Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile
Abstract
:1. Introduction
1.1. MSWM in Latin American and the Caribbean
1.2. Available Treatment Technologies
1.3. Decision-Making Tools
2. Methodology
2.1. Proposed Sequence
2.2. Case Study
2.3. Screening Matrix
2.4. Ranking Method
2.4.1. Assessment Criteria and Indicators
Variable | Paper | Cardboard | Metals | Plastic | Glass | RDF |
---|---|---|---|---|---|---|
kg CO2-eq/t | −559 [65] | −559 [65] | −3006 [65] | 27 [65] | 27 [65] | −337 [65] |
Sale price (€/t) | 61 [70] | 22 [70] | 52 [70] | 39 [70] | 24 [70] | 25 [56] |
2.4.2. Criteria Integration and Weighting
2.5. Sensitivity Analysis
3. Results and Discussion
3.1. Definition of MSW Treatment Alternatives
3.2. Partial Results
3.3. Sensitivity Analysis
3.3.1. Integration of Indicators
3.3.2. Integration of Criteria
3.4. Practical Implications of the Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ash-LF | Ash landfill | MSWM | Municipal solid waste management |
GHG | Greenhouse gas | OF | Organic fraction |
I-ER | Incineration with energy recovery | O&M | Operation and maintenance |
LAC | Latin America and the Caribbean | RBCP | Materials recovery, biomethanization and composting plant |
LHV | Lower heating value | RCP | Materials recovery and composting plant |
LF | Landfill | RDF | Refuse derived fuel |
LFG | Landfill gas | RM | Recovered materials |
MBT | Mechanical–biological treatment | TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
MTP | Mechanical treatment plant | WtE | Waste-to-Energy |
MSW | Municipal solid waste |
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Chalhoub, M.S. Public Policy and Technology Choices for Municipal Solid Waste Management a Recent Case in Lebanon. Cogent Environ. Sci. 2018, 4, 1529853. [Google Scholar] [CrossRef]
- Ferreira, C.R.N.; Infiesta, L.R.; Monteiro, V.A.L.; Starling, M.C.V.M.; da Silva Júnior, W.M.; Borges, V.L.; Carvalho, S.R.; Trovó, A.G. Gasification of Municipal Refuse-Derived Fuel as an Alternative to Waste Disposal: Process Efficiency and Thermochemical Analysis. Process Saf. Environ. Prot. 2021, 149, 885–893. [Google Scholar] [CrossRef]
- Tsydenova, N.; Vázquez Morillas, A.; Cruz Salas, A. Sustainability Assessment of Waste Management System for Mexico City (Mexico)—Based on Analytic Hierarchy Process. Recycling 2018, 3, 45. [Google Scholar] [CrossRef]
- Margallo, M.; Ziegler-Rodriguez, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, Á.; Kahhat, R. Enhancing Waste Management Strategies in Latin America under a Holistic Environmental Assessment Perspective: A Review for Policy Support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef] [PubMed]
- Ghazvinei, P.T.; Mir, M.A.; Darvishi, H.H.; Ariffin, J. University Campus Solid Waste Management: Combining Life Cycle Assessment and Analytical Hierarchy Process; Springer Briefs in Environmental Science; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-43227-4. [Google Scholar]
- Wilson, D.C.; Rodic, L.; Modak, P.; Soos, R.; Carpintero Rogero, A.; Velis, C.; Iyer, M.; Simonett, O. Global Waste Management Outlook; United Nations Environment Programme & International Solid Waste Association: Vienna, Austria, 2015; ISBN 9789280734799. [Google Scholar]
- Batista, M.; Goyannes Gusmão Caiado, R.; Gonçalves Quelhas, O.L.; Brito Alves Lima, G.; Leal Filho, W.; Rocha Yparraguirre, I.T. A Framework for Sustainable and Integrated Municipal Solid Waste Management: Barriers and Critical Factors to Developing Countries. J. Clean. Prod. 2021, 312, 127516. [Google Scholar] [CrossRef]
- Yadav, P.; Samadder, S.R. A Global Prospective of Income Distribution and Its Effect on Life Cycle Assessment of Municipal Solid Waste Management: A Review. Environ. Sci. Pollut. Res. 2017, 24, 9123–9141. [Google Scholar] [CrossRef]
- Kaza, S.; Bhada-Tata, P. Decision Maker’s Guides for Solid Waste Management Technologies; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- United Nations. Department of Economic and Social Affairs. Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- UN-Habitat. World Cities Report 2022. Envisaging the Future of Cities; United Nations Human Settlements Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Hettiarachchi, H.; Ryu, S.; Caucci, S.; Silva, R. Municipal Solid Waste Management in Latin America and the Caribbean: Issues and Potential Solutions from the Governance Perspective. Recycling 2018, 3, 19. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente; Gobierno de Chile. Decreto 12. Establece Metas de Recolección y Valorización y Otras Obligaciones Asociadas de Envases y Embalajes; Biblioteca del Congreso Nacional—Ley Chile: Santiago de Chile, Chile, 2021. [Google Scholar]
