Sustainable Approaches for Biodiversity and Bioprospecting of Citrus
Abstract
:1. Introduction
2. Citrus Origin and Domestication
3. Biodiversity
4. Production and Challenges
5. Health Benefits of Citrus
5.1. Chemical Profile
5.2. Citrus Nutrition and Health Benefits
5.3. Citrus Anti-Oxidants: Functional Food Perspective
5.4. Toxicity and Safety Profile of Citrus Metabolites
5.5. Medicinal Properties of Citrus
5.5.1. Anti-Microbial Properties
5.5.2. Anti-Cancer Property
5.5.3. Anti-Oxidant Property
5.5.4. Anti-Diabetic and Anti-Hypercholesterolemic Properties
5.5.5. Hepatoprotective Properties
6. Citrus—Bioprospecting and Valorization
7. Biotechnological, Mutagenesis and Genomics Approaches for Improvement
7.1. Mutagenesis for Induction of Novel Genetic Variability
7.2. Polyploidy as a Means of Inducing Variability
7.3. Somatic Hybridization
7.4. Transgenic Breeding
7.5. Genomic Editing
7.6. Future Prospects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2023, 12, 38. [Google Scholar] [CrossRef]
- Barbhuiya, A.R.; Khan, M.L.; Dayanandan, S. Molecular phylogeny of Citrus species in the Eastern Himalayan region of Northeast India based on Chloroplast and Nuclear DNA sequence data. In Molecular Genetics and Genomics Tools in Biodiversity Conservation; Springer: Singapore, 2022; pp. 185–201. [Google Scholar]
- Swingle, W.T.; Reece, P.C. The botany of Citrus and its wild relatives. In The Citrus Industry; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 389–390. [Google Scholar]
- Tanaka, T. Fundamental discussion of Citrus classification. Stud. Citrol. 1977, 14, 1–5. [Google Scholar]
- Barrett, H.C.; Rhodes, A.M. A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst. Bot. 1976, 1, 105–136. [Google Scholar] [CrossRef]
- Scora, R.W. Biochemistry, taxonomy and evolution of modern cultivated Citrus. In Proceedings of the International Society of Citriculture VI Congress, Tel Aviv, Israel, 6–11 March 1988; Margraf Pubishers: Kersheim, Germany, 1988; Volume 1, pp. 277–289. [Google Scholar]
- Hore, D.K.; and Baruah, U. Status of citriculture in North Eastern Region of India—A Review. Agric. Rev. 2004, 25, 1–15. [Google Scholar]
- Devi, E.J.; Labala, R.K.; Sanabam, R.; Singh, N.S.; Modak, R.; Devi, H.S. New report of Citrus indica Yu. Tanaka, a wild progenitor species of citrus from Dailong Forest, Manipur, and recommendation for its conservation. Genet. Resour. Crop. Evol. 2022, 1, 545–558. [Google Scholar] [CrossRef]
- Roy, A.; Das, S.K.; Tripathi, A.K.; Singh, N.U.; Barman, H.K. Biodiversity in North East India and their conservation. Progress Agric. 2015, 15, 182–189. [Google Scholar] [CrossRef]
- Swingle, W.T. The Botany of Citrus and Its Relatives of the Orange Subfamily Aurantioidae of the Family Rutaceae; Webber, H.J., Batcheler, L., Eds.; University of California Press: Los Angeles, CA, USA, 1943. [Google Scholar]
- Zhang, S.; Chen, J.; Zhang, C.; Zhang, S.; Zhang, X.; Gao, L.; Yang, W. Insights into identifying resistance genes for cold and disease stresses through chromosome-level reference genome analyses of Poncirus polyandra. Genomics 2023, 115, 110617. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Gmitter, F.G.; Hu, X. The possible role of Yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ. Bot. 1990, 44, 267–277. [Google Scholar] [CrossRef]
- Tanaka, T. Species Problem in Citrus (Revisioaurantiacearum, IX); Japan Society for the Promotion of Science: Tokyo, Japan, 1954; p. 152. [Google Scholar]
- Nicolosi, E.; Deng, Z.; Gentile, A.; Malfa, S.L.; Continella, G.; Tribulato, E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor. Appl. Genet. 2000, 100, 1155–1166. [Google Scholar] [CrossRef]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef]
- Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Machado, M.A. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol. 2014, 32, 656–662. [Google Scholar] [CrossRef]
- Terol, J. A whole genome association study in mandarin hybrids. In Proceedings of the Plant and Animal Genome XXVIII Conference, San Diego, CA, USA, 11–15 January 2020. [Google Scholar]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A history of grafting. In Horticultural Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 35, pp. 437–439. [Google Scholar]
