The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering
Abstract
:1. Introduction
2. Methodology and Logic
3. Scientometric Analysis
4. Results
4.1. Beams
4.1.1. Shear Strength
4.1.2. Flexural Strength
4.2. Columns
4.2.1. Axial Compressive Capacity
4.2.2. Compressive Strength of FRP-Confined Concrete
4.2.3. Bridge Columns (Drift Ratio)
4.2.4. Fire Exposure Influence in FRP Strengthened Members
4.3. Reinforced Concrete Slab
4.4. Beam–Column Joints
4.5. Bond Strength
4.6. Materials
4.6.1. Strength Prediction of Fiber-Reinforced Concrete
4.6.2. Post-Fire Behavior of Construction Materials
4.6.3. Measuring Strain in Pre-Stressed FRP
4.6.4. FRP-Defect Detection in Composite Systems
5. Parameters
6. Discussion
7. Conclusions
- Since every ML model has its own unique characteristics, detailed and comprehensive studies need to be conducted to compare all algorithms for a particular application and to select the most appropriate ML technique. Similarly, further research is necessary to determine the most suitable optimization algorithm for each application.
- Due to the complex behavior of FRP-strengthened RC slabs and beam–column joints, comprehensive investigations involving ML application in predicting the behavior of such members are needed to account for the key parameters affecting their ultimate performance.
- Statistical and finite element analysis studies that involve a wide range of parameters should be performed to identify the most influential variables of a particular application under various conditions, which could be used in the development of a comprehensive ML model.
- More studies could be conducted to estimate the FRP contribution for each application rather than the strength of the retrofitted RC members while considering a wide range of parameters.
- Since the use of ML showed great potential in improving the current design guidelines, it could be expanded to cover newer corresponding strengthening techniques like the use of textile-reinforced mortar (TRM) and shape memory alloys (SPAs) in strengthening RC structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Description |
AB | Adaptive Boosting |
ABC | Artificial Bee Colony |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BA | Boosting Algorithm |
BES | Bald Eagle Search |
BP | Back-Propagation |
BPNN | Back-Propagation Neural Network |
Dfdbmrfo | Dynamic fitness distance balance-manta ray foraging optimization |
DNN | Deep Neural Network |
DT | Decision Tree |
EL | Ensemble Learning |
ELM | Extreme Learning Machine |
ExGBT | Extreme Gradient Boosted Tree |
FA | Firefly Algorithm |
GA | Genetic Algorithm |
GB | Gradient Boosting |
GBDT | Gradient Boosting Decision Tree |
GBRT | Gradient-Boosted Regression Tree |
GEP | Gene Expression Programming |
GMDH | Group Method of Data Handling |
GPR | Gaussian Process Regression |
KDNN | Keras Deep Neural Network |
KDPNN | Keras Deep Residual Neural Network |
KNN | K-Nearest Neighbor |
LGBT | Light Gradient-Boosted Tree |
LR | Linear Regression |
LS-SVM | Least Squares Support Vector Machine |
LSSVR | Least Squares Support Vector Regression |
MEP | Multi-Expression Programming |
ML | Machine Learning |
MLP | Multi-layer Perceptron |
MLR | Multiple Linear Regression |
NN | Neural Network |
RBFNN | Radial Basis Function Neural Network |
RF | Random Forest |
RSM | Response Surface Model |
RT | Regression Tree |
SFA | Smart Firefly Algorithm |
SPA | Shape Memory Alloys |
SVM | Support Vector Machine |
SVMR | Support Vector Machine Regression |
SVR | Support Vector Regression |
TFDL | TensorFlow Deep Learning |
TGAN | Tabular Generative Adversarial Network |
TRM | Textile-Reinforced Mortar |
XGBoost | Extreme Gradient Boosting Framework |
References
