The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Shell
2.2. Characterization of the Materials
2.3. Pre-Wetting Method
2.4. Mixes
2.5. Rehearsal Program
3. Results and Discussion
3.1. Fresh Mortar
3.1.1. Air Content
3.1.2. Bulk Density
3.2. Hardened Mortar
3.2.1. Dry Bulk Density
3.2.2. Compressive Strength
3.2.3. Shear Bond Strength
3.2.4. Water Absorption Due to Capillary Action of Hardened Mortar
4. Conclusions
- In both types of mixtures, the same trend was observed: the gradual incorporation of COS as a partial substitute for sand increased the w/c ratio, affecting the properties of the mortars in both fresh and hardened states. However, when comparing both types of mixtures, those in which COS was pre-wetted exhibited lower w/c ratios and, consequently, superior performance.
- Pre-wetting reduced the absorption potential of COS, preventing the migration of water from the cement paste to the aggregate, thereby maintaining workability and avoiding the need to add extra water to the mix.
- In mortars without pre-wetting, only those with up to 20% COS content met the compressive strength reference established in this research. In contrast, in mortars with COS pre-wetting, this percentage increased to 30%.
- The capillary water absorption improved with the incorporation of COS due to the particle shape (elongated and flat), the pores beneath them, and their preferential horizontal orientation within the mortar mixtures, acting as barriers preventing a capillary water increase. However, these same characteristics, in combination with the low specific density and high water absorption of the COS particles, negatively affected properties such as air content, densities (in both fresh and hardened states), compressive strength, and shear bond strength.
- Pre-wetting is an easy technique to execute, is cheap, does not require specialized equipment, and is environmentally friendly. This technique allows for the replacement of natural sand with COS up to 30% without significantly affecting the mortar properties. Therefore, its use in indoor applications such as plastering is feasible. However, comprehensive durability studies for outdoor applications are necessary.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture. Towards Blue Transformation; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development (SADER). Things You Should Know about Oysters. Available online: https://www.gob.mx/agricultura/articulos/cosas-que-debes-saber-de-los-ostiones (accessed on 18 May 2023).
- de los Santos, C.R.; López Rodríguez, A.S.; Sifuentes Gallardo, P.; Hernández Rivera, M.Á.; Rivera Trejo, J.G.F.; Díaz Flores, L.L. Reuse of “Cassostrea Virginica” Oyster Shells to Obtain a Mortar Binder from Their Milling and Calcination. Espac. I+D Innov. Desarro. 2016, 5, 38–48. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.M.; Yang, B.J.; Jang, J.G. Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar. Materials 2019, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- Chiou, I.J.; Chen, C.H.; Li, Y.H. Using Oyster-Shell Foamed Bricks to Neutralize the Acidity of Recycled Rainwater. Constr. Build. Mater. 2014, 64, 480–487. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. Performance of Mussel Shell as Aggregate in Plain Concrete. Constr. Build. Mater. 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Yoon, G.-