching (ADPM) model that detected anomalies deviating from the 

normal operation pattern was developed. The model’s accuracy was 81% at the time of 

initial development.  

To increase the accuracy of the failure prediction model, it is necessary to accurately 

distinguish between normal and abnormal situations without causing problems such as 

overfitting, even under conditions in which there is significant deviation between normal 

and abnormal data.  

However, this ADPM model was unable to actively respond to the operating 

environment where various unexpected situations occur because the normal operation 

pattern and range calculated initially statistically were determined by absolute values. As 

a result, this ADPM model was not applied to facility management in the actual process 

site. One of the reasons for this is that the failure prediction accuracy of the model 

decreases as the model is used. ML engineers continuously input new data to adjust the 

regular pattern, which requires system intervention to maintain the model’s accuracy. If 

Figure 9. Actual performance in anomaly detection on the operation site.



Sustainability 2023, 15, 7676 22 of 28

After the model validation process, the authors analyzed other related studies of laser
welder anomaly detection for benchmarking. Company P has recently studied the detection
of anomalies before equipment failures occur. Among them, the authors examined the
method of detecting equipment anomalies using pattern-matching technology for bench-
marking in this study [47]. It is inefficient to compare each piece of data individually to
analyze the operation data from the facilities for the comprehensive detection of the anoma-
lies. In this situation, it is necessary to create a normal operation pattern that integrates all
operational data, considering the fact that each piece of data is organically connected.

Pattern-matching technology is a method in which the permissible upper and lower
limit threshold values are set based on the normal operation pattern generated, and as such
flags abnormalities if the pattern created during actual facility operation deviates from
the standard value. First, based on the data collected from various sensors attached to the
laser welder, a statistical analysis was conducted to establish a normal operation pattern,
setting upper and lower limit thresholds. Thus, an anomaly detection method using pattern
matching (ADPM) model that detected anomalies deviating from the normal operation
pattern was developed. The model’s accuracy was 81% at the time of initial development.

To increase the accuracy of the failure prediction model, it is necessary to accurately
distinguish between normal and abnormal situations without causing problems such as
overfitting, even under conditions in which there is significant deviation between normal
and abnormal data.

However, this ADPM model was unable to actively respond to the operating environ-
ment where various unexpected situations occur because the normal operation pattern and
range calculated initially statistically were determined by absolute values. As a result, this
ADPM model was not applied to facility management in the actual process site. One of the
reasons for this is that the failure prediction accuracy of the model decreases as the model
is used. ML engineers continuously input new data to adjust the regular pattern, which
requires system intervention to maintain the model’s accuracy. If there is no continuous
management by engineers, the system’s reliability will decrease, and eventually it will not
apply to the operation.

By benchmarking this study’s results, the authors learned that the involvement of ML
experts should be minimized in future studies. Figure 10 shows a brief overview of the
anomaly detection process using the pattern-matching technique. This involves creating
a normal operation pattern through a statistical analysis method and comparing it to the
actual operation pattern.
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The authors reviewed prior studies on anomaly detection using ML technology in
the steel industry, as presented in Sections 1.3.1 and 1.3.3 Most studies have applied AI
technology for the defect detection of steel strips or steel surfaces, not steel production
facilities [27–29].
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Wang et al. applied a deep neural network to monitor the quality results of ultrasonic
welding (USW) [30]. This approach is similar in predicting quality abnormalities using
this study’s LSTM algorithm. In particular, as a study showing that quality classifications
can be accurately predicted (97.8%) without traditional feature engineering for multiple
input signals when welding steel sheets by ultrasonic composite welding, this is expected
to be applied in future research. However, in the prediction method using deep learning,
even if the same prediction model and parameters are used, the results may not be constant
depending on the characteristics of the dataset [48]. Wang et al.’s study detected abnor-
malities in quality for welding results, and there are various similar studies with the same
purpose. Even though the applied models are different, benchmarking and performance
comparisons of the models are possible. This study involved an MRO model for facilities,
and this facility targeted to specific equipment used solely in steel mills is an obstacle to
benchmarking Wang et al.’s study.

In addition, the models proposed in numerous previous studies related to failure
prediction are facility abnormality detection models that simply detect the abnormal signals
generated in each facility and send an abnormal alarm when the standard value is exceeded.
Consequently, these models are limited in their ability to detect anomalies because the
occurrence of minor irregularities in the facilities is below the standard value. However,
the method developed in this study was used for detecting anomalies by integrating minor
irregularities in various facilities and showed the performance in quickly detecting signs
of failure for approximately 18 h compared to the existing facility monitoring system
of Company P.