- James, A.; Bazarchi, E.; Chiniforush, A.A.; Panjebashi Aghdam, P.; Hosseini, M.R.; Akbarnezhad, A.; Martek, I.; Ghodoosi, F. Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Constr. Build. Mater. 2019, 224, 1026–1039. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Dong, B.; Ma, H. Quantitative evaluation of steel corrosion induced deterioration in rubber concrete by integrating ultrasonic testing, machine learning and mesoscale simulation. Cem. Concr. Compos. 2022, 128, 104426. [Google Scholar] [CrossRef]
- Moghaddas, A.; Mostofinejad, D.; Ilia, E. Empirical FRP-concrete effective bond length model for externally bonded reinforcement on the grooves. Compos. Part B Eng. 2019, 172, 323–338. [Google Scholar] [CrossRef]
- Li, C.; Xian, G. Novel wedge-shaped bond anchorage system for pultruded CFRP plates. Mater. Struct. 2018, 51, 162. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; Deng, J. Flexural behaviour of notched steel beams strengthened with a pre-stressed CFRP plate subjected to fatigue damage and wetting/drying cycles. Eng. Struct. 2022, 250, 113430. [Google Scholar] [CrossRef]
- Xian, G.; Guijun, R.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion, and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Subramanian, N.; Solaiyan, E.; Sendrayaperumal, A.; Lakshmaiya, N. Flexural behaviour of geopolymer concrete beams reinforced with BFRP and GFRP polymer composites. Adv. Struct. Eng. 2022, 25, 954–965. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.; Li, C. Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables. Polymers 2023, 15, 2483. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, D.; Guo, S.; Rahman, M.Z.; Jin, Z.; Shi, C. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cem. Concr. Compos. 2022, 134, 104758. [Google Scholar] [CrossRef]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Khan, M.A.; Sahawneh, N.; Ahmad, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Vashisht, V.; Pandey, A.K.; Yadav, S.P. Speech recognition using machine learning. IEIE Trans. Smart Process. Comput. 2021, 10, 233–239. [Google Scholar] [CrossRef]
- Ramos, S.; Gehrig, S.; Pinggera, P.; Franke, U.; Rother, C. Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1025–1032. [Google Scholar] [CrossRef]
- Odeyar, P.; Apel, D.B.; Hall, R.; Zon, B.; Skrzypkowski, K. A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining. Energies 2022, 15, 6263. [Google Scholar] [CrossRef]
- Sandeep, M.S.; Tiprak, K.; Kaewunruen, S.; Pheinsusom, P.; Pansuk, W. Shear strength prediction of reinforced concrete beams using machine learning. Structures 2023, 47, 1196–1211. [Google Scholar] [CrossRef]
- Thai, H.T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Mooghali, A.; Alijani, R.; Karami, N.; Khasseh, A. Scientometric analysis of the scientometric literature. Int. J. Inf. Sci. Manag. 2012, 9, 19–31. [Google Scholar]
- Wrigh, S.W. Gap Analysis for Literature Reviews and Advancing Useful Knowledge. 2020. Available online: http://www.researchtoaction.org/2020/06/gap-analysis-for-literature-reviews-and-advancing-useful-knowledge/ (accessed on 8 October 2023).
- Machi, L.A.; McEvoy, B.T. The Literature Review: Six Steps to Success, 2nd ed.; Corwin: Thousand Oaks, CA, USA, 2009; ISBN 1452240884. [Google Scholar]
- Cobo, M.J.; Lopez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Hood, W.W.; Wilson, C.S. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Abuodeh, O.R.; Abdalla, J.A.; Hawileh, R.A. Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques. Compos. Struct. 2020, 234, 111698. [Google Scholar] [CrossRef]
- Chou, J.S.; Pham, T.P.T.; Nguyen, T.K.; Pham, A.D.; Ngo, N.T. Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models. Soft Comput. 2020, 24, 3393–3411. [Google Scholar] [CrossRef]
- Abuodeh, O.; Abdalla, J.A.; Hawileh, R.A. Prediction of compressive strength of ultra-high performance concrete using SFS and ANN. In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15–17 April 2019. [Google Scholar] [CrossRef]