- Ministerio del Medio Ambiente; Gobierno de Chile. Estrategia Nacional de Residuos Orgánicos. Chile 2040; Ministerio del Medio Ambiente: Santiago de Chile, Chile, 2020. [Google Scholar]
- Subsecretaría de Desarrollo Regional y Administrativo; Gobierno de Chile. Diagnóstico de La Situación Por Comuna y Por Región En Materia de Residuos Sólidos Domiciliarios y Asimilables; Subsecretaría de Desarrollo Regional y Administrativo: Santiago de Chile, Chile, 2018. [Google Scholar]
- Ministerio del Medio Ambiente; Gobierno de Chile. Registro de Emisiones y Transferencias de Contaminantes. Tasas de Valorización o Reciclaje de Residuos Municipales. 2019. Available online: https://retc.mma.gob.cl/indicadores/residuos-disposicion-al-suelo/ (accessed on 4 June 2022).
- KDM S.A. Declaración de Impacto Ambiental. Planta Recuperadora de Reciclables Relleno Sanitario Loma Los Colorados. Available online: https://www.e-seia.cl/archivos/9b8_DIA_Planta_Recuperadora_RSLLC_KDM_rev08.pdf (accessed on 22 April 2021).
- Savino, A.; Solorzano, G.; Quispe, C.; Correal, M.C. Waste Management Outlook for Latin America and the Caribbean; UN Environment; United Nations Environment Programme, Latin America and the Caribbean Office: Panama City, Panama, 2018. [Google Scholar]
- Delgado, M.; López, A.; Cuartas, M.; Rico, C.; Lobo, A. A Decision Support Tool for Planning Biowaste Management Systems. J. Clean. Prod. 2020, 242, 118460. [Google Scholar] [CrossRef]
- Tan, S.T.; Hashim, H.; Lim, J.S.; Ho, W.S.; Lee, C.T.; Yan, J. Energy and Emissions Benefits of Renewable Energy Derived from Municipal Solid Waste: Analysis of a Low Carbon Scenario in Malaysia. Appl. Energy 2014, 136, 797–804. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Micale, C. Experimental and Life Cycle Assessment Analysis of Gas Emission from Mechanically–Biologically Pretreated Waste in a Landfill with Energy Recovery. Waste Manag. 2013, 33, 2557–2567. [Google Scholar] [CrossRef]
- The World Bank. Energy Sector Management Assistance Programme. In Handbook for the Preparation of Landfill Gas to Energy Projects in Latin America and the Caribbean; The International Bank for Reconstruction and Development: Washington, DC, USA, 2004. [Google Scholar]
- Ouda, O.K.M.; Raza, S.A.; Nizami, A.S.; Rehan, M.; Al-Waked, R.; Korres, N.E. Waste to Energy Potential: A Case Study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Mutz, D.; Hengevoss, D.; Hugi, C.; Gross, T. Waste-to-Energy Options in Municipal Solid Waste Management. A Guide for Decision Makers in Developing and Emerging Countries; Hinchliffe, D., Frommann, J., Gunsilius, E., Eds.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2017. [Google Scholar]
- Abdallah, M.; Shanableh, A.; Arab, M.; Shabib, A.; Adghim, M.; El-Sherbiny, R. Waste to Energy Potential in Middle Income Countries of MENA Region Based on Multi-Scenario Analysis for Kafr El-Sheikh Governorate, Egypt. J. Environ. Manag. 2019, 232, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Martinho, G.; Chang, N.-B. Solid Waste Management in European Countries: A Review of Systems Analysis Techniques. J. Environ. Manag. 2011, 92, 1033–1050. [Google Scholar] [CrossRef]
- Edo Alcón, N. Diseño de Una Metodología Para El Control de Calidad de Los Rechazos Producidos En Las Plantas de Tratamiento Mecánico-Biológico de Residuos Sólidos Urbanos. Ph.D. Thesis, Doctorado en Tecnologías Industriales y Materiales, Jaume I University, Castellón, Spain, 2019. [Google Scholar]
- Ministerio de Agricultura Alimentación y Medio Ambiente; Gobierno de España. Gestión de Biorresiduos de Competencia Municipal. Guía Para La Implementación de La Recogida Separada y Tratamiento de La Fracción Orgánica; Servicio de Publicaciones del Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2013. [Google Scholar]
- Waste Atlas. Charts. MBT Charts. Annual Capacity. Available online: http://www.atlas.d-waste.com/ (accessed on 12 September 2022).