Steel production facilities have inferior operating conditions owing to their high
temperatures and high levels of dust (fine iron powder) compared with those commonly
used in general industries. Therefore, it is challenging to predict failures caused by various
causes using a failure prediction system applied to general industrial facilities.

The failure prediction level for steel facilities is lower than that for general industrial
structures. In the future, if a failure prediction model that comprehensively analyzes the
complex environment and operating conditions of steel plants is developed, the results
of mutual studies can be compared. The early detection of facility abnormalities has the
advantages of accurately identifying faulty devices, preparing replacement parts before
equipment failure occurs, and having a certain amount of time to secure the workforce.
Continuous technological developments are required to perfectly predict all fault cases.

5. Economic Benefits Analysis

In Sections 3 and 4, the development methodology of the LW-PMM, a model that
automatically detects laser welder failures using laser welder operation data, is explained.
Section 5 presents a simple analysis of the economic effects of the LW-PMM, which is a
PoC-level model. The economic analysis in this section is an auxiliary part of the study and
demonstrates the economic benefits of the model.

The economic impact of this study, which prevents failures by detecting laser welder
anomalies, is equivalent to the opportunity costs of welder failures and the losses from not
producing normal products due to such measures. This loss cost is divided into direct and
indirect loss costs according to the cause of the production time loss.

The direct cost of the loss is based on the time required to repair the facility, and in
the case of strip tears to reweld the torn strip to resume facility operations. Indirect loss
costs are based on the time spent on safety measures before work and inspections of other
facilities for normal production, in addition to facility failure measures, including the time
it takes to bring a product to a sellable level, even if the facility is in operation. In other
words, the economic effect is the sum of direct and indirect loss costs. Table 9 lists the laser
welder failure status and operation data from January 2021 to September 2022 used for the
loss cost calculation.



Sustainability 2023, 15, 7676 24 of 28

Table 9. Primary data for calculating loss costs (1 January 2021–30 September 2022).

Category Definition Data Specification

Laser Welder
Fault Status

Cases 29.7 cases/year Number of laser welder failures

Hours 40.5 h/year Time taken for actual laser
welder failure action

Action time 2 h/case
Average time taken to produce a
normal product, other than the
failure time

Operational Data
Production 50 ton/h Amount of product produced

per hour
Variable

processing cost USD 50/ton Costs that change as product
production increases

The loss cost is the actual operating profit that can be obtained if a product that
should have been produced is sold during non-production times. Based on the primary
data listed in Table 9, the economic effect was analyzed for “A” CGL operating a laser
welder. The loss cost was calculated as the number of failures (cases/year) × 2© the failure
time (h/year) × 3© the production volume (Ton/Hr) × 4© the variable processing cost
(USD/ton). Table 10 lists the results from calculating the direct and indirect loss costs by
applying the loss cost calculation formula based on the actual failure status and operational
data of the laser welder.

Table 10. Calculation results for the loss costs.

Category Calculation Result

Direct
Loss Cost

1© 2 Cases/Year × 2© 2.5 h/Year × 3© 50 Ton/h × 4© USD 50/Ton
= USD 12.5 K (KRW 0.125 billion)

Indirect
Loss Cost

1© 2 Cases/Year × 2© 2.0 h/Year × 3© 50 Ton/h × 4© USD 50/Ton
= USD 10 K (KRW 0.10 billion)

The direct loss cost is approximately USD 12.5 K (0.125 billion KRW/year) per year,
the indirect loss cost is approximately USD 10 K (0.1 billion KRW/year) per year, and
the economic effect through laser welder failure prevention is approximately USD 23.5 K
(0.23 billion KRW/year) per year. This study reviewed the economic benefits based on a
CGL that became a POC model. In the future, if the application is expanded to 13 factories
that use laser welders among the CGLs of Company P, it is expected that more than 400 K
(KWR 400 million) of economic profits will be generated annually.