- Kaveh, A.; Javadi, S.M.; Moghani, R.M. Shear strength prediction of FRP-reinforced concrete beams using an extreme gradient boosting framework. Period. Polytech. Civ. Eng. 2022, 66, 18–29. [Google Scholar] [CrossRef]
- Le, H.A.; Le, D.A.; Le, T.T.; Le, H.P.; Le, T.H.; Hoang, H.G.T.; Nguyen, T.A. An Extreme Gradient Boosting approach to estimate the shear strength of FRP reinforced concrete beams. Structures 2022, 45, 1307–1321. [Google Scholar] [CrossRef]
- Marani, A.; Nehdi, M.L. Predicting shear strength of FRP-reinforced concrete beams using novel synthetic data driven deep learning. Eng. Struct. 2022, 257, 114083. [Google Scholar] [CrossRef]
- Tarawneh, A.; Alghossoon, A.; Saleh, E.; Almasabha, G.; Murad, Y.; Abu-Rayyan, M.; Aldiabat, A. Machine Learning Prediction Model for Shear Capacity of FRP-RC Slender and Deep Beams. Sustainability 2022, 14, 15609. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Al-Hamrani, A.; Ebead, U.; Alnahhal, W. Shear capacity prediction of FRP-RC beams using single and ensemble ExPlainable Machine learning models. Compos. Struct. 2022, 287, 115381. [Google Scholar] [CrossRef]
- Anvari, A.T.; Babanajad, S.; Gandomi, A.H. Data-Driven Prediction Models for Total Shear Strength of Reinforced Concrete Beams with Fiber Reinforced Polymers Using an Evolutionary Machine Learning Approach. Eng. Struct. 2023, 276, 115292. [Google Scholar] [CrossRef]
- Yaseen, Z.M. Machine learning models development for shear strength prediction of reinforced concrete beam: A comparative study. Sci. Rep. 2023, 13, 1723. [Google Scholar] [CrossRef]
- Naser, M.Z. Machine learning assessment of fiber-reinforced polymer-strengthened and reinforced concrete members. ACI Struct. J. 2020, 117, 237–251. [Google Scholar] [CrossRef]
- Di, B.; Qin, R.; Zheng, Y.; Lv, J. Investigation of the Shear Behavior of Concrete Beams Reinforced with FRP Rebars and Stirrups Using ANN Hybridized with Genetic Algorithm. Polymers 2023, 15, 2857. [Google Scholar] [CrossRef]
- Alrouh, N.; Maalej, M.; Barakat, S. Modeling the Shear Strength of FRP-Strengthened Rc Beams Using Artificial Neural Networks. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2021; Volume 1047, pp. 207–213. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Nguyen, T.X.T. Estimation of the shear strength of frp reinforced concrete beams without stirrups using machine learning algorithm. In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures, Ha Long, Vietnam, 28–29 October 2021; Springer: Singapore, 2022; pp. 1825–1832. [Google Scholar] [CrossRef]
- Gasser, M.; Mahmoud, O.; Elsayed, T.; Deifalla, A. Reliable machine learning for the shear strength of beams strengthened using externally bonded FRP jackets. Front. Mater. 2023, 10, 1153421. [Google Scholar] [CrossRef]
- Karzad, A.S.; Khalil, M.A.; Mohamed, A.M.; Barakat, S. Modeling the shear capacity of externally bonded fiber reinforced polymer strengthened beams by artificial neural network. Int. J. Appl. Sci. Eng. 2023, 20, 1–14. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.L.; Al-Bahrani, M.; Mamlooki, M. Prediction of the FRP reinforced concrete beam shear capacity by using ELM-CRFOA. Measurement 2022, 205, 112230. [Google Scholar] [CrossRef]
- Rahman, J.; Arafin, P.; Billah, A.M. Machine learning models for predicting concrete beams shear strength externally bonded with FRP. Structures 2023, 53, 514–536. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G. Data-Driven Shear Strength Prediction of FRP-Reinforced Concrete Beams without Stirrups Based on Machine Learning Methods. Buildings 2023, 13, 313. [Google Scholar] [CrossRef]
- Yang, P.; Li, C.; Qiu, Y.; Huang, S.; Zhou, J. Metaheuristic Optimization of Random Forest for Predicting Punch Shear Strength of FRP-Reinforced Concrete Beams. Materials 2023, 16, 4034. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.Z. An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference. Autom. Constr. 2021, 129, 103821. [Google Scholar] [CrossRef]