- ecoprog. The Market for Mechanical Biological Waste Treatment in Europe. Locations, Plants, Backgrounds and Market Estimations. Available online: https://www.ecoprog.com/publikationen/abfallwirtschaft/mba.htm (accessed on 18 April 2020).
- Asefi, H.; Shahparvari, S.; Chhetri, P. Advances in Sustainable Integrated Solid Waste Management Systems: Lessons Learned over the Decade 2007–2018. J. Environ. Plan. Manag. 2020, 63, 2287–2312. [Google Scholar] [CrossRef]
- De Feo, G.; Galasso, M.; Landi, R.; Donnarumma, A.; De Gisi, S. A Comparison of the Efficacy of Organic and Mixed-Organic Polymers with Polyaluminium Chloride in Chemically Assisted Primary Sedimentation (CAPS). Environ. Technol. 2013, 34, 1297–1305. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58–191. ISBN 978-3-540-10558-9. [Google Scholar]
- Yoon, K. A Reconciliation among Discrete Compromise Solutions. J. Oper. Res. Soc. 1987, 38, 277. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A New Approach for Multiple Objective Decision Making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Alao, M.A.; Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Popoola, O.M. Multi-Criteria Decision Based Waste to Energy Technology Selection Using Entropy-Weighted TOPSIS Technique: The Case Study of Lagos, Nigeria. Energy 2020, 201, 117675. [Google Scholar] [CrossRef]
- Elsayed, E.A.; Dawood, A.K.S.; Yan, K. Evaluating Alternatives through the Application of Topsis Method with Entropy Weight. Int. J. Eng. Trends Technol. 2017, 46, 60–66. [Google Scholar] [CrossRef]
- Shahnazari, A.; Rafiee, M.; Rohani, A.; Bhushan Nagar, B.; Ebrahiminik, M.A.; Aghkhani, M.H. Identification of Effective Factors to Select Energy Recovery Technologies from Municipal Solid Waste Using Multi-Criteria Decision Making (MCDM): A Review of Thermochemical Technologies. Sustain. Energy Technol. Assess. 2020, 40, 100737. [Google Scholar] [CrossRef]
- Ali, Y.; Aslam, Z.; Dar, H.S.; Mumtaz, U.U. A Multi-Criteria Decision Analysis of Solid Waste Treatment Options in Pakistan: Lahore City—A Case in Point. Environ. Syst. Decis. 2018, 38, 528–543. [Google Scholar] [CrossRef]
- Govind Kharat, M.; Murthy, S.; Jaisingh Kamble, S.; Raut, R.D.; Kamble, S.S.; Govind Kharat, M. Fuzzy Multi-Criteria Decision Analysis for Environmentally Conscious Solid Waste Treatment and Disposal Technology Selection. Technol. Soc. 2019, 57, 20–29. [Google Scholar] [CrossRef]
- Gaur, A.; Prakash, H.; Anand, K.; Kumar, G.; Hussain, A. Evaluation of Municipal Solid Waste Management Scenarios Using Multi-Criteria Decision Making under Fuzzy Environment. Process Integr. Optim. Sustain. 2022, 6, 307–321. [Google Scholar] [CrossRef]