- Wang, X.; Xu, Y.; Zhang, S.; Cao, L.; Huang, Y.; Cheng, J.; Wu, G.; Tian, S.; Chen, C.; Liu, Y.; et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 2017, 49, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Kimball, D.A. Citrus Processing: A Complete Guide; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ulubelde, M. Turunçgillerintaksonomisi. Ege Bölgesi Zirai Arastırma Enstitüsü Yayınları 1985, 55, 43. [Google Scholar]
- Fatima, B.; Usman, M.; Khan, M.S.; Khan, I.A.; Khan, M.M. Identification of Citrus Polyploids using Chromosome Counts, Morphological and SSR Markers. Pak. J. Agric. Sci. 2015, 52, 107–114. [Google Scholar]
- Das, A.; Mondal, B.; Sarkar, J.; Chaudhuri, S. Genetic resource survey of mandarin orange (Citrus reticulata Blanco) in the northeastern Himalayan region of India. PGR Newsl. 2005, 143, 35–39. [Google Scholar]
- Chutia, M.; Bhuyan, P.D.; Pathak, M.G.; Sarma, T.C.; Boruah, P. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Sci. Technol. 2009, 42, 777–780. [Google Scholar] [CrossRef]
- Sharma, B.D.; Hore, D.K.; and Gupta, S.G. Genetic resources of Citrus of north—Eastern India and their potential use. Genet. Resour. Crop. Evol. 2005, 51, 411–418. [Google Scholar] [CrossRef]
- Curk, F.; Ollitrault, F.; Garcia-Lor, A.; Luro, F.; Navarro, L.; Ollitrault, P. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann. Bot. 2006, 117, 565–583. [Google Scholar] [CrossRef]
- Federov. Chromosome Numbers of Flowering Plants; Otto Koeltz Science Publisher: Konigstein, Germany, 1974. [Google Scholar]
- García-Lor, A.; Luro, F.; Navarro, L.; Ollitrault, P. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: A perspective for genetic association studies. Mol. Genet. Genom. 2012, 287, 77–94. [Google Scholar] [CrossRef]
- Ollitrault, P.; Curk, F.; Krueger, R. Citrus taxonomy. In The Genus Citrus; Woodhead Publishing: Sawston, UK, 2020; pp. 57–81. [Google Scholar]
- Le Nguyen, K.; Grondin, A.; Courtois, B.; Gantet, P. Next-generation sequencing accelerates crop gene discovery. Trends Plant. Sci. 2019, 24, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Daiou, K.; Mihara, T.; Nagano, Y. Development of Indel markers for the selection of Satsuma mandarin (Citrus unshiu Marc.) hybrids that can be used for low-cost genotyping with agarose gels. Euphytica 2020, 216, 1–13. [Google Scholar] [CrossRef]
- Yi, K.U.; Zhin, K.L.; Oh, E.U.; Kim, S.S.; Kim, H.B.; Song, K.J. Phenotypic and genetic characterization of three different types of Dangyooza (Citrus grandis), Korean landrace citrus. Hortic. Sci. Technol. 2021, 39, 96–105. [Google Scholar]
- Goh, R.M.; Pua, A.; Luro, F.; Ee, K.H.; Huang, Y.; Marchi, E.; Liu, S.Q.; Lassabliere, B.; Yu, B. Distinguishing citrus varieties based on genetic and compositional analyses. PLoS ONE 2022, 17, e0267007. [Google Scholar] [CrossRef] [PubMed]
- Barkley, N.A.; Roose, M.L.; Krueger, R.R.; Federici, C.T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor. Appl. Genet. 2006, 112, 1519–1531. [Google Scholar] [CrossRef]
- Novelli, V.M.; Cristofani, M.; Souza, A.A.; Machado, M.A. Development and characterization of polymorphic microsatellite markers for the sweet orange (Citrus sinensis L. Osbeck). Genet. Mol. Biol. 2006, 29, 90–96. [Google Scholar] [CrossRef]
- Fang, D.Q.; Roose, M.L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 1997, 95, 408. [Google Scholar] [CrossRef]
- Uzun, A.Y.; Yesiloglu, T.; Aka-Kacar, Y.I.; Tuzcu, O.; Gulsen, O. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci. Hortic. 2009, 121, 306–312. [Google Scholar] [CrossRef]
- Uzun, A.; Yesiloglu, T.; Polat, I.; Aka-Kacar, Y.; Gulsen, O.; Yildirim, B.; Tuzcu, O.; Tepe, S.; Canan, I.; Anil, S. Evaluation of genetic diversity in lemons and some of their relatives based on SRAP and SSR markers. Plant. Mol. Biol. Report. 2011, 29, 693–701. [Google Scholar] [CrossRef]
- Gulsen, O.; Roose, M.L. Lemons: Diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J. Am. Soc. Hortic. Sci. 2001, 126, 309–317. [Google Scholar] [CrossRef]
- Gulsen, O.; Uzun, A.; Canan, I.; Seday, U.; Canihos, E. A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 2010, 173, 265–277. [Google Scholar] [CrossRef]
- UNCTAD. Citrus Fruits. Market Information in the Commodities Area Website. 2010. Available online: http://www.unctad.org/infocomm/anglais/orange/ (accessed on 1 January 2020).