- Aravind, N.; Nagajothi, S.; Elavenil, S. Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams. Constr. Build. Mater. 2021, 297, 123785. [Google Scholar] [CrossRef]
- Saleh, E.; Tarawneh, A.N.; Naser, M.Z. Failure mode classification and deformability evaluation for concrete beams reinforced with FRP bars. Compos. Struct. 2022, 292, 115651. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Chen, S.-Z.; Han, W.-S.; Wu, G. Study on prediction of FRP strengthened reinforced concrete beam’s moment bearing capacity based on ensemble learning algorithm. Eng. Mech. 2022, 39, 245–256. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Chen, S.-Z.; Jiang, X.; Han, W.-S. Data-driven prediction of FRP strengthened reinforced concrete beam capacity based on interpretable ensemble learning algorithms. Structures 2022, 43, 860–877. [Google Scholar] [CrossRef]
- Perera, R.; Torres, L.; Díaz, F.J.; Barris, C.; Baena, M. Analysis of the impact of sustained load and temperature on the performance of the electromechanical impedance technique through multilevel machine learning and FBG sensors. Sensors 2021, 21, 5755. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Lin, X.; Wu, Y.; Zhang, L. Machine learning-driven evaluation and optimisation of compression yielded FRP-reinforced concrete beam with T section. Eng. Struct. 2023, 275, 115240. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Abushanab, A.; Ebead, U.; Alnahhal, W. FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model. Mater. Today Commun. 2022, 33, 104461. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, H.; Zhou, J. Machine learning-based model for recognizing the failure modes of FRP-strengthened RC beams in flexure. Case Stud. Constr. Mater. 2023, 18, e02076. [Google Scholar] [CrossRef]
- Bakouregui, A.S.; Mohamed, H.M.; Yahia, A.; Benmokrane, B. Explainable extreme gradient boosting tree-based prediction of load-carrying capacity of FRP-RC columns. Eng. Struct. 2021, 245, 112836. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Interpretable machine learning algorithms to predict the axial capacity of FRP-reinforced concrete columns. Materials 2022, 15, 2742. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, C.; Lee, D.; Zhang, J. Prediction of axial compressive capacity of CFRP-confined concrete-filled steel tubular short columns based on XGBoost algorithm. Eng. Struct. 2022, 260, 114239. [Google Scholar] [CrossRef]
- Tarawneh, A.; Almasabha, G.; Murad, Y. ColumnsNet: Neural network model for constructing interaction diagrams and slenderness limit for FRP-RC columns. J. Struct. Eng. 2022, 148, 04022089. [Google Scholar] [CrossRef]
- Arora, H.C.; Kumar, S.; Kontoni, D.P.N.; Kumar, A.; Sharma, M.; Kapoor, N.R.; Kumar, K. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures. Buildings 2022, 12, 2137. [Google Scholar] [CrossRef]
- Miao, K.; Pan, Z.; Chen, A.; Wei, Y.; Zhang, Y. Machine learning-based model for the ultimate strength of circular concrete-filled fiber-reinforced polymer–steel composite tube columns. Constr. Build. Mater. 2023, 394, 132134. [Google Scholar] [CrossRef]
- Almomani, Y.; Tarawneh, A.; Alawadi, R.; Taqieddin, Z.N.; Jweihan, Y.S.; Saleh, E. Predictive models of behavior and capacity of frp reinforced concrete columns. J. Appl. Eng. Sci. 2023, 21, 143–156. [Google Scholar] [CrossRef]
- Shin, J.; Park, S. Optimum retrofit strategy of FRP column jacketing system for non-ductile RC building frames using artificial neural network and genetic algorithm hybrid approach. J. Build. Eng. 2022, 57, 104919. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Chen, J.X.; Chen, G.M.; Xu, J.J.; Zhang, L.W. Prediction of ultimate condition of FRP-confined recycled aggregate concrete using a hybrid boosting model enriched with tabular generative adversarial networks. Thin-Walled Struct. 2023, 182, 110318. [Google Scholar] [CrossRef]