- Alzate, S.; Restrepo-Cuestas, B.; Jaramillo-Duque, Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, 8, 51. [Google Scholar] [CrossRef]
- Lino, F.A.M.; Ismail, K.A.R. Evaluation of the Treatment of Municipal Solid Waste as Renewable Energy Resource in Campinas, Brazil. Sustain. Energy Technol. Assess. 2018, 29, 19–25. [Google Scholar] [CrossRef]
- Sagastume Gutiérrez, A.; Mendoza Fandiño, J.M.; Cabello Eras, J.J. Alternatives of Municipal Solid Wastes to Energy for Sustainable Development. The Case of Barranquilla (Colombia). Int. J. Sustain. Eng. 2021, 14, 1809–1825. [Google Scholar] [CrossRef]
- Ludlow, J.; Jalil-Vega, F.; Schmidt Rivera, X.; Garrido, R.A.; Hawkes, A.; Staffell, I.; Balcombe, P. Organic Waste to Energy: Resource Potential and Barriers to Uptake in Chile. Sustain. Prod. Consum. 2021, 28, 1522–1537. [Google Scholar] [CrossRef]
- González, P.; Riveros, S.; Concha, S.; Casas, Y. Waste-to-Energy Options within a Circular Economy Strategy in a Developing Country: The Case of the Bio Bio Region in Chile. Int. J. Energy Prod. Manag. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Torres-Lozada, P.; Manyoma-Velásquez, P.; Gaviria-Cuevas, J.F. Prioritization of Waste-to-Energy Technologies Associated with the Utilization of Food Waste. Sustainability 2023, 15, 5857. [Google Scholar] [CrossRef]
- Ossa, D.A.; Aristizábal, A.J.; Ospina, D. Comprehensive Analysis of Solid Waste for Energy Projects in Colombia. Eng. J. 2020, 24, 35–52. [Google Scholar] [CrossRef]
- Taboada-González, P.; Aguilar-Virgen, Q.; Ojeda-Benítez, S.; Cruz-Sotelo, S. Application of Analytic Hierarchy Process in a Waste Treatment Technology Assessment in Mexico. Environ. Monit. Assess. 2014, 186, 5777–5795. [Google Scholar] [CrossRef] [PubMed]
- Brenes-Peralta, L.; Jiménez-Morales, M.F.; Campos-Rodríguez, R.; De Menna, F.; Vittuari, M. Decision-Making Process in the Circular Economy: A Case Study on University Food Waste-to-Energy Actions in Latin America. Energies 2020, 13, 2291. [Google Scholar] [CrossRef]
- Rodrigues, E.; Mondelli, G. Assessment of Integrated MSW Management Using Multicriteria Analysis in São Paulo City. Int. J. Environ. Sci. Technol. 2021, 19, 7981–7992. [Google Scholar] [CrossRef]
- Fernández-González, J.M.; Grindlay, A.L.; Serrano-Bernardo, F.; Rodríguez-Rojas, M.I.; Zamorano, M. Economic and Environmental Review of Waste-to-Energy Systems for Municipal Solid Waste Management in Medium and Small Municipalities. Waste Manag. 2017, 67, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Waste-C-Control. Database of Waste Management Technologies. Available online: http://www.epem.gr/waste-c-control/database/default.htm (accessed on 12 February 2020).
