Modeling Techno-Economic Wood Procurement from Renewable Forests for the Sustainable Energy Supply of a CHP Plant
Abstract
:1. Introduction
The Security of Energy Supply
2. Sustainable Energy Supply in the Green Transition
3. Logistics Value Chains of CHP Plants
- (i)
- Evaluate the payment ability under alternative WSCs using the general TERF Model;
- (ii)
- Identify the most sustainable and profitable WSCs near CHP plants;
- (iii)
- Anticipate an environmentally sustainable region to increase the wood procurement amount from 60,000 m3 to 100,000 m3.
4. Material and Methods
5. Wood Supply Chains
6. The General Payment Ability Model of the IMEI
7. The Application of a General Model for the Savonlinna CHP Plant
- P
- Payment ability to buy a solid cubic meter of wood, EUR/m3;
- S
- The ratio of the solid cubic meter to chip cubic meter, m3/c-m3;
- E
- The energy content of wood chips, MWh/c-m3;
- R
- The price of the energy content of wood fuel, EUR/MWh;
- C1
- The costs of transporting or transferring the wood chips, EUR/c-m3;
- C2
- The chipping cost of wood, EUR/c-m3;
- C3
- The terminal cost of a solid cubic meter of wood, EUR/m3;
- C4
- The long-distance transport cost of round wood, EUR/m3;
- C5
- The cost of wood harvesting from the stump to the roadside, EUR/m3;
- C6
- The common costs of wood procurement, EUR/m3;
- C7
- Interest on tied-up capital: euros per solid cubic meter, EUR/m3;
- GHG
- emission costs are the EU’s emission allowance price (EEAP), EUR/t CO2 eq.
8. Calculation Mechanism Using the Payment Ability Model of the CHP Plant
9. Results
10. Discussion
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
CHP | Combined Heat and Power |
ERP | Enterprise Resource Planning |
DSS | Decision Support System |
EEAP | European Emission Allowance Price |
IMEI | Integrated Material and Energy Industry |
GHG | Greenhouse Gas |
TERF | Techno-Economic model of Renewable Forests |
SME | Small- and Medium-sized Enterprise |
WSC | Wood Supply Chain |
EUR | Euro |
ICPM | Internal Carbon Pricing Mechanism |
References
- Statistics of Finland. The Share of Energy Imported from Russia is 18% of the Total Energy Consumption in 2022—Statistics Finland. 2023. Available online: https://www.stat.fi/julkaisu/clhomy00rtq7g0buvlkdxhfig (accessed on 13 April 2023).
- Statistics of Finland. Share of Energy Imported from Russia 34 per Cent of Total Energy Consumption in 2021—Statistics Finland. 2021. Available online: https://www.stat.fi/en/publication/cl1xmekvw1pp80buvn1cznxmy (accessed on 13 April 2023).
- Ministry of Economic Affairs and Employment of Finland. Energy Investments of Finland’s Sustainable Growth Program Promote the Green Transition. 2023. Available online: https://tem.fi/en/-/energy-investments-of-finland-s-sustainable-growth-programme-promote-the-green-transition (accessed on 13 April 2023).
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- Ince, P.J.; Kramp, A.D.; Skog, K.E.; Yoo, D.I.; Sample, V.A. Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption. J. For. Econ. 2011, 17, 142–156. [Google Scholar] [CrossRef]
- Kissinger, G.; Herold, M.; De Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers. Vancouver: Lexeme Consulting. 2012. Available online: https://www.forestcarbonpartnership.org/sites/fcp/files/DriversOfDeforestation.pdf_N_S.pdf (accessed on 13 December 2023).