- FAOSTAT. Food and Agriculture Organization of the United Nations Report. World Statistical Yearbook. 2010. Available online: http://faostat.fao.org (accessed on 1 January 2020).
- Area and Production of Horticulture Crops for 2018–19 (3rd Advance Estimates). National Horticulture Board; Horticulture Information Service 2019. Available online: https://nhb.gov.in/Statistics.aspx?enc=WkegdyuHokljEtehnJoq0KWLU79sOQCy+W4MfOk01GFOWQSEvtp9tNHHoiv3p49g (accessed on 1 January 2020).
- Citrus Production in India (MMT). Statista Research Department 2022. Available online: https://www.statista.com/statistics/1038920/india-production-of-citrus-fruits-by-type/ (accessed on 1 January 2020).
- Anonymous. The Wealth of India. In Publication and Information Directorate; CSIR: New Delhi, India, 2002; pp. 657–664. [Google Scholar]
- Kilcher, L. Organic Citrus: Challenges in Production and Trade; Research Institute of Organic Agriculture (FiBL): Geneva, Switzerland, 2005; Available online: http://orgprints.org/00008124/ (accessed on 1 January 2020).
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Abbas, G.; Duraid, K.A.; Taey, A.; Saad, S.M.; AL-Azawi, M.; Qureshi, R.A.M.; Jasman, A.K.; Slomy, A.K.; Khan, M.A.; Jabbar, M.A.; et al. Controlling Strategies of Citrus to Increase The Yield in The Country: A step Towards The Fight Against COVID-19. Fourth International Conference for Agricultural and Sustainability Sciences. IOP Conf. Ser. Earth Environ. Sci. 2021, 910, 012045. [Google Scholar] [CrossRef]
- Bhowal, R.; Kumari, S.; Sarma, C.; Suprasanna, P.; Roy, P. Phytochemical Constituents and Bioactivity Profiles of Citrus Genus from India. Anal. Chem. Lett. 2006, 12, 770–787. [Google Scholar] [CrossRef]
- Waseem, A.; Rafia, A. Citrus: An. Ancient Fruits of Promise for Health Benefits; IntechOpen Limited: London, UK, 2019. [Google Scholar]
- Lücker, J.; El Tamer, M.K.; Schwab, W.; Verstappen, F.W.; van der Plas, L.H.; Bouwmeester, H.J.; Verhoeven, H.A. Monoterpene biosynthesis in lemon (Citrus limon). cDNA isolation and functional analysis of four monoterpene synthases. Eur. J. Biochem. 2002, 269, 3160–3171. [Google Scholar] [CrossRef]
- Calomme, M.; Pieters, L.; Vlietinck, A.; Vanden Berghe, D. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Med. 1996, 62, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kandhare, A.D.; Mukherjee, A.A.; Bodhankar, S.L. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul. Toxicol. Pharm. 2019, 105, 77–85. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.; Almarzuq, M.; Afifi, M.; et al. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Shen, W.; Xu, Y.; Lu, Y.H. Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J. Agric. Food Chem. 2012, 60, 9609–9619. [Google Scholar] [CrossRef]
- Ahsan, M.; Maria, N.N.; Tahmida, U.; Jasmin, A.A.; Chowdhury, D.U. Anxiolytic, analgesic and anti-inflammatory effects of Citrus maxima (Burm.) Merr. Seed extract in Swiss albino mice model. Clin. Phytoscience 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Qu, S.S.; Zhang, Y.; Ren, J.N.; Yang, S.Z.; Li, X.; Fan, G.; Pan, S.Y. Effect of different ways of ingesting orange essential oil on blood immune index and intestinal microflora in mice. J. Sci. Food Agric. 2023, 103, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, E.; Spence, J.; Jordan, J.; Wetmore, S.; Freeman, D.; Piche, L.; Serratore, P. HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am. J. Clin. Nutr. 2000, 72, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lou, Y.; Li, Y.; Zhang, J.; Li, P.; Yang, B.; Gu, Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front. Nutr. 2022, 9, 968604. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Girinur, K.; Gowda, M.; Keum, Y.S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefifits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Jerang, A.; Kumari, S.; Borthakur, M.; Ahmed, S. Anatomical and Physiological Responses of Citrus megaloxycarpa Lush.: A Cryptic Species of Northeast India. Appl. Biochem. Biotechnol. 2022, 194, 382–394. [Google Scholar] [CrossRef]
- Stevens, Y.; Van Rymenant, E.; Grootaert, C.; Van Camp, J.; Possemiers, S.; Masclee, A.; Jonkers, D. The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health. Nutrients 2019, 11, 1464. [Google Scholar] [CrossRef]