- Keshtegar, B.; Gholampour, A.; Thai, D.K.; Taylan, O.; Trung, N.T. Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete. Compos. Struct. 2021, 262, 113644. [Google Scholar] [CrossRef]
- Ilyas, I.; Zafar, A.; Javed, M.F.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Forecasting strength of CFRP confined concrete using multi expression programming. Materials 2021, 14, 7134. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, I.; Zafar, A.; Afzal, M.T.; Javed, M.F.; Alrowais, R.; Althoey, F.; Mohamed, A.M.; Mohamed, A.; Vatin, N.I. Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming. Polymers 2022, 14, 1789. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, J.; Dong, M.; Yu, Y.; Elchalakani, M.; Zhang, F. Data-driven analysis on ultimate axial strain of FRP-confined concrete cylinders based on explicit and implicit algorithms. Compos. Struct. 2021, 268, 113904. [Google Scholar] [CrossRef]
- Moodi, Y.; Ghasemi, M.; Mousavi, S.R. Estimating the compressive strength of rectangular fiber reinforced polymer–confined columns using multilayer perceptron, radial basis function, and support vector regression methods. J. Reinf. Plast. Compos. 2022, 41, 130–146. [Google Scholar] [CrossRef]
- Du, J.; Ma, H.; Sun, D.; Pan, P. Data driven strength and strain enhancement model for FRP confined concrete using Bayesian optimization. Structures 2022, 41, 1345–1358. [Google Scholar] [CrossRef]
- Berradia, M.; Azab, M.; Ahmad, Z.; Accouche, O.; Raza, A.; Alashker, Y. Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models. Struct. Eng. Mech. 2022, 83, 515–535. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.C.; Xu, Y.P.; Mamlooki, M. The Compressive Strength Prediction for FRP-Confined Concrete in Circular Columns by Applying the Normalized AlexNet-ELM and the Advanced Red Fox Optimization Algorithm. Adv. Theory Simul. 2022, 5, 202100410. [Google Scholar] [CrossRef]
- Isleem, H.F.; Augustino, D.S.; Mohammed, A.S.; Najemalden, A.M.; Jagadesh, P.; Qaidi, S.; Sabri, M.M.S. Finite element, analytical, artificial neural network models for carbon fibre reinforced polymer confined concrete filled steel columns with elliptical cross sections. Front. Mater. 2023, 9, 1115394. [Google Scholar] [CrossRef]
- Sofos, F.; Papakonstantinou, C.G.; Valasaki, M.; Karakasidis, T.E. Fiber-Reinforced Polymer Confined Concrete: Data-Driven Predictions of Compressive Strength Utilizing Machine Learning Techniques. Appl. Sci. 2022, 13, 567. [Google Scholar] [CrossRef]
- Tijani, I.A.; Lawal, A.I.; Kwon, S. Machine learning techniques for prediction of ultimate strain of FRP-confined concrete. Struct. Eng. Mech. 2022, 84, 101. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, R.; Xue, X. Application of Group Method of Data Handling on the Ultimate Conditions’ Prediction of FRP-Confined Concrete Cylinders. Polymers 2022, 14, 3615. [Google Scholar] [CrossRef] [PubMed]
- Jamali, F.; Mousavi, S.R.; Peyma, A.B.; Moodi, Y. Prediction of compressive strength of fiber-reinforced polymers-confined cylindrical concrete using artificial intelligence methods. J. Reinf. Plast. Compos. 2022, 41, 679–704. [Google Scholar] [CrossRef]
- Sayed, Y.A.; Ibrahim, A.A.; Tamrazyan, A.G.; Fahmy, M.F. Machine-learning-based models versus design-oriented models for predicting the axial compressive load of FRP-confined rectangular RC columns. Eng. Struct. 2023, 285, 116030. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Hu, T. Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Buildings 2023, 13, 1309. [Google Scholar] [CrossRef]
- Kumar, P.; Arora, H.C.; Bahrami, A.; Kumar, A.; Kumar, K. Development of a Reliable Machine Learning Model to Predict Compressive Strength of FRP-Confined Concrete Cylinders. Buildings 2023, 13, 931. [Google Scholar] [CrossRef]