- Correal, M.; Rihm, A. Towards the Valorization of Solid Waste in Latin America and the Caribbean. Basic Concepts, Feasibility Analysis and Public Policy Recommendations; Interamerican Development Bank: Washington, DC, USA, 2022. [Google Scholar]
- Rodrigo Ilarri, J.; Rodrigo Clavero, M.E.; Fernández González, J.M. Alternativas de Valorización y Eliminación de Residuos Sólidos Urbanos; ENTORNOS Diseño y percepción, S.L., Ed.; Reproval, S.L.: Valencia, Spain, 2014. [Google Scholar]
- Tchobanoglous, G.; Kreith, F. Handbook of Solid Waste Management, 2nd ed.; McGraw Hill Professional: New York, NY, USA, 2002; ISBN 9780071356237. [Google Scholar]
- Heyer, K.U.; Hupe, K.; Stegmann, R. Methane Emissions from MBT Landfills. Waste Manag. 2013, 33, 1853–1860. [Google Scholar] [CrossRef]
- Zaman, A.U. Comparative Study of Municipal Solid Waste Treatment Technologies Using Life Cycle Assessment Method. Int. J. Environ. Sci. Technol. 2010, 7, 225–234. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Micale, C. Optimization of Solid State Anaerobic Digestion by Inoculum Recirculation: The Case of an Existing Mechanical Biological Treatment Plant. Appl. Energy 2012, 97, 462–469. [Google Scholar] [CrossRef]
- Hong, J.; Li, X.; Zhaojie, C. Life Cycle Assessment of Four Municipal Solid Waste Management Scenarios in China. Waste Manag. 2010, 30, 2362–2369. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Micale, C. Energy Production from Mechanical Biological Treatment and Composting Plants Exploiting Solid Anaerobic Digestion Batch: An Italian Case Study. Energy Convers. Manag. 2012, 56, 112–120. [Google Scholar] [CrossRef]
- Murphy, J.D.; McKeogh, E. Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste. Renew. Energy 2004, 29, 1043–1057. [Google Scholar] [CrossRef]
- Manfredi, S.; Tonini, D.; Christensen, T.H.; Scharff, H. Landfilling of Waste: Accounting of Greenhouse Gases and Global Warming Contributions. Waste Manag. Res. J. A Sustain. Circ. Econ. 2009, 27, 825–836. [Google Scholar] [CrossRef]
- Smith, A.; Brown, K.; Ogilvie, S.; Rushton, K.; Bates, J. Waste Management Options and Climate Change; Final Report ED21158R4.1; Office for Official Publications of the European Communities: Luxembourg, 2001. [Google Scholar]
- Hill, N.; Walker, H.; Beevor, J.; James, K. 2011 Guidelines to Defra/DECC’s GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors; DEFRA-Department for Environment Food and Rural Affairs: London, UK, 2011. [Google Scholar]
- Friends of the Earth. More Jobs, Less Waste. Potential for Job Creation through Higher Rates of Recycling in the UK and EU; Friends of the Earth Limited: London, UK, 2010. [Google Scholar]
- Fuentealba Bahamondes, J.E. Plan de Negocio Planta de Tratamiento Mecánico Biológico de Residuos Sólidos Urbanos. Master’s Thesis, Facultad de Ciencias Físicas y Matemáticas, University of Chile, Santiago de Chile, Chile, 2018. [Google Scholar]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of Incineration MSW Ash: A Review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- Correal, M.; Laguna, A. Estimación de Costos de Recolección Selectiva y Clasificación de Residuos Con Inclusión de Organizaciones de Recicladores: Herramienta de Cálculo y Estudios de Caso En América Latina y El Caribe; Inter American Development Bank: Washington, DC, USA, 2018. [Google Scholar]
- Global Petrol Prices. Electricity Prices, June 2022. Available online: https://www.globalpetrolprices.com/electricity_prices/ (accessed on 2 February 2023).
- Coordinador Eléctrico Nacional. Costos Marginales. Available online: https://www.coordinador.cl/mercados/graficos/costos-marginales/ (accessed on 21 September 2022).
- Comisión Nacional de Energía de Chile. Anuario Estadístico de Energía. Available online: https://www.cne.cl/wp-content/uploads/2022/07/AnuarioEstadisticoEnergia2021.pdf (accessed on 10 October 2022).