In addition, if the LW-PMM technique applied in this study is expanded and applied
to the side trimmer and tension leveler, which are critical facilities of the steelworks
production line, additional profits are expected to be created, similar to those of laser
welders, by preventing production from stopping due to the chronic failures of these
facilities. Furthermore, facility failure measures reduce the burden on engineers in charge
of risky facilities. In addition to these effects, it would be meaningful to conduct research on
facility failure prediction, which is relatively lagging in technological applications compared
to the application of various AI technologies in the field of production automation and
intelligence in promoting smart factories in the steel industry. As a facility that requires
precision control, failures can occur because of various factors; therefore, there is a limit
to detecting and preventing failures in advance using only a monitoring system and the
technical skills of the engineer in charge of the facility. By developing a failure prediction
model for a laser welder that facility managers can trust, it is possible to reduce the burden
on facility management engineers, who must take urgent action in the event of a failure.
Failure prediction can also contribute to minimizing safety risks because measures against
strip tears always involve fieldwork with the risk of disaster occurrence. Finally, this study
is expected to contribute to the facility management paradigm shift in the steel industry
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from general preventive maintenance to predictive maintenance by conducting repairs
before a failure occurs to maximize the use of facilities.

6. Conclusions and Future Works
6.1. Conclusions and Contribution

This study developed the LW-PMM using the LSTM-AE algorithm to automatically
detect a failure in laser welders in CGLs in a steel plant. The LW-PMM model was de-
veloped and validated at POC, and its performance was tested with a pilot system at the
operation site.

• First, the authors collected operational data from a CGL laser welder equipment from
Steel plant at Company P for three months, from 1 January 2022 to 31 March 2022.
After preprocessing, a total of 191 data items were finally selected.

• Second, considering the time series characteristics of the data, an LSTM-AE-based
LW-PMM model was developed and trained by selecting the AE as the base algorithm
and adding the LSTM algorithm.

• Finally, the performance of LW-PMM was evaluated, and the accuracy of the LW-
PMM model was 97.3%, the precision was 79.8%, the recall was 100%, and the F1-
score was 88.8%. Moreover, abnormalities were detected 27 h before the failure
during operation site tests, demonstrating detection approximately 18 h faster than
the existing equipment monitoring system.

The steel Industry processes iron, the basis of human civilization, into its most usable
form and provides it as a product. Making high-strength automobile steel plates are used
in vehicles to provide a safer environment for drivers in the case of an automobile accident
and manufacturing high-strength rebars that do not collapse even after an earthquake.
Steel can contribute to making human life more prosperous and sustainable in many fields
through fusion with other metals.

6.2. Limitations and Further Research

This study was applied as a POC model for CGL laser welder failure prediction, and its
effectiveness was verified. The limitations and discussions for future research are as follows.
First, although the model was trained using as much data as possible, considering the
influence of various factors on failures, there is a limit because not all possible situations can
be learned during facility use, such as replacing laser welder parts. In addition, the model
may have been overfitted because the threshold, which is the criterion for learning from the
collected data to judge the anomaly, was set by a facility engineer with domain knowledge.
To prevent overfitting, validation was performed using the data in addition to those used
to train the model. However, because the frequency of facility failures is low, the accuracy
of the model may be lower during actual use than during performance verification.

Considering these limitations, a discussion of future research directions is presented.
First, to analyze the various characteristics of laser welder operation, additional research
is required to improve and verify the accuracy of the model by expanding and applying
the model developed in this study to laser welders in other factories that operate under
the same mechanism. Moreover, it is necessary to additionally secure data that affect the
welding quality, such as the characteristics of the steel type and the production speed of
the strips.

Unlike conventional ML algorithms, such as neural networks, SVMs, and ensembles,
which cannot handle the learning of hierarchical representations of time series data, the
LSTM is suitable for modeling sequential data through training based on previous observa-
tions. The LW-PMM developed in this study can detect facility failures; however, it cannot
identify the root causes of the failures. The LW-PMM is expected to be applied not only to
laser welders but also to various facilities throughout the production process; therefore,
additional research is required.

The CGL laser welder facility, which was the subject of this study, is used only for steel
plants and is not commonly used for general industrial plants. Therefore, similar studies
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have not yet been conducted to compare these findings. In the future, if a similar type
of research is published in a different facility or an equivalent steel facility, the results of
mutual studies can be compared.