- Osman, S.M.; Aldabagh, S.; Alam, M.S.; Sheikh, S.A. Performance-Based Seismic Design of Hybrid GFRP–Steel Reinforced Concrete Bridge Columns. J. Compos. Constr. 2023, 27, 04023011. [Google Scholar] [CrossRef]
- Hisham, M.; Hamdy, G.A.; El-Mahdy, O.O. Prediction of temperature variation in FRP-wrapped RC columns exposed to fire using artificial neural networks. Eng. Struct. 2021, 238, 112219. [Google Scholar] [CrossRef]
- Naser, M.Z.; Kodur, V.; Thai, H.T.; Hawileh, R.; Abdalla, J.; Degtyarev, V.V. StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains. J. Build. Eng. 2021, 44, 102977. [Google Scholar] [CrossRef]
- Bhatt, P.P.; Sharma, N. Deep Neural Network to Predict Fire Resistance of FRP-Strengthened Beams. In Proceedings of the Concrete Industry in the Era of Artificial Intelligence 2020, Online, 1 November 2021; American Concrete Institute: Farmington Hills, MI, USA, 2021; Volume SP-350, pp. 69–80. [Google Scholar] [CrossRef]
- Vu, D.-T.; Hoang, N.-D. Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach. Struct. Infrastruct. Eng. 2016, 12, 1153–1161. [Google Scholar] [CrossRef]
- Badra, N.; Haggag, S.Y.A.; Deifalla, A.; Salem, N.M. Development of machine learning models for reliable prediction of the punching shear strength of FRP-reinforced concrete slabs without shear reinforcements. Measurement 2022, 201, 111723. [Google Scholar] [CrossRef]
- Salem, N.M.; Deifalla, A. Evaluation of the strength of slab-column connections with FRPs using machine learning algorithms. Polymers 2022, 14, 1517. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, J.; Liang, S. Interpretable machine learning models for punching shear strength estimation of FRP reinforced concrete slabs. Crystals 2022, 12, 259. [Google Scholar] [CrossRef]
- Truong, G.T.; Hwang, H.-J.; Kim, C.-S. Assessment of punching shear strength of FRP-RC slab-column connections using machine learning algorithms. Eng. Struct. 2022, 255, 113898. [Google Scholar] [CrossRef]
- Liang, S.; Shen, Y.; Gao, X.; Cai, Y.; Fei, Z. Symbolic machine learning improved MCFT model for punching shear resistance of FRP-reinforced concrete slabs. J. Build. Eng. 2023, 69, 106257. [Google Scholar] [CrossRef]
- Al-kisswani, M.; Alubaid, F. Analysis for the reinforced beam-column joint subjected to cyclic loading using abaqus and deep learning with python. ARPN J. Eng. Appl. Sci. 2021, 16, 1331–1349. [Google Scholar]
- Hamze-Ziabari, S.M.; Yasavoli, A. Predicting bond strength between frp plates and concrete substrate: Applications of gmdh and mnlr approaches. J. Adv. Concr. Technol. 2017, 15, 644–661. [Google Scholar] [CrossRef]
- Jahangir, H.; Eidgahee, D.R. A new and robust hybrid artificial bee colony algorithm–ANN model for FRP-concrete bond strength evaluation. Compos. Struct. 2021, 257, 113160. [Google Scholar] [CrossRef]
- Su, M.; Zhong, Q.; Peng, H.; Li, S. Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete. Constr. Build. Mater. 2021, 270, 121456. [Google Scholar] [CrossRef]
- Su, M.; Peng, H.; Yuan, M.; Li, S. Identification of the interfacial cohesive law parameters of FRP strips externally bonded to concrete using machine learning techniques. Eng. Fract. Mech. 2021, 247, 107643. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Zhang, S.-Y.; Han, W.-S.; Wu, G. Ensemble learning based approach for FRP-concrete bond strength prediction. Constr. Build. Mater. 2021, 302, 124230. [Google Scholar] [CrossRef]
- Basaran, B.; Kalkan, I.; Bergil, E.; Erdal, E. Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms. Compos. Struct. 2021, 268, 113972. [Google Scholar] [CrossRef]