- Soares, F.R.; Martins, G. Using Life Cycle Assessment to Compare Environmental Impacts of Different Waste to Energy Options for Sao Paulo’s Municipal Solid Waste. J. Solid Waste Technol. Manag. 2017, 43, 36–46. [Google Scholar] [CrossRef]
- Hoang, A.T.; Varbanov, P.S.; Nižetić, S.; Sirohi, R.; Pandey, A.; Luque, R.; Ng, K.H.; Pham, V.V. Perspective Review on Municipal Solid Waste-to-Energy Route: Characteristics, Management Strategy, and Role in Circular Economy. J. Clean. Prod. 2022, 359, 131897. [Google Scholar] [CrossRef]
- OECD-Organization for Economic Cooperation and Development. Waste Management and the Circular Economy in Selected OECD Countries; Organisation for Economic Cooperation and Development: France, Paris, 2019. [Google Scholar] [CrossRef]
- Van Caneghem, J.; Van Acker, K.; De Greef, J.; Wauters, G.; Vandecasteele, C. Waste-to-Energy Is Compatible and Complementary with Recycling in the Circular Economy. Clean Technol. Environ. Policy 2019, 21, 925–939. [Google Scholar] [CrossRef]
- Milutinović, B.; Stefanović, G.; Dassisti, M.; Marković, D.; Vučković, G. Multi-Criteria Analysis as a Tool for Sustainability Assessment of a Waste Management Model. Energy 2014, 74, 190–201. [Google Scholar] [CrossRef]
- Milutinović, B.; Stefanović, G.; Kyoseva, V.; Yordanova, D.; Dombalov, I. Sustainability Assessment and Comparison of Waste Management Systems: The Cities of Sofia and Niš Case Studies. Waste Manag. Res. J. A Sustain. Circ. Econ. 2016, 34, 896–904. [Google Scholar] [CrossRef]
- Khan, I.; Kabir, Z. Waste-to-Energy Generation Technologies and the Developing Economies: A Multi-Criteria Analysis for Sustainability Assessment. Renew. Energy 2020, 150, 320–333. [Google Scholar] [CrossRef]
- Dirección de Estudios Sociales del Instituto de Sociología. Informe Final. “Encuesta Nacional de Medio Ambiente 2018”. Licitación N° 608897-110-LE17; Pontificia Universidad Católica de Chile: Santiago de Chile, Chile, 2018. [Google Scholar]
- Vlachokostas, C.; Achillas, C.; Michailidou, A.V.; Tsegas, G.; Moussiopoulos, N. Externalities of Energy Sources: The Operation of a Municipal Solid Waste-to-Energy Incineration Facility in the Greater Thessaloniki Area, Greece. Waste Manag. 2020, 113, 351–358. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, L.; Zou, X.; Fujii, M.; Dong, L.; Dou, Y.; Geng, Y.; Wang, F. Towards a Zero Waste City- an Analysis from the Perspective of Energy Recovery and Landfill Reduction in Beijing. Energy 2021, 223, 120055. [Google Scholar] [CrossRef]
- Coban, A.; Ertis, I.F.; Cavdaroglu, N.A. Municipal Solid Waste Management via Multi-Criteria Decision Making Methods: A Case Study in Istanbul, Turkey. J. Clean. Prod. 2018, 180, 159–167. [Google Scholar] [CrossRef]
- Alzamora, B.R.; de Vasconcelos Barros, R.T.; de Oliveira, L.K.; Gonçalves, S.S. Forecasting and the Influence of Socioeconomic Factors on Municipal Solid Waste Generation: A Literature Review. Environ. Dev. 2022, 44, 100734. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente. Gobierno de Chile. Ley 20920. Establece El Marco Para La Gestión de Residuos, La Responsabilidad Extendida Del Productor y Fomento Al Reciclaje; Biblioteca del Congreso Nacional—Ley Chile: Santiago de Chile, Chile, 2016. [Google Scholar]