- Barreca, D.; Mandalari, G.; Calderaro, A.; Smeriglio, A.; Trombetta, D.; Felice, M.R.; Gattuso, G. Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. Plants 2022, 9, 288. [Google Scholar] [CrossRef]
- Pontifex, M.G.; Malik, M.; Connell, E.; Muller, M.; Vauzour, D. Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front. Neurosci. 2021, 15, 640648. [Google Scholar] [CrossRef]
- Musumeci, L.; Maugeri, A.; Cirmi, S.; Lombardo, G.E.; Russo, C.; Gangemi, S.; Calapai, G.; Navarra, M. Citrus fruits and their flavonoids in inflammatory bowel disease: An overview. Nat. Prod. Res. 2020, 34, 122–136. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef]
- Bellavite, P.; Donzelli, A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants 2020, 9, 742. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Zaidun, N.H.; Thent, Z.C.; AbdLatiff, A. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci. 2018, 208, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; and Ohizumi, Y. Potential Benefifits of Nobiletin, A Citrus Flavonoid, against Alzheimer’s Disease and Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 3380. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.X.H.; Tan, L.T.H.; Goh, J.K.; Chan, K.G.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention. Cancers 2019, 11, 867. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, W.; Zeng, S.L.; Li, P.; Liu, E.H. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J. Funct. Foods 2018, 1, 498–509. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; and Patil, B.S. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem. 2007, 101, 410–418. [Google Scholar] [CrossRef]
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef]
- Naz, S.; Sajjad, A.; Ali, J.S.; Muhammad, Z. Antioxidative, phytochemical and antimicrobial analysis of juices of eight citrus cultivars grown in Pakistan. Nat. Resour. Hum. Health 2022, 2, 300–305. [Google Scholar] [CrossRef]
- Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 2015, 9, 68. [Google Scholar] [CrossRef]
- Parekh, J.; Jadeja, D.; Chanda, S. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk. J. Biol. 2005, 29, 203–210. [Google Scholar]
- Gupta, M.; Gularia, P.; Singh, D.; Gupta, S. Analysis of Aroma Active Constituents, Antioxidant and Antimicrobial activity of C. sinensis, Citrus limetta and C. limon Fruit Peel Oil by GC-MS. Biosci. Biotech. Res. Asia 2014, 11, 895–899. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control. 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, A. Fungitoxicity of the essential oil of Citrus sinensis on post-harvest pathogens. World J. Microbiol. Biotechnol. 2006, 22, 587–593. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Sultana, S.; Asif, H.M.; Nazar, H.M.; Akhtar, N.; Rehman, J.U.; Rehman, R.U. Medicinal plants combating against cancer—A green anticancer approach. Asian Pac. J. Cancer Prev. 2014, 15, 4385–4394. [Google Scholar] [CrossRef]
- Gyawali, R.; Kim, K.S. Anticancer Phytochemicals of Citrus Fruits—A Review. J. Ofanimal. Res. 2014, 4, 85–95. [Google Scholar] [CrossRef]
- Nongalleima, K.; Ajungla, T.; Singh, C.B. GCMS Based Metabolicprofiling of Essential Oil of Citrus macroptera Montruz. Leaves and Peel, Assessment OF in Vitro Antioxidant and Anti-inflammatory activity. Int. J. Pharm. Pharm. Sci. 2017, 9, 107–114. [Google Scholar]
- Mohanty, S.; Maurya, A.K.; Saxena, A.J.; Shanker, K.; Pal, A.; Bawankule, D.U. Flavonoids Rich Fraction of Citrus limetta Fruit Peels Reduces Proinflammatory Cytokine Production and Attenuates Malaria Pathogenesis. Curr. Pharm. Biotechnol. 2015, 16, 554–562. [Google Scholar] [CrossRef]
- SoBok, H.; Lee, S.-H.; Park, Y.-B.; Bae, K.-H.; Son, K.-H.; Jeong, T.-S.; Choi, M.-S. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy- 3-methyl-glutaryl-CoA reductase and acyl CoA: Cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J. Nutr. 1999, 129, 1182–1185. [Google Scholar]
- Wilcox, L.J.; Borradaile, N.M.; de Dreu, L.E.; Huff, M.W. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J. Lipid Res. 2001, 42, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Parmar, H.S.; Kar, A. Medicinal values of fruit peels from Citrus sinensis, Punicagranatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones. J. Med. Food 2008, 11, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.N.; Joshi, A.; Juyal, V.; Kumar, T. Antidiabetic and Hypolipidemic Activity of Citrus medica Linn. Seed Extract in Streptozotocin Induced Diabetic Rats. Pharmacogn. J. 2011, 3, 80–84. [Google Scholar] [CrossRef]