- Lipiäinen, S.; Sermyagina, E.; Kuparinen, K.; Vakkilainen, E. Future of forest industry in carbon-neutral reality: Finnish and Swedish visions. Energy Rep. 2022, 8, 2588–2600. [Google Scholar] [CrossRef]
- Iordan, C.M.; Hu, X.; Arvesen, A.; Kauppi, P.; Cherubini, F. Contribution of forest wood products to negative emissions: Historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance Manag. 2018, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Rehak, D.; Slivkova, S.; Janeckova, H.; Stuberova, D.; Hromada, M. Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview. Energies 2022, 15, 5276. [Google Scholar] [CrossRef]
- Nan, C.; Sansavini, G.A. Quantitative Method for Assessing Resilience of Interdependent Infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef]
- Rehak, D.; Senovsky, P.; Hromada, M.; Lovecek, T. Complex approach to assessing resilience of critical infrastructure elements. Int. J. Crit. Infrastruct. Prot. 2019, 25, 125–138. [Google Scholar] [CrossRef]
- Jasiūnas, J.; Lund, P.D.; Mikkola, J. Energy system resilience—A review. Renew. Sustain. Energy Rev. 2021, 150, 111476. [Google Scholar] [CrossRef]
- Ministry Economic Affairs and Employment. Carbon Neutral Finland 2035—National Climate and Energy Strategy. 2022. Available online: https://urn.fi/URN:ISBN:978-952-327-843-1 (accessed on 18 December 2023).
- Palander, T.; Takkinen, J. The Optimum Wood Procurement Scenario and Its Dynamic Management for Integrated Energy and Material Production in Carbon-Neutral Forest Industry. Energies 2021, 14, 4404. [Google Scholar] [CrossRef]
- European Commission. Reform Support, Green Transition. Available online: https://reform-support.ec.europa.eu/what-we-do/green-transition_en (accessed on 18 December 2023).
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Ministry of the Environment of Finland. What Is the Green Transition? 2023. Available online: https://ym.fi/en/what-is-the-green-transition (accessed on 13 April 2023).
- National Emergency Supply Agency. Energy Supply. 2023. Available online: https://www.huoltovarmuuskeskus.fi/toimialat/energiahuolto/ (accessed on 12 April 2019).
- Dogan, E.; Chishti, M.Z.; Alavijeh, N.K.; Tzeremes, P. The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries. Technol. Forecast. Soc. Chang. 2022, 181, 121756. [Google Scholar] [CrossRef]
- Yogesh, K.; Dwivedi, L.H.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Ministry of Finance of Finland. Green Transition—Recovery and Resilience Plan. 2023. Available online: https://vm.fi/en/finlands-recovery-and-resilience-plan (accessed on 13 April 2023).
- TrVL 4/2022 vp—VNS 8/2022 vp. Valtioneuvoston Huoltovarmuusselonteko. Available online: https://www.eduskunta.fi/FI/vaski/Lausunto/Documents/TrVL_4+2022.pdf (accessed on 13 April 2023).
- European Council. Fit for 55—The EU’s Plan for a Green Transition—Consilium. 2023. Available online: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (accessed on 13 April 2023).
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Bank of Finland. Supply Bottlenecks Are Having Wide-Spread Impacts on the Economy. 2022. Available online: https://www.bofbulletin.fi/en/2021/5/supply-bottlenecks-are-having-wide-spread-impacts-on-the-economy/ (accessed on 18 December 2023).
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review, Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Forestry of Finland. Wood Fuels in Energy Generation in Finland. 2023. Available online: https://mmm.fi/en/en/forests/use-of-wood/wood-based-energy (accessed on 13 April 2023).
- TaVM 33/2022 vp. Lakialoite Turpeen Energiakäytön Lopettamiseksi. Available online: https://www.eduskunta.fi/FI/vaski/Mietinto/Sivut/TaVM_33+2022.aspx (accessed on 13 April 2023).