Conditioning Factors | LF | LFG | MTP | RCP | RBCP | I-ER |
---|---|---|---|---|---|---|
Fraction | Mixed | Mixed a | Mixed Recyclables | Mixed a and OF | Mixed a and OF | Mixed [10] a |
LHV (MJ/kg) | - | - | - | - b | - b | >7 [25] |
Quantity (t/y) | - | >50,000 [23], c | 10,000– 50,000 [54] | 10,000– 500,000 [30,54] | 10,000– 328,000 [54] | 60,000– 500,000 [10] |
Technical complexity | Low | Medium [55] | Medium [55] | Medium [55] | Medium-high [55] | Medium-high [55] |
Proven technology | Proven [10] | Proven [10] | Proven [55] | Proven [55] | Proven [55] | Proven [55] |
Investment costs (€/t/y) d | 2–20 e | 5–50 [10] | 100–198 [54] | 42–560 [54] | 58–420 [54] | 180–1181 [10,54] |
O&M costs (€/t/y) d | 2–34 e | 6–114 [10] | 18–40 [54,56] | 24–95 [54] | 18–160 [54] | 8–205 [54] |
Criteria | Indicators | LF | LFG | Ash-LF | I-ER | MTP | RCP | RBCP | |
---|---|---|---|---|---|---|---|---|---|
Technical (T) | T1 | Energy produced (kWh/t) | 0 | 80; 16 [57,58] a | 0 | 544 [59] | - | - | 220 [60] |
T2 | Energy consumption (kWh/t) | 0.42 [61] | 0.42 [61] | 0.42 [61] | 153 [61] | 23.1 [62], b | 33 [62] | 98.1 [62,63] c | |
T3 | Technical complexity | 1 | 2 | 4 | 5 | 3 | 3 | 4 | |
Environmental (E) | E1 | GHG emissions (kg CO2-eq/t) | 674/−25.5 [64] d,e | −24 [64] d | 1.1 [65] f | −10 [65] | - g | −42 [66] h | −126 [66] h |
E2 | Soil occupation (m2/t) | 4.21 [61] | 4.21 [61] | 2.1 [61] i | 0.76 [61] | 0.4 [10] | 1.2 [10] | 0.63 [10,63] | |
E3 | Materials recovery (t/y) | 0 | 0 | 0 | - j | - j | - j | - j | |
E4 | Odor nuisances | 5 | 3 | 1 | 1 | 1 | 3 | 2 | |
Economic (EC) | EC1 | Investment costs (€/t/y) | 54.5 [53] j | 73.1 [53] j | 16.8 [53] j | 242.7 [53] j | 104.3 [53] j | 140.6 [53] j | 142.4 [53] j |
EC2 | O&M costs (€/t/y) | 10.9 [53] j | 12.7 [53] j | 3.2 [53] j | 42.7 [53] j | 28.8 [53] j | 35.7 [53] j | 36.1 [53] j | |
EC3 | Economic remunerations (€/t) | - | - k | 0 | - k | - k | - k | - k | |
Social (S) | S1 | Job creation (Jobs/1000t) | 0.1 [67] | 0. 1 [67] | 0.1 [67] | 0.1 [67] | 0.4 [68] | 0.4 [68] | 0.4 [68] |
S2 | Social acceptance | 1 | 2 | 1 | 1 | 5 | 4 | 4 | |
S3 | Occupational risks | 5 | 5 | 5 | 5 | 3 | 3 | 4 |
Alternative | Process | Systems Summary | ||
---|---|---|---|---|
Pretreatment | WtE | Final Disposal | ||
A0 | - | - | LF | LF |
A1 | - | LFG | LFG | LFG |
A2 | MTP * | LFG | LFG | MTP + LFG |
A3 | - | I-ER | Ash-LF + LF | I-ER + Ash-LF + LF |
A4 | RCP | LFG | LFG | RCP + LFG |
A5 | MTP * | I-ER | Ash-LF + LF | MTP + I-ER + Ash-LF + LF |
A6 | RCP | RDF production | LFG | RCP + RDF production + LFG |
A7 | RBCP | Biomethanization | LFG | RBCP + LFG |
Alternative | Recovered Materials | Biological Treatment | RDF | Landfill b | |||
---|---|---|---|---|---|---|---|
RM | Rejects | Biostabilized | Rejects | Losses a | |||
t/y | t/y | t/y | t/y | t/y | t/y | t/y | |
A0 | - | - | - | - | - | - | 165,937 c |
A1 | - | - | - | - | - | - | 165,937 d |
A2 | 14,456 e | 6181 | - | - | - | - | 151,481 d |
A3 | 20,507 f | 16,995 | - | - | - | - | 16,995 g,h |
A4 | 7334 e | 76,786 | 19,243 | 26,940 | 34,638 | - | 104,722 d,g |
A5 | 33,132 e,f | 15,330 | - | - | - | - | 15,330 g,h |