- Kundusen, S.; Halder, P.K.; Gupta, M.; Mazumder, U.P.; Saha, P.; Bala, A.; Bhattacharya, S.; Kar, B. Evaluation of Antihyperglycemic activity of Citrus limetta Fruit Peel in Streptozotocin-Induced Diabetic Rats. Int. Sch. Res. Netw. 2011, 2011, 869273. [Google Scholar] [CrossRef]
- Ammar, N.; Hassan, H.A.; Abdallah, H.M.I.; Afifififi, S.M.; Elgamal, A.M.; Farrag, A.R.H.; El-Gendy, A.E.G.; Farag, M.A.; Elshamy, A.I. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022, 14, 841. [Google Scholar] [CrossRef]
- Del Borghi, A.; Moreschi, L.; Gallo, M. Life cycle assessment in the food industry. In The Interaction of Food Industry and Environment; Galanakis, C., Ed.; Academic Press: London, UK, 2020; pp. 63–118. [Google Scholar]
- Sharma, K.; Mahato, N.; Lee, Y.R. Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 2018, 35, 265–284. [Google Scholar] [CrossRef]
- Bechlin, T.R.; Granella, S.J.; Christ, D.; Coelho, S.R.M.; and Paz, C.H. Effects of ozone application and hot-air drying on orange peel: Moisture diffusion, oil yield, and antioxidant activity. Food Bioprod. Process. 2020, 123, 80–89. [Google Scholar] [CrossRef]
- Ling, Y.; Shi, Z.; Yang, X.; Cai, Z.; Wang, L.; Wu, X.; Ye, A.; and Jiang, J. Hypolipidemic effect of pure total flavonoids from peel of Citrus (PTFC) on hamsters of hyperlipidemia and its potential mechanism. Exp. Gerontol. 2020, 130, 110786. [Google Scholar] [CrossRef] [PubMed]
- Fayek, N.; El-Shazly, A.H.; Abdel-Monem, A.R.; Moussa, M.Y.; Abd-Elwahab, S.M.; El-Tanbouly, N.D. Comparative study of the hypocholesterolemic, antidiabetic effects of four agro-waste Citrus peels cultivars and their HPLC standardization. Rev. Bras. Farm. 2017, 27, 488–494. [Google Scholar] [CrossRef]
- Kang, S.; Song, S.; Lee, J.; Chang, H.; Lee, S. Clinical investigations of the effect of Citrus unshiu peel pellet on obesity and lipid profile. Evid. Based Complement. Alternat. Med. 2018, 2018, 4341961. [Google Scholar]
- Ding, X.; Guo, L.; Zhang, Y.; Fan, S.; Gu, M.; Lu, Y.; Jiang, D.; Li, Y.; Huang, C.; Zhou, Z. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARα and GLUT4 pathway. PLoS ONE 2013, 8, e77915. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Butt, M.S.; Iqbal, M.J.; Suleria, H.A.R. Citrus peel extract and powder attenuate hypercholesterolemia and hyperglycemia using rodent experimental modeling. Asian Pac. J. Trop. Biomed. 2017, 7, 870–880. [Google Scholar] [CrossRef]
- Chen, X.M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gosslau, A.; Ho, C.T.; Li, S. The role of rutin and diosmin, two citrus polyhydroxyflavones in disease prevention and treatment. J. Food Bioact. 2019, 5, 43–56. [Google Scholar] [CrossRef]
- Ibrahim, M.; Amin, M.N.; Millat, M.S.; Raju, J.A.; Hussain, M.S.; Sultana, F.; Islam, M.M.; Hasan, M.M. Methanolic extract of peel of citrus maxima fruits exhibit analgesic, CNS depressant and anti-inflammatory activities in Swiss albino mice. Biol. Eng. Med. Sci. Rep. 2018, 4, 7–11. [Google Scholar] [CrossRef]
- Naim, M.; Amjad, F.; Sultana, S.; Islam, S.; Hossain, M.; Begum, R.; Rashid, M.; Amran, M. Comparative study of antidiabetic activity of hexane-extract of lemon peel (Limon citrus) and glimepiride in alloxan-induced diabetic rats. Bangladesh Pharm. J. 2018, 15, 131–134. [Google Scholar] [CrossRef]
- Sathiyabama, R.G.; Gandhi, G.R.; Denadai, M.; Sridharan, G.; Jothi, G.; Sasikumar, P.; Siqueira Quintans, J.d.S.; Narain, N.; Cuevas, L.E.; Coutinho, H.D.M.; et al. Evidence of insulin-dependent signalling mechanisms produced by Citrus sinensis (L.) Osbeck fruit peel in an insulin resistant diabetic animal model. Food Chem. Toxicol. 2018, 116, 86–99. [Google Scholar] [CrossRef]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced wistar diabetic rats. Oxid. Med. Cell Long. 2020, 2020, 1730492. [Google Scholar]