- Alstone, P.; Gershenson, D.; Kammen, D. Decentralized energy systems for clean electricity access. Nat. Clim. Chang. 2015, 5, 305–314. [Google Scholar] [CrossRef]
- Kainiemi, L.; Eloneva, S.; Levänen, J. Transition towards a decentralized energy system: Analyzing prospects for innovation facilitation and regime destabilization in Finland. Technol. Anal. Strateg. Manag. 2019, 31, 1003–1015. [Google Scholar] [CrossRef]
- Haddad, W.M. Thermodynamics: The Unique Universal Science. Entropy 2017, 19, 621. [Google Scholar] [CrossRef]
- Kogler, C.; Schimpfhuber, S.; Eichberger, C.; Rauch, P. Benchmarking Procurement Cost Saving Strategies for Wood Supply Chains. Forests 2021, 12, 1086. [Google Scholar] [CrossRef]
- Palander, T. Outsourcing Issues of Wood Supply Chain Management in the Forest Industry. For. Sci. 2022, 68, 521–532. [Google Scholar] [CrossRef]
- Marchi, B.; Zanoni, S. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities. Energies 2017, 10, 1618. [Google Scholar] [CrossRef]
- Wehner, J.; Deilami, N.T.N.; Vural, C.A.; Halldórsson, Á. Logistics service providers’ energy efficiency initiatives for environmental sustainability. Int. J. Logist. Manag. 2022, 33, 1–26. [Google Scholar] [CrossRef]
- Nilsson, F.R.; Sternberg, H.; Klaas-Wissing, T. Who controls transport emissions and who cares? Investigating the monitoring of environmental sustainability from a logistics service provider’s perspective. Int. J. Logist. Manag. 2017, 28, 798–820. [Google Scholar] [CrossRef]
- The Ministry of Economic Affairs and Employment of Finland. Roadmap to Fossil-Free Transport—Government Resolution on Reducing Domestic Transport’s Greenhouse Gas Emissions 2021. Available online: https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/163260/LVM_2021_19.pdf?sequence=1&isAllowed=y (accessed on 18 December 2023).
- VaVM 14/2022 vp—VNS 2/2022, vp. Valtioneuvoston Selonteko Julkisen Talouden Suunnitelmasta Vuosille 2023–2026. Available online: https://www.eduskunta.fi/FI/vaski/Mietinto/Documents/VaVM_14+2022.pdf (accessed on 13 April 2023).
- Palander, T. Tactical Models of Wood-Procurement Teams for Geographically Decentralized Group Decision-Making. Ph.D. Thesis, University of Eastern Finland, Joensuu, Finland, 1998. Available online: https://www.researchgate.net/publication/44364975_Tactical_models_of_wood-procurement_teams_for_geographically_decentralized_group_decision-making_Teijo_Palander (accessed on 12 April 2019).
- D’Amours, S.; Rönnqvist, M.; Weintraub, A. Using operational research for supply chain planning in the forest products industry. INFOR Inf. Syst. Oper. Res. 2008, 46, 265–281. [Google Scholar] [CrossRef]
- Rönnqvist, M. Optimization in forestry. Math Program. 2003, 97, 267–284. [Google Scholar] [CrossRef]
- Garay-Rondero, C.L.; Martinez-Flores, J.L.; Smith, N.R.; Caballero Morales, S.O.; Aldrette-Malacara, A. Digital supply chain model in Industry 4.0. J. Manuf. Technol. Manag. 2020, 31, 887–933. [Google Scholar] [CrossRef]
- Mäkinen, P. The Profitability of the Timber Transport Business before and after Deregulation. Scand. J. For. Res. 1997, 12, 209–215. [Google Scholar] [CrossRef]
- Jernström, E.; Karvonen, V.; Kässi, T.; Kraslawski, A.; Hallikas, J. The main factors affecting the entry of SMEs into bio-based industry. J. Clean. Prod. 2017, 141, 1–10. [Google Scholar] [CrossRef]
- D’Amato, D.; Veijonaho, S.; Toppinen, A. Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. For. Policy Econ. 2020, 110, 101848. [Google Scholar] [CrossRef]
- Kuosa, M.; Kiviranta, P.; Sarvelainen, H.; Tuliniemi, E.; Korpela, T.; Tallinen, K.; Koponen, H.-K. Optimisation of district heating production by utilising the storage capacity of a district heating network on the basis of weather forecasts. Results Eng. 2022, 3, 100318. [Google Scholar] [CrossRef]
- Shiraki, H.; Ashina, S.; Kameyama, Y.; Hashimoto, S.; Fujita, T. Analysis of optimal locations for power stations and their impact on industrial symbiosis planning under transition toward low-carbon power sector in Japan. J. Clean. Prod. 2016, 114, 81–94. [Google Scholar] [CrossRef]
- European Commission. Hydrogen. 2023. Available online: https://energy.ec.europa.eu/topics/energy-systems-integration/hydrogen_en (accessed on 13 April 2023).