- Baghaei, K.; Aghabalaei, A.; Hadigheh, S.A. Durability assessment of FRP-to-concrete bonded connections under moisture condition using data-driven machine learning-based approaches. Compos. Struct. 2021, 114576. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Mohammed, M.A.; Kumar, K.; Nedoma, J. An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams. IEEE Access 2021, 10, 3790–3806. [Google Scholar] [CrossRef]
- Kim, B.; Lee, D.-E.; Hu, G.; Natarajan, Y.; Preethaa, S.; Rathinakumar, A.P. Ensemble machine learning-based approach for predicting of FRP–concrete interfacial bonding. Mathematics 2022, 10, 231. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Sabri, M.M.S.; Ulrikh, D.V.; Ahmad, M. The efficiency of hybrid intelligent models in predicting fiber-reinforced polymer concrete interfacial-bond strength. Materials 2022, 15, 3019. [Google Scholar] [CrossRef]
- Yuan, C.; He, C.; Xu, J.; Liao, L.; Kong, Q. Bayesian optimization for selecting efficient machine learning regressors to determine bond-slip model of FRP-to-concrete interface. In Structures; Elsevier: Amsterdam, The Netherlands, 2022; Volume 39, pp. 351–364. [Google Scholar] [CrossRef]
- Alabdullh, A.A.; Biswas, R.; Gudainiyan, J.; Khan, K.; Bujbarah, A.H.; Alabdulwahab, Q.A.; Amin, M.N.; Iqbal, M. Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete. Polymers 2022, 14, 3505. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Salami, B.A.; Zahid, M.; Iqbal, M.; Khan, K.; Abu-Arab, A.M.; Alabdullah, A.A.; Jalal, F.E. Investigating the bond strength of FRP laminates with concrete using LIGHT GBM and SHAPASH analysis. Polymers 2022, 14, 4717. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, L.; Cheng, M. Estimating the Bond Strength of FRP Bars Using a Hybrid Machine Learning Model. Buildings 2022, 12, 1654. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Kapoor, N.R.; Kumar, A. Machine Learning Models in Prediction of Strength Parameters of FRP-Wrapped RC Beams. In Machine Intelligence, Big Data Analytics, and IoT in Image Processing: Practical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 419–446. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Liu, J.; Zou, X.; Sneed, L.H.; Bao, Y.; Wang, L. Prediction of FRP-concrete interfacial bond strength based on machine learning. Eng. Struct. 2023, 274, 115156. [Google Scholar] [CrossRef]
- Gao, J.; Koopialipoor, M.; Armaghani, D.J.; Ghabussi, A.; Baharom, S.; Morasaei, A.; Shariati, A.; Khorami, M.; Zhou, J. Evaluating the bond strength of FRP in concrete samples using machine learning methods. Smart Struct. Syst. Int. J. 2020, 26, 403–418. [Google Scholar] [CrossRef]
- Rui, Y.X. Study on the intermediate crack-induced debonding strain of FRP-strengthened concrete members using the updated BP neural network. Ain Shams Eng. J. 2023, 102085. [Google Scholar] [CrossRef]
- Hu, T.; Li, G. Machine Learning-based model in predicting the plate-end debonding of FRP-strengthened RC beams in flexure. Adv. Civ. Eng. 2022, 2022, 6069871. [Google Scholar] [CrossRef]
- Gu, J.; Unjoh, S. Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography. Compos. Struct. 2021, 270, 114040. [Google Scholar] [CrossRef]
- Rahman, S.K.; Al-Ameri, R. Structural assessment of Basalt FRP reinforced self-compacting geopolymer concrete using artificial neural network (ANN) modelling. Constr. Build. Mater. 2023, 397, 132464. [Google Scholar] [CrossRef]
- Abdellatif, S.; Raza, A. Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements. Struct. Eng. Mech. 2023, 85, 315–335. [Google Scholar] [CrossRef]
- Naser, M.Z.; Uppala, V.A. Properties and material models for construction materials post exposure to elevated temperatures. Mech. Mater. 2020, 142, 103293. [Google Scholar] [CrossRef]
- Valença, J.; Mukhandi, H.; Araújo, A.G.; Couceiro, M.S.; Júlio, E. Benchmarking for Strain Evaluation in CFRP Laminates Using Computer Vision: Machine Learning versus Deep Learning. Materials 2022, 15, 6310. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhang, N.; Lu, G.; Hui, Y. Research on Engineering Geomechanics Characteristics and CFRP Reinforcement Technology Based on Machine Learning Algorithms. Sci. Program. 2022, 2022, 2765327. [Google Scholar] [CrossRef]