- Duan, L.; Dou, L.L.; Yu, K.Y.; Guo, L.; Bai-Zhong, C.; Li, P.; Liu, E.H. Polymethoxyflflavones in peel of Citrus reticulata ‘Chachi’ and their biological activities. Food Chem. 2017, 234, 254–261. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; Almeida, M.M.; Salazar, M.L.; Pires, F.C.; Bezerra, F.W.; Cunha, V.M.; Cordeiro, R.M.; Urbina, G.R.; da Silva, M.P.; e Silva, A.P.; et al. Potential of medicinal use of essential oils from aromatic plants. Potential. Essent. Oils InTech 2018, 5, 1–21. [Google Scholar]
- Tajaldini, M.; Samadi, F.; Khosravi, A.; Ghasemnejad, A.; and Asadi, J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharm. 2020, 121, 109594. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Kurihara, N.; Abe, S.; Ho, C.T.; Ghai, G.; Yang, K. Chemopreventive effects of orange peel extract (OPE). I: OPE inhibits intestinal tumor growth in ApcMin/+ mice. J. Med. Food 2007, 10, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Shin, E.J.; Hur, H.J.; Park, J.H.; Sung, M.J.; Kwon, D.Y.; Hwang, J.T. Citrus junos Tanaka peel extract attenuates experimental colitis and inhibits tumour growth in a mouse xenograft model. J. Funct. Foods 2014, 8, 301–308. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Li, H.B.; Deng, G.D.; Ling, W.H.; Wu, S.; Xu, X.R.; Chen, F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Food 2013, 5, 1298–1309. [Google Scholar] [CrossRef]
- Mendonca, L.B.P.; Badel, J.L.; Zambolim, L. Bacterial citrus diseases: Major threats and recent progress. Bacteriol. Mycol. 2017, 5, 340–350. [Google Scholar]
- Ahloowalia, B.S.; Maluszynski, M.; Nichterlein, K. Global impact of mutation derived varieties. Euphytica 2004, 135, 187–204. [Google Scholar] [CrossRef]
- Rana, M.A.; Usman, M.; Fatima, B.; Fatima, A.; Rana, I.A.; Rehman, W.; Shoukat, D. Prospects of mutation breeding in grapefruit (Citrus paradisiMacf.). J. Hortic. Sci. Technol. 2020, 3, 31–35. [Google Scholar] [CrossRef]
- Mba, C.; Afza, R.; Shu, Q.Y. Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In Plant. Mutation Breeding and Biotechnology; Shu, Q.Y., Forster, B.P., Nakagawa, H., Eds.; CAB International: Wallingford, UK, 2012; pp. 83–90. [Google Scholar]
- Usman, M.; Fatima, B. Mandarin (Citrus reticulata Blanco) breeding. In Advances in Plant. Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2018; pp. 465–533. [Google Scholar]
- Saini, H.K.; Gill, M.I.S. Induction of mutation in rough lemon (Citrus jambhiri Lush.) using gamma rays. J. Hortic. Sci. 2009, 4, 41–44. [Google Scholar]
- Maluszynski, M.; Nichterlein, K.; Van-Zanten, L.; Aloowalia, B.S. Officially released mutant varieties—The FAO/IAEA database. Mutat. Breed. Rev. 2000, 12, 1–84. [Google Scholar]
- Williams, T.; Roose, M.L.; Daisy, S.L.; Fairchild, S.L.; Kinnow, S.L. Three New, Very Low-Seeded, Mid Season Irradiated Selection of W. Murcott Mandarin from the University of California Riverside. In Proceedings of the International Citrus Congress, Wuhan, China, 26–30 October 2008. [Google Scholar]
- Khalid, M.F.; Hussain, S.; Anjum, M.A.; Ali, M.A.; Ahmad, S.; Ejaz, S.; Ali, S.; Usman, M.; Ehsan, U.H.; Morillon, R. Efficient compartmentalization and translocation of toxic minerals lead tolerance in volkamer lemon tetraploids more than diploids under moderate and high salt stress. Fruits 2020, 75, 204–215. [Google Scholar] [CrossRef]
- Montalt, R.; Prósper, L.; Vives, M.C.; Navarro, L.; Ollitrault, P.; Aleza, P. Breakdown of Self-Incompatibility in Citrus by Temperature Stress, Bud Pollination and Polyploidization. Agriculture 2022, 12, 273. [Google Scholar] [CrossRef]
- Rouiss, H.; Cuenca, J.; Navarro, L.; Ollitrault, P.; Aleza, P. Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Front. Plant. Sci. 2017, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.D.; Xia, Q.M.; Peng, J.; Wu, X.M.; Xie, Z.Z.; Chen, C.L.; Guo, W.W. Mechanism underlying 2n male and female gamete formation in lemon via cytological and molecular marker analysis. Plant. Biotechnol. Rep. 2019, 9, 141–149. [Google Scholar] [CrossRef]
- Yanagimoto, Y.; Kaneyoshi, J.; Yamasaki, A.; Kitajima, A. Estimation of polyploidy of embryos and gametes based on polyploidy of endosperm remaining in the citrus seed. Hortic. Res. 2018, 17, 293–302. [Google Scholar] [CrossRef]
- Xie, K.D.; Wang, X.P.; Biswas, M.K.; Liang, W.J.; Xu, Q.; Grosser, J.W.; Guo, W.W. 2 n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic ‘Nadorcott’tangor crossed by citrus allotetraploids. Plant. Cell Rep. 2014, 33, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Chiancone, B.; Germanà, M.A. Micropropagation of Citrus spp. by organogenesis and somatic embryogenesis. Methods Mol. Biol. 2013, 11013, 99–118. [Google Scholar]