- Palander, T.; Voutilainen, J. A decision support system for optimal storing and supply of wood in a Finnish CHP plant. Renew. Energy 2013, 52, 88–94. [Google Scholar] [CrossRef]
- Grybauskas, A.; Stefanini, A.; Ghobakhloo, M. Social sustainability in the age of digitalization: A systematic literature Review on the social implications of industry 4.0. Technol. Soc. 2022, 70, 101997. [Google Scholar] [CrossRef]
- El Baz, J.; Tiwari, S.; Akenroye, T.; Cherrafi, A.; Derrouiche, R. A framework of sustainability drivers and externalities for Industry 4.0 technologies using the Best-Worst Method. J. Clean. Prod. 2022, 344, 130909. [Google Scholar] [CrossRef]
- Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving humanization and sustainability of Industry 4.0. Scientometrics 2022, 127, 3117–3144. [Google Scholar] [CrossRef] [PubMed]
- Adel, A. Future of industry 5.0 in society: Human-centric solutions, challenges and prospective research areas. J. Cloud. Comp. 2022, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Gorodetsky, V.; Larukchin, V.; Skobelev, P. Conceptual model of digital platform for enterprises of industry 5.0. In International Symposium on Intelligent and Distributed Computing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 35–40. [Google Scholar]
- Bonilla, S.H.; Silva, H.R.O.; Terra, M.; da Silva, R.; Gonçalves, F.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2020, 10, 3740. [Google Scholar] [CrossRef]
- Schnorf, V.; Trutnevyte, E.; Bowman, G.; Burg, V. Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland. J. Clean. Prod. 2021, 293, 125971. [Google Scholar] [CrossRef]
- LogForce. Available online: https://www.logforce.fi/ (accessed on 18 December 2023).
- WoodForce. Available online: https://www.woodforce.fi/tuotteen-esittely/ (accessed on 18 December 2023).
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to Manage and Optimize Forest Biomass Supply Chains: A Review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Palander, T. Data-Driven Internal Carbon Pricing Mechanism for Improving Wood Procurement in Integrated Energy and Material Production. Energies 2023, 16, 3473. [Google Scholar] [CrossRef]
- Palander, T.; Haavikko, H.; Kärhä, K. Towards sustainable wood procurement in forest industry—The energy efficiency of larger and heavier vehicles in Finland. Renew. Sustain. Energy Rev. 2018, 96, 100–118. [Google Scholar] [CrossRef]
- Palander, T.; Haavikko, H.; Kortelainen, E.; Kärhä, K. Comparison of Energy Efficiency Indicators of Road Transportation for Modeling Environmental Sustainability in “Green” Circular Industry. Sustainability 2020, 12, 2740. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Ren. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- NFI13. 13th National Forest Inventory of Finland. Natural Resources Institute Finland. 2020. Available online: https://www.luke.fi/en/blogs/nfi-helps-to-develop-sustainable-forest-management (accessed on 13 April 2023).
- Uriarte-Romero, R.; Gil-Samaniego, M.; Valenzuela-Mondaca, E.; Ceballos-Corral, J. Methodology for the Successful Integration of an Energy Management System to an Operational Environmental System. Sustainability 2017, 9, 1304. [Google Scholar] [CrossRef]
- Palander, T.; Takkinen, J. Data-driven modeling of CO2 emission-allowance compensation for wood-purchasing optimization toward carbon–neutral forest industry. Optim. Eng. 2022, 23, 2091–2110. [Google Scholar] [CrossRef]
- Carnero, M.A.; Olmo, J.; Pascual, L. Modelling the Dynamics of Fuel and EU Allowance Prices during Phase 3 of the EU ETS. Energies 2018, 11, 3148. [Google Scholar] [CrossRef]
- Lawrence, A.; Thollander, P.; Karlsson, M. Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry. Sustainability 2018, 10, 1851. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Yang, Y.; Wu, Y.; Yun, P.; Wagan, Z.A. China’s Carbon Pricing Based on Heterogeneous Tail Distribution. Sustainability 2020, 12, 2754. [Google Scholar] [CrossRef]
- Tong, X.; Li, X.; Tong, L.; Jiang, X. Spatial spillover and the influencing factors relating to provincial carbon emissions in China based on the spatial panel data model. Sustainability 2018, 10, 4739. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.W.; Zikhali, P.; Lv, Y.K. Carbon Emissions in China: A Spatial Econometric Analysis, at the regional level. Sustainability 2014, 6, 6005–6023. [Google Scholar] [CrossRef]
- Statistics of Finland. Forestry Machinery and Truck Cost Index; Statistics Finland: Helsinki, Finland, 2021. Available online: https://www.stat.fi/til/ (accessed on 23 April 2022).