The analysis of the economic effect of the LW-PMM presented in Section 5 is an
auxiliary part of this study and requires additionally proven justifications. Comprehensive
financial research on the model developed in this study is also required in the future.
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CNN Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network
HDR High Dynamic Range
IoT Internet of Things
IQR Internet of Things
IT Information Technology
LOF Local Outlier Factor
LS-PMSM Line Start-Permanent Magnet Synchronous Motor
LSTM Long Short-Term Memory
LW-PMM Laser Welder Predictive Maintenance Model
ML Machine Learning
MSE Mean Square Error
MSPC Multivariate Statistical Process Control
NDE Non-Destructive Evaluation
NSGA-III Non-Dominated Sorting Genetic Algorithm- II
PCA Principal Component Analysis
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PHM Prognostics and Health Management
QCDS Quality Control Data System
RF Random Forest
RNN Recurrent Neural Network
RT Regression Tree
RUL Remaining Useful Life
SAE Sparse Auto-Encoder
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machine
TF-IDF Term Frequency–Inverse Document Frequency
U-LSTM Unidirectional LSTM
USW Ultrasonic Welding

References
1. Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95.

[CrossRef]
2. POSCO. Report on Smart Factory 2.0 Promotion Strategy in 2022. Available online: http://swpecm.posco.net/ECM/2022

SmartFactoryPromotionStrategy.jsp (accessed on 4 December 2022).
3. DAEJI STEEL. Steel Product Production Process. Available online: http://www.daejisteel.com/html/material/sub01.htm

(accessed on 27 December 2022).
4. Glossary of Terms/Definitions Commonly Used in Iron & Steel Industry. Available online: https://steel.gov.in/en/glossary-

terms-definitions-commonly-used-iron-steel-industry (accessed on 15 February 2023).
5. POSCO. Introduction to the Steel Manufacturing Process. Available online: http://swpecm.posco.net/ECM/steelmakingprocess.

jsp (accessed on 4 December 2022).
6. Korea Iron & Steel Association. Steel Cyber PR Room, Product Type and Use Galvanized Iron. Available online: http://steelpr.

kosa.or.kr (accessed on 27 December 2022).
7. POSCO. Major Failure Status and Improvement Plan in Gwangyang Works. Available online: https://safety.posco.net:8448/b210

01-front/intro (accessed on 4 December 2022).
8. Liu, L.; Wang, A.; Sha, M.; Sun, X.; Li, Y. Optional SVM for fault diagnosis of blast furnace with imbalanced data. ISIJ Int. 2011, 51,

1474–1479. [CrossRef]
9. Yan, W.; Zhou, J.-H. Predictive modeling of aircraft systems failure using term frequency-inverse document frequency and

random forest. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM 2017), Singapore, 10–13 December 2017; pp. 828–831.

10. Quiroz, J.C.; Mariun, N.; Mehrjou, M.R.; Izadi, M.; Misron, N.; Radzi, M.A.M. Fault detection of broken rotor bar in LS-PMSM
using random forests. Measurement 2018, 116, 273–280. [CrossRef]

11. Gohel, H.A.; Upadhyay, H.; Lagos, L.; Cooper, K.; Sanzetenea, A. Predictive maintenance architecture development for nuclear
infrastructure using machine learning. Nucl. Eng. Technol. 2020, 52, 1436–1442. [CrossRef]

12. Go, J.-I.; Lee, E.-Y.; Lee, M.-J.; Choi, S.-D.; Hur, J.-W. Corrosion Failure Diagnosis of Rolling Bearing with SVM. J. Korean Soc.
Manuf. Technol. Eng. 2021, 20, 35–41. [CrossRef]

13. Choi, S.-W.; Seo, B.-G.; Lee, E.-B. Machine Learning-Based Tap Temperature Prediction and Control for Optimized Power
Consumption in Stainless Electric Arc Furnaces (EAF) of Steel Plants. Sustainability 2023, 15, 6393. [CrossRef]

14. Biswal, S.; Sabareesh, G. Design and development of a wind turbine test rig for condition monitoring studies. In Proceedings
of the 2015 International Conference on Industrial Instrumentation and Control (ICIC 2015), Pune, India, 28–30 May 2015;
pp. 891–896.

15. De Benedetti, M.; Leonardi, F.; Messina, F.; Santoro, C.; Vasilakos, A. Anomaly detection and predictive maintenance for
photovoltaic systems. Neurocomputing 2018, 310, 59–68. [CrossRef]

16. Zhang, W.; Yang, D.; Wang, H. Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Syst. J.
2019, 13, 2213–2227. [CrossRef]

17. Scalabrini Sampaio, G.; Vallim Filho, A.R.d.A.; Santos da Silva, L.; Augusto da Silva, L. Prediction of motor failure time using an
artificial neural network. Sensors 2019, 19, 4342. [CrossRef]

18. Renström, N.; Bangalore, P.; Highcock, E. System-wide anomaly detection in wind turbines using deep autoencoders. Renew.
Energ. 2020, 157, 647–659. [CrossRef]

19. Van, T.T.; Chan, I.; Parthasarathi, S.; Lim, C.P.; Chua, Y.Q. IoT and machine learning enable predictive maintenance for
manufacturing systems: A use-case of laser welding machine implementation. In Proceedings of the 12th Conference on Learning
Factories (CLF 2022), Singapore, 11–13 April 2022.