- Ballester, A.; Cervera, M.; Pena, L. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant. Cell. Rep. 2008, 27, 1005–1015. [Google Scholar] [CrossRef]
- Ohgawara, T.; Kobayashi, S.; Ohgawara, E.; Uchimaya, H.; Ishii, S. Somatic hybrid plants obtained by protoplasm fusion between Citrus sinensis and Poncirustrifoliata. Theor. Appl. Genet. 1985, 71, 1–4. [Google Scholar] [CrossRef]
- Guo, W.W.; Deng, X.X. Intertribal hexaploid somatic hybrid plants regeneration from electrofusion between diploids of Citrus sinensis and its sexually incompatible relative, Clausenalansium. Theor. Appl. Genet. 1999, 98, 581–585. [Google Scholar] [CrossRef]
- Dutt, M.; Grosser, J.W. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant. Cell Tissue Organ. Cult. 2009, 98, 331–340. [Google Scholar] [CrossRef]
- Khan, E.U.; Fu, X.Z.; Liu, J.H. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf segments as explants in Valencia sweet orange. Plant. Cell. Tissue Organ. Cult. 2012, 109, 383–390. [Google Scholar] [CrossRef]
- Chamandoosti, F. Citrus tissue culture with two different approaches. Int. J. Biosci. Biotechnol. 2020, 8, 19–30. [Google Scholar] [CrossRef]
- Yu, X.; Killiny, N. RNA interference-mediated control of Asian citrus psyllid, the vector of the huanglongbing bacterial pathogen. Trop. Plant. Pathol. 2020, 45, 298–305. [Google Scholar] [CrossRef]
- Barbier, F.F.; Dun, E.A.; Kerr, S.C.; Chabikwa, T.G.; Beveridge, C.A. An update on the signals controlling shoot branching. Trends Plant. Sci. 2019, 24, 220–236. [Google Scholar] [CrossRef]
- Jia, H.; Wang, N. Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p. Plant. Biotechnol. J. 2020, 18, 1990–1992. [Google Scholar] [CrossRef]
- Zhang, F.; LeBlanc, C.; Irish, V.F.; Jacob, Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant. Cell. Rep. 2017, 36, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant. Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, X. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 2019, 13, 501–510. [Google Scholar] [CrossRef]
- Dutt, M.; Mou, Z.; Zhang, X.; Tanwir, S.E.; Grosser, J.W. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures. BMC Biotechnol. 2020, 20, 58. [Google Scholar] [CrossRef]
- Wang, J.W.; Grandio, E.G.; Newkirk, G.M.; Demirer, G.S.; Butrus, S.; Giraldo, J.P.; Landry, M.P. Nanoparticle-Mediated Genetic Engineering of Plants. Mol. Plant. 2019, 12, 1037–1040. [Google Scholar] [CrossRef]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant. Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
Species | Common Name | Center of Origin |
---|---|---|
Citrus reticulata Blanco. | Mandarin Orange | Philippines or Cochin China/Secondary center Japan |
Citrus sinensis Pers. | Sweet Orange | China/Cochin China |
Citrus macroptera Montr. | Satkara | Northeast Region of India |
Citrus jambhiri Lush. | Rough Lemon | Possibly India |
Citrus indica Tanaka | Indian Wild Orange (Memang Narang) | Northeast Region of India |
Citrus limetta Lush. | Sarbati Lime | Tropical Asia |
Citrus limon (L.) Burm. | Assam Lemon | East of Himalaya, North Myanmar, South China |
Citrus medico L. | Citron | Indonesian Archipelago/North India |
Citrus aurantifolia (Christm.) Swingle | Kagzi Lime | Indonesian Archipelago/North India |
Citrus karna Raffin. | Karna Khatta | Eastern Region of India |
Citrus aurantium L. | Sour Orange | Asia/Cochin China |
Citrus megaloxycarpa Lush. | Sishuphal (Bartenga) | Northeast Region of India |
Citrus grandis (L.) Osbeck | Pummelo | South East Asia |
Citrus ichangensis Swingle | Ichang | Southwest, Central, Western China |
Citrus assamensis Dutta and Bhatacharya | Ada Jamir | Northeast Region of India |
Citrus latipes (Swingle) Tanaka | Khasi Papeda | Hills of Meghalaya and Nagaland |
Citrus limonia Osbeck | Rangpur Lime | India and Sri Lanka |
Character | Adaptation | Species | Variety |
---|---|---|---|
Abiotic | Moisture stress and low fertility. | C. medica | Mithajora, soh-manong |
Humid Tropics (very high rainfall) | C. assamensis | Ada jamir | |
Drought resistance | C. jambhiri | Soh-myndong | |
Wide adaptability for various types of soils and climates | C. medica f. limon | Patilebu | |