- Strandström, M. Timber Harvesting and Long-Distance Transportation of Roundwood in 2018; Result Series; Metsäteho: Helsinki, Finland, 2019; Available online: https://www.metsateho.fi/timber-harvesting-and-long-distance-transportation-of-roundwood-2018/ (accessed on 13 April 2023).
- Energiateollisuus. Kaukolämmön Hintatilastot. 2023. Available online: https://energia.fi/tilastot/kaukolammon-hintatilasto/ (accessed on 13 April 2023).
- Kogler, C.; Rauch, P. Lead time and quality driven transport strategies for the wood supply chain. Res. Transp. Bus. Manag. 2023, 47, 100946. [Google Scholar] [CrossRef]
- Väätäinen, K.; Anttila, P.; Eliasson, L.; Enström, J.; Laitila, J.; Prinz, R.; Routa, J. Roundwood and biomass logistics in Finland and Sweden. Croat. J. For. Eng. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Spinelli, R.; Eliasson, L.; Han, H.-S. A critical review of comminution technology and operational logistics of wood chips. Curr. For. Rep. 2020, 6, 210–219. [Google Scholar] [CrossRef]
- Janiszewska-Latterini, D.; Pizzi, A. Application of Liquefied Wood Products for Particleboard Manufacturing: A Meta-analysis Review. Curr. For. Rep. 2023, 9, 291–300. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Internal Market; Entrepreneurship and SMEs; Reichenbach, J.; Mantau, U.; Vis, M.; Essel, R.; Allen, B. CASCADES: Study on the Optimised Cascading Use of Wood; EU Publications: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Thonemann, N.; Schumann, M. Environmental impacts of wood-based products under consideration of cascade utilization: A systematic literature review. J. Clean. Prod. 2018, 172, 4181–4188. [Google Scholar] [CrossRef]
Municipality | Growth | Pt | Pl | Pp | St | Sl | Sp | Bt | Bl | Bp | ODt | ODl | ODp | All |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | m3/1000 | |||||||||||||
Enonkoski | 6.6 | 1353 | 726 | 584 | 1577 | 824 | 654 | 645 | 108 | 461 | 139 | 16 | 79 | 3714 |
Heinävesi | 6.1 | 5100 | 2677 | 2280 | 6480 | 3305 | 2777 | 2250 | 320 | 1635 | 430 | 46 | 267 | 14,260 |
Juva | 6.4 | 6836 | 3568 | 3055 | 5093 | 2631 | 2133 | 2507 | 366 | 1801 | 708 | 43 | 462 | 15,145 |
Kitee | 5.9 | 6386 | 3093 | 3021 | 5205 | 2637 | 2223 | 3146 | 449 | 2355 | 475 | 48 | 238 | 15,212 |
Parikkala | 6.6 | 2369 | 1203 | 1076 | 2371 | 1244 | 1015 | 1419 | 241 | 1064 | 508 | 56 | 298 | 6667 |
Puumala | 6.0 | 5779 | 2959 | 2620 | 2364 | 1228 | 991 | 1628 | 274 | 1192 | 344 | 47 | 209 | 10,116 |
Rääkkylä | 5.3 | 1641 | 826 | 759 | 2212 | 1190 | 897 | 1159 | 189 | 842 | 223 | 26 | 122 | 5235 |