- Qin, R.; Lau, D. Effect of sampling rates on the accuracy of acoustic-laser technique in defect detection and upsampling using machine learning. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XV; SPIE: Bellingham, WA, USA, 2021; Volume 11592, pp. 90–99. [Google Scholar] [CrossRef]
Journal Name | Number of Publications |
---|---|
Engineering Structures | 9 |
Composite Structures | 9 |
Polymers | 6 |
Construction and Building Materials | 5 |
Materials | 5 |
Structures | 5 |
Applications | Studied Parameters | Most Used ML Models |
---|---|---|
Beams | Web width, effective depth of the section, span-to-effective depth ratio, the compression depth, maximum aggregate size, compressive strength of concrete, elastic modulus of concrete, elastic modulus of steel rebars, tensile strength of rebars, steel reinforcement ratio in flexure and shear, modular ratio, type of FRP bars used as longitudinal reinforcement (i.e., CFRP, AFRP, GFRP, BFRP), type of FRP bars used as shear reinforcement, FRP thickness, FRP longitudinal reinforcement ratio, FRP shear reinforcement ratio, elastic modulus of FRP longitudinal reinforcement bars and FRP stirrups, ultimate tensile strength of FRP longitudinal reinforcement bars, FRP shear reinforcement bars strength, applied loading conditions. | ANN, DNN, XGBoost, RF, ELM, GEP, EL, GBDT, and SVM. |
Columns | Slenderness ratio, gross cross-sectional area, type of cross-section (circular or rectangular), type of concrete (light-weight or normal-weight concrete), type of aggregate, compressive strength of concrete, type of composite material used in the longitudinal and/or transverse reinforcements (i.e., GFRP, BFRP, and CFRP), longitudinal reinforcement ratio, elasticity modulus of steel, ultimate strength of steel, configuration of transverse reinforcement (i.e., spirals or ties), spacing of the transverse reinforcement. | ANN, LR, RF, XGBoost, SVM, RSM-SVR, GPR, and Bayesian optimization. |
Slabs | Slab length, slab width, slab depth, concrete compressive strength, steel yield strength, steel reinforcement ratio, fiber cross-section, fiber tensile strength, bond strength, reflected impulse, reflected pressure, punching shear strength, slab type: one-way/two-way, FRP configuration. | ANN, SVR, RF, GPR, SVM, XGBoost, and DT. |
Bond Strength | FRP elastic modulus, FRP tensile strength, FRP type, FRP thickness, FRP width, stiffness of FRP, bond length, concrete compressive strength, cross-section width, surface texture, groove width, groove depth, reinforcement diameter, reinforcement position, concrete cover, embedment length, the presence of transverse reinforcement. | ANN, GPR, SVMR, RT, MLR, ELM, SVM, GPR, and GBRT. |
Materials | Different concrete materials: NSC, HSC, UHPC, different steel materials: MS, HSS, CFS, SS, different FRP materials: GFRP, CFRP, and temperature. | ANN and CAFM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhusban, M.; Alhusban, M.; Alkhawaldeh, A.A. The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering. Sustainability 2024, 16, 11. https://doi.org/10.3390/su16010011
Alhusban M, Alhusban M, Alkhawaldeh AA. The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering. Sustainability. 2024; 16(1):11. https://doi.org/10.3390/su16010011
Chicago/Turabian StyleAlhusban, Mohammad, Mohannad Alhusban, and Ayah A. Alkhawaldeh. 2024. "The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering" Sustainability 16, no. 1: 11. https://doi.org/10.3390/su16010011
APA StyleAlhusban, M., Alhusban, M., & Alkhawaldeh, A. A. (2024). The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering. Sustainability, 16(1), 11. https://doi.org/10.3390/su16010011