Water logging and low lying condition | C. medica f. limon | Godha patilebu | |
Stress conditions of soil and climate | C. aurantium | Karun-jamir | |
High cold resistance | C. ichangensis, C. laptis | Ketsa-shuphu | |
Biotic | Resistance to greening, tolerant to psoriasis and exocortis virus | C. macroptera | Tith Kera |
Resistance ton scab, canker, and gummosis | C. limon | Assam lemon | |
Resistance to greening disease | C. indica, C. laptis | ||
Special character | Flavor like ginger of Eucalyptus | C. assamensis | Ada jamir |
Flavor like cardamom and more juicy | C. medica f. limon C. macroptera | Patilebu, Panijamir, Joratenga, Elachi-lebu Satkara | |
Prolific bearing | C. medica f. limon C. reticulata | Kata-jamir, Soh-synteng, Soh-kompriak, Soh-sanikar | |
Superior quality albedo (rind) | C. medica | Bira-jora | |
Fruit quality superior for preparing pickles, chutney, and squash | C. medica f. aurantifolia, C. auruntium | Abhayapuri lime, Godha-huntera |
Species | Local Name | Peel (%) | Juice (mL) | Marc (%) | Seed (%) |
---|---|---|---|---|---|
C. aurantifilia | Lime | 20–30 | 45–48 | 21–34 | 0–1 |
C. aurantium | Bitter orange | 27–46 | 27–37 | 23–31 | 5–7 |
C. grandis | Pummelo | 23–24 | 175 | 25–37 | 3–4 |
C. limon | Lemon | 13–24 | 23–95 | 13–38 | 5–7 |
C. paradisi | Grapefruit | 25–39 | 32–48 | 18–36 | 0–3 |
C. reticulata | Mandarin | 35 | 50% | 13 | 2 |
C. sinensis | Sweet orange | 13–49 | 25–215 | 18–41 | 0–3 |
Compound | Role | References |
---|---|---|
Flavanones (hesperidin and naringin) | The intestinal fate, bioavailability, intestinal metabolism, and interaction with the gut microbiota | [63] |
Flavones | Sources, anti-oxidant, anti-inflammatory, anti-microbial, anti-cancer properties | [64] |
Flavonoids | Brain health, minimizing the incidence of inflammatory bowel disease, anti-diabetic potential of 19 Citrus flavonoids, potential in diabetes and diabetic cardiomyopathy, endothelial dysfunction, atherosclerosis, and platelet function | [65,66,67] |
Hesperidin and vitamin C | Antiviral properties against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | [68] |
Naringenin | Antidiabetic properties; combating oxidative stress disorders: cardiovascular disease, diabetes mellitus, neurodegenerative disease, pulmonary disease, cancer, and nephropathy | [69,70] |
Nobiletin | Beneficial effects against Alzheimer’s disease (AD) and Parkinson’s disease (PD) | [71] |
Nobiletin,5-demethylnobiletin, and derivatives | Beneficial effects against colon cancer, pharmacokinetics, and bioavailability | [72] |
Polymethoxyflavones (PMF) | Biological properties against metabolic disorder, atherosclerosis, inflammation, neuroinflammation, cancer, and oxidation | [73] |
Source | Activity | Reference |
---|---|---|
Citrus Changshan-huyou | Cardio-protective | [96] |
Citrus reticulata | [97] | |
Citrus unshiu | [98] | |
Citrus grandis | [99] | |
Citrus lemon | [100] | |
Citrus reticulata | Anti-inflammatory | [101] |
Citrus sinensis | [102] | |
Citrus grandis | [103] | |
Citrus lemon | Anti-diabetic | [104] |
Citrus sinensis | [105] | |
Citrus reticulata | [106] | |
Citrus reticulata | Anti-cancer | [107] |
Citrus reticulata | [108] | |
Citrus sinensis | [109] | |
Citrus sinensis | [110] | |
Citrus junos | [111] | |
Citrus grandis | [112] |
Natural Bud Mutants | Mutation Breed Mutants |
---|---|
Washington navel | Daisy SL |
Shamouti | Kinnow SL |
Marsh | Fairchild SL |
Foster | Tango |
Shamber | Jin Cheng, Kozan, NIAB Kinnow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, S.; Bhowal, R.; Suprasanna, P. Sustainable Approaches for Biodiversity and Bioprospecting of Citrus. Sustainability 2023, 15, 7731. https://doi.org/10.3390/su15097731
Kumari S, Bhowal R, Suprasanna P. Sustainable Approaches for Biodiversity and Bioprospecting of Citrus. Sustainability. 2023; 15(9):7731. https://doi.org/10.3390/su15097731
Chicago/Turabian StyleKumari, Sony, Rony Bhowal, and Penna Suprasanna. 2023. "Sustainable Approaches for Biodiversity and Bioprospecting of Citrus" Sustainability 15, no. 9: 7731. https://doi.org/10.3390/su15097731
APA StyleKumari, S., Bhowal, R., & Suprasanna, P. (2023). Sustainable Approaches for Biodiversity and Bioprospecting of Citrus. Sustainability, 15(9), 7731. https://doi.org/10.3390/su15097731