20. Zhao, L.-T.; Yang, T.; Yan, R.; Zhao, H.-B. Anomaly detection of the blast furnace smelting process using an improved multivariate
statistical process control model. Process Saf. Environ. Prot. 2022, 166, 617–627. [CrossRef]

https://doi.org/10.5430/ijfr.v9n2p90
http://swpecm.posco.net/ECM/2022SmartFactoryPromotionStrategy.jsp
http://swpecm.posco.net/ECM/2022SmartFactoryPromotionStrategy.jsp
http://www.daejisteel.com/html/material/sub01.htm
https://steel.gov.in/en/glossary-terms-definitions-commonly-used-iron-steel-industry
https://steel.gov.in/en/glossary-terms-definitions-commonly-used-iron-steel-industry
http://swpecm.posco.net/ECM/steelmakingprocess.jsp
http://swpecm.posco.net/ECM/steelmakingprocess.jsp
http://steelpr.kosa.or.kr
http://steelpr.kosa.or.kr
https://safety.posco.net:8448/b21001-front/intro
https://safety.posco.net:8448/b21001-front/intro
https://doi.org/10.2355/isijinternational.51.1474
https://doi.org/10.1016/j.measurement.2017.11.004
https://doi.org/10.1016/j.net.2019.12.029
https://doi.org/10.14775/ksmpe.2021.20.09.035
https://doi.org/10.3390/su15086393
https://doi.org/10.1016/j.neucom.2018.05.017
https://doi.org/10.1109/JSYST.2019.2905565
https://doi.org/10.3390/s19194342
https://doi.org/10.1016/j.renene.2020.04.148
https://doi.org/10.1016/j.psep.2022.08.035


Sustainability 2023, 15, 7676 28 of 28

21. Yang, Y.; Zhang, S.; Su, K.; Fang, R. Early warning of stator winding overheating fault of water-cooled turbogenerator based on
SAE-LSTM and sliding window method. Energy Rep. 2023, 9, 199–207. [CrossRef]

22. Esmaeili, F.; Cassie, E.; Nguyen, H.P.T.; Plank, N.O.V.; Unsworth, C.P.; Wang, A. Anomaly Detection for Sensor Signals Utilizing
Deep Learning Autoencoder-Based Neural Networks. Bioengineering 2023, 10, 405. [CrossRef]

23. Kothari, J.D. Detecting welding defects in steel plates using machine learning and computer vision algorithms. Int. J. Adv. Res.
Electr. Electron. Instrum. Eng. 2018, 7, 3682–3686. [CrossRef]

24. Bacioiu, D.; Melton, G.; Papaelias, M.; Shaw, R. Automated defect classification of SS304 TIG welding process using visible
spectrum camera and machine learning. NDT E Int. 2019, 107, 102139. [CrossRef]

25. Du, Y.; Mukherjee, T.; DebRoy, T. Conditions for void formation in friction stir welding from machine learning. npj Comput. Mater.
2019, 5, 68. [CrossRef]

26. Zhang, Y.; You, D.; Gao, X.; Katayama, S. Online monitoring of welding status based on a DBN model during laser welding.
Engineering 2019, 5, 671–678. [CrossRef]

27. Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface
defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [CrossRef]

28. Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A new steel defect detection algorithm based on deep learning. Comput. Intell.
Neurosci. 2021, 2021, 5592878. [CrossRef]

29. Wang, D.; Xu, Y.; Duan, B.; Wang, Y.; Song, M.; Yu, H.; Liu, H. Intelligent recognition model of hot rolling strip edge defects based
on deep learning. Metals 2021, 11, 223. [CrossRef]

30. Wang, B.; Li, Y.; Luo, Y.; Li, X.; Freiheit, T. Early event detection in a deep-learning driven quality prediction model for ultrasonic
welding. J. Manuf. Syst. 2021, 60, 325–336. [CrossRef]