Rantasalmi | 7.1 | 2304 | 1201 | 1033 | 2633 | 1427 | 1047 | 1411 | 239 | 992 | 417 | 37 | 266 | 6765 |
Rautjärvi | 5.8 | 1159 | 563 | 546 | 1363 | 584 | 661 | 711 | 100 | 519 | 315 | 24 | 198 | 3548 |
Ruokolahti | 5.5 | 5884 | 2971 | 2706 | 3773 | 1915 | 1616 | 1918 | 311 | 1375 | 437 | 49 | 259 | 12,012 |
Savonlinna | 6.9 | 11,580 | 6085 | 5107 | 10754 | 5837 | 4298 | 5272 | 866 | 3813 | 1259 | 151 | 692 | 28,865 |
Sulkava | 6.5 | 3372 | 1722 | 1531 | 2004 | 1003 | 861 | 1244 | 190 | 900 | 312 | 23 | 185 | 6932 |
Varkaus | 6.4 | 1759 | 900 | 811 | 2135 | 1149 | 861 | 1030 | 162 | 748 | 233 | 34 | 144 | 5157 |
Municipality | Pb | Psr | Sb | Ssr | Bb | Bsr | Ab | Asr |
---|---|---|---|---|---|---|---|---|
m3/1000 | ||||||||
Enonkoski | 55 | 61 | 104 | 73 | 49 | 23 | 208 | 157 |
Heinävesi | 176 | 190 | 416 | 313 | 169 | 67 | 761 | 570 |
Juva | 212 | 235 | 387 | 259 | 211 | 104 | 810 | 598 |
Kitee | 246 | 235 | 343 | 226 | 229 | 110 | 818 | 571 |
Parikkala | 74 | 81 | 121 | 87 | 105 | 73 | 300 | 241 |
Puumala | 189 | 190 | 173 | 121 | 151 | 79 | 513 | 390 |
Rääkkylä | 66 | 68 | 141 | 96 | 93 | 40 | 300 | 204 |
Rantasalmi | 77 | 87 | 191 | 136 | 122 | 63 | 390 | 286 |
Rautjärvi | 35 | 33 | 68 | 41 | 60 | 29 | 163 | 103 |
Ruokolahti | 197 | 192 | 241 | 173 | 175 | 92 | 613 | 457 |
Savonlinna | 428 | 459 | 694 | 509 | 427 | 208 | 1549 | 1176 |
Sulkava | 116 | 114 | 155 | 100 | 120 | 50 | 391 | 264 |
Varkaus | 64 | 73 | 162 | 125 | 90 | 44 | 316 | 242 |
Municipality | Pb | Sb | Bb | Ab |
---|---|---|---|---|
m3/1000 | ||||
Enonkoski | 55 | 104 | 49 | 208 |
Savonlinna | 428 | 694 | 427 | 1549 |
All | 483 | 798 | 476 | 1757 |
Total amount of annual growth | 120,609 |
Municipality | Pb | Sb | Bb | Ab |
---|---|---|---|---|
m3/1000 | ||||
Enonkoski | 55 | 104 | 49 | 208 |
Heinävesi | 176 | 416 | 169 | 761 |
Rantasalmi | 77 | 191 | 122 | 390 |
Savonlinna | 428 | 694 | 427 | 1549 |
Sulkava | 116 | 155 | 120 | 391 |
All | 852 | 1560 | 887 | 3299 |
Total amount of annual growth | 220,135 |
Renewable Wood Share | Market Share of Renewable Wood | Transport Distance | EEAP | P5 | P6 | P7 |
---|---|---|---|---|---|---|
% | % | km | EUR/t CO2 eq | € m−3 | ||
80 | 39.8 | 40 | 70 | 27 | 32 | 42 |
90 | 44.7 | 30 | 70 | 33 | 40 | 49 |
100 | 49.8 | 20 | 70 | 40 | 49 | 55 |
80 | 39.8 | 40 | 85 | 24 | 29 | 40 |
90 | 44.7 | 30 | 85 | 32 | 39 | 48 |
100 | 49.8 | 20 | 85 | 40 | 49 | 55 |
80 | 39.8 | 40 | 100 | 22 | 27 | 37 |
90 | 44.7 | 30 | 100 | 31 | 38 | 46 |