A6 | 8356 e,i | 76,786 | 19,243 | 26,940 | 34,638 | 51,751 | 51,950 g,d |
A7 | 8147 e | 76,969 | 19,243 | 26,940 | 34,638 | - | 103,909 g,d |
Alternative | Technical | Environmental | Economic | Social | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | E1 | E2 | E3 | E4 | EC1 | EC2 | EC3 | S1 | S2 | S3 | |
kWh/y | kWh/y | - | t CO2-eq | m2 | t/y | - | € | €/y | €/y | Jobs | - | - | |
A0 | 0 | 69,694 | 1 | 111,842 | 698,595 | 0 | 5 | 9,034,606 | 1,801,412 | 2,262,409 | 17 | 1 | 5 |
A1 | 7,964,976 | 69,694 | 2 | −3982 | 698,595 | 0 | 3 | 12,126,676 | 2,114,701 | 2,819,958 | 17 | 2 | 5 |
A2 | 7,964,976 | 540,347 | 2 | −5849 | 645,989 | 14,456 | 3 | 13,222,705 | 2,525,490 | 3,666,845 | 23 | 2 | 5 |
A3 | 89,728,110 | 25,198,635 | 5 | 8689 | 194,168 | 20,507 | 1 | 41,134,093 | 7,265,932 | 8,714,982 | 18 | 1 | 5 |
A4 | 1,101,273 | 5,487,049 | 3 | −8941 | 640,004 | 26,577 | 3 | 30,977,194 | 7,261,848 | 2,826,196 | 77 | 3 | 4 |
A5 | 81,931,325 | 23,485,684 | 4 | 5599 | 184,088 | 33,132 | 1 | 39,481,769 | 7,188,751 | 8,718,869 | 25 | 1 | 5 |
A6 | 831,197 | 5,464,884 | 3 | −25,193 | 417,833 | 79,349 | 3 | 26,625,450 | 6,710,242 | 4,153,883 | 72 | 3 | 4 |
A7 | 19,443,226 | 16,224,391 | 3 | −15,949 | 541,998 | 27,390 | 2 | 31,219,785 | 7,321,844 | 2,898,047 | 77 | 3 | 4 |
Alternative | Technical | Environmental | Economic | Social | Overall Ranking | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | E1 | E2 | E3 | E4 | EC1 | EC2 | EC3 | S1 | S2 | S3 | ||
A0 | 0.000 | 0.333 | 0.333 | 0.000 | 0.000 | 0.000 | 0.000 | 0.333 | 0.333 | 0.000 | 0.000 | 0.000 | 0.000 | 8 |
A1 | 0.030 | 0.333 | 0.242 | 0.211 | 0.000 | 0.000 | 0.135 | 0.301 | 0.314 | 0.029 | 0.000 | 0.150 | 0.000 | 5 |
A2 | 0.030 | 0.327 | 0.231 | 0.215 | 0.026 | 0.046 | 0.151 | 0.290 | 0.290 | 0.073 | 0.038 | 0.204 | 0.065 | 3 |
A3 | 0.333 | 0.000 | 0.000 | 0.188 | 0.245 | 0.065 | 0.247 | 0.000 | 0.003 | 0.333 | 0.009 | 0.000 | 0.000 | 7 |
A4 | 0.004 | 0.261 | 0.186 | 0.220 | 0.028 | 0.084 | 0.135 | 0.105 | 0.004 | 0.029 | 0.333 | 0.333 | 0.333 | 2 |
A5 | 0.304 | 0.023 | 0.016 | 0.194 | 0.250 | 0.104 | 0.250 | 0.017 | 0.008 | 0.333 | 0.046 | 0.066 | 0.060 | 6 |
A6 | 0.003 | 0.262 | 0.139 | 0.250 | 0.136 | 0.250 | 0.144 | 0.151 | 0.037 | 0.098 | 0.304 | 0.331 | 0.313 | 1 |
A7 | 0.072 | 0.119 | 0.130 | 0.233 | 0.076 | 0.086 | 0.176 | 0.103 | 0.000 | 0.033 | 0.333 | 0.333 | 0.167 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondón Toro, E.; López Martínez, A.; Lobo García de Cortázar, A. Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile. Sustainability 2023, 15, 7734. https://doi.org/10.3390/su15097734
Rondón Toro E, López Martínez A, Lobo García de Cortázar A. Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile. Sustainability. 2023; 15(9):7734. https://doi.org/10.3390/su15097734
Chicago/Turabian StyleRondón Toro, Estefani, Ana López Martínez, and Amaya Lobo García de Cortázar. 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile" Sustainability 15, no. 9: 7734. https://doi.org/10.3390/su15097734
APA StyleRondón Toro, E., López Martínez, A., & Lobo García de Cortázar, A. (2023). Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile. Sustainability, 15(9), 7734. https://doi.org/10.3390/su15097734