31. De Paepe, D.; Van Yperen-De Deyne, A.; Defever, J.; Van Hoecke, S. An Incremental Grey-Box Current Regression Model for
Anomaly Detection of Resistance Mash Seam Welding in Steel Mills. Appl. Sci. 2022, 12, 913. [CrossRef]

32. Meyer, K.; Mahalec, V. Anomaly detection methods for infrequent failures in resistive steel welding. J. Manuf. Process. 2022, 75,
497–513. [CrossRef]

33. García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data
Anal. 2016, 1, 9. [CrossRef]

34. Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range
and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [CrossRef]

35. Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A review of machine learning and
deep learning techniques for anomaly detection in IoT data. Appl. Sci. 2021, 11, 5320. [CrossRef]

36. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54,
1–38. [CrossRef]

37. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

38. Fakir, K.; Ennawaoui, C.; El Mouden, M. Deep Learning Algorithms to Predict Output Electrical Power of an Industrial Steam
Turbine. Appl. Syst. Innov. 2022, 5, 123. [CrossRef]

39. Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning
methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]

40. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
41. Amir-Ahmadi, P.; Matthes, C.; Wang, M.-C. Choosing prior hyperparameters: With applications to time-varying parameter

models. J. Bus. Econ. Stat. 2020, 38, 124–136. [CrossRef]
42. Hazan, E.; Klivans, A.; Yuan, Y. Hyperparameter Optimization: A Spectral Approach. arXiv 2017, arXiv:1706.00764v4.
43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning

Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.
44. Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [CrossRef]
45. Yazdinejad, A.; Kazemi, M.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H. An ensemble deep learning model for cyber threat

hunting in industrial internet of things. Digit. Commun. Netw. 2022, 9, 101–110. [CrossRef]
46. Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion

matrix for classification problem. Inf. Sci. 2016, 340, 250–261. [CrossRef]
47. POSCO. Strategies for Reducing Laser Welder Failure in Gwangyang Works. Available online: http://swpecm.posco.net/ECM/

LaserwelderFailureCauseAnalysis.jsp (accessed on 4 December 2022).
48. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN

Comput. Sci. 2021, 2, 420. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.egyr.2023.02.076
https://doi.org/10.3390/bioengineering10040405
https://doi.org/10.15662/IJAREEIE.2018.0708009
https://doi.org/10.1016/j.ndteint.2019.102139
https://doi.org/10.1038/s41524-019-0207-y
https://doi.org/10.1016/j.eng.2019.01.016
https://doi.org/10.1016/j.optlaseng.2019.05.005
https://doi.org/10.1155/2021/5592878
https://doi.org/10.3390/met11020223
https://doi.org/10.1016/j.jmsy.2021.06.009
https://doi.org/10.3390/app12020913
https://doi.org/10.1016/j.jmapro.2021.12.003
https://doi.org/10.1186/s41044-016-0014-0
https://doi.org/10.1186/1471-2288-14-135
https://doi.org/10.3390/app11125320
https://doi.org/10.1145/3439950
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.3390/asi5060123
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1080/07350015.2018.1459302
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1016/j.dcan.2022.09.008
https://doi.org/10.1016/j.ins.2016.01.033
http://swpecm.posco.net/ECM/LaserwelderFailureCauseAnalysis.jsp
http://swpecm.posco.net/ECM/LaserwelderFailureCauseAnalysis.jsp
https://doi.org/10.1007/s42979-021-00815-1

	Introduction 
	Background of Study 
	Problem Statement and Research Objectives 
	Literature Review 
	ML Application for Maintenance, Repair, and Operation (MRO) 
	Predictive Maintenance Applying Deep Learning Technology 
	Anomaly Detection Models in the Steel Industry 

	Research Framework and Overall Process 

	Data Collection and Data Preprocessing 
	Data Collection 
	Data Preprocessing and Data Selection 

	Modeling and Training for the CGL Laser Welder 
	Classification of ML Techniques for Anomaly Detection 
	Model Selection for the CGL Laser Welder 
	LW-PMM Modeling 
	Model Training and Fine Tuning 
	Dataset for Model Training 
	Model Training and Fine Tuning 


	Validation through Case Study 
	Performance Metrics for Model Test 
	Evaluation Results and Validation 
	Performance on the Operation Site 

	Economic Benefits Analysis 
	Conclusions and Future Works 
	Conclusions and Contribution 
	Limitations and Further Research 

	References