100 | 49.8 | 20 | 100 | 40 | 49 | 55 |
Renewable Wood Share | Market Share-Aim of Renewable Wood | Transport Distance | EEAP | P5 | P6 | P7 |
---|---|---|---|---|---|---|
% | % | km | EUR/t CO2 eq | € m−3 | ||
100 | 27.3 | 50 | 70 | 35 | 38 | 51 |
100 | 27.3 | 40 | 70 | 37 | 42 | 52 |
100 | 27.3 | 30 | 70 | 38 | 46 | 54 |
100 | 27.3 | 50 | 85 | 35 | 38 | 51 |
100 | 27.3 | 40 | 85 | 37 | 42 | 52 |
100 | 27.3 | 30 | 85 | 38 | 46 | 54 |
100 | 27.3 | 50 | 100 | 35 | 38 | 51 |
100 | 27.3 | 40 | 100 | 37 | 42 | 52 |
100 | 27.3 | 30 | 100 | 38 | 46 | 54 |
Renewable Wood Share | Market Share of Renewable Wood | Market Share-Aim of Renewable Wood | Transport Distance | EEAP | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
% | % | % | km | EUR/t CO2 eq | € m−3 | ||
48 | 39.8 | 66.3 | 40 | 70 | 10 | 15 | 25 |
54 | 44.7 | 74.6 | 30 | 70 | 14 | 22 | 30 |
60 | 49.8 | 82.9 | 20 | 70 | 19 | 28 | 34 |
48 | 39.8 | 66.3 | 40 | 85 | 4 | 9 | 19 |
54 | 44.7 | 74.6 | 30 | 85 | 9 | 16 | 25 |
60 | 49.8 | 82.9 | 20 | 85 | 15 | 24 | 30 |
48 | 39.8 | 66.3 | 40 | 100 | 13 | 3 | −2 |
54 | 44.7 | 74.6 | 30 | 100 | 4 | 11 | 19 |
60 | 49.8 | 82.9 | 20 | 100 | 10 | 19 | 26 |
Renewable Wood Share | Market Share-Aim of Renewable Wood | Transport Distance | EEAP | P5 | P6 | P7 |
---|---|---|---|---|---|---|
% | % | km | EUR/t CO2 eq | € m−3 | ||
80 | 36.3 | 50 | 70 | 28 | 35 | 43 |
90 | 40.9 | 40 | 70 | 32 | 37 | 47 |
100 | 45.4 | 30 | 70 | 36 | 39 | 51 |
80 | 36.3 | 50 | 85 | 26 | 33 | 41 |
90 | 40.9 | 40 | 85 | 31 | 36 | 46 |
100 | 45.4 | 30 | 85 | 36 | 39 | 51 |
80 | 36.3 | 50 | 100 | 23 | 31 | 39 |
90 | 40.9 | 40 | 100 | 30 | 35 | 45 |
100 | 45.4 | 30 | 100 | 36 | 39 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palander, T. Modeling Techno-Economic Wood Procurement from Renewable Forests for the Sustainable Energy Supply of a CHP Plant. Sustainability 2024, 16, 170. https://doi.org/10.3390/su16010170
Palander T. Modeling Techno-Economic Wood Procurement from Renewable Forests for the Sustainable Energy Supply of a CHP Plant. Sustainability. 2024; 16(1):170. https://doi.org/10.3390/su16010170
Chicago/Turabian StylePalander, Teijo. 2024. "Modeling Techno-Economic Wood Procurement from Renewable Forests for the Sustainable Energy Supply of a CHP Plant" Sustainability 16, no. 1: 170. https://doi.org/10.3390/su16010170
APA StylePalander, T. (2024). Modeling Techno-Economic Wood Procurement from Renewable Forests for the Sustainable Energy Supply of a CHP Plant. Sustainability, 16(1), 170. https://doi.org/10.3390/su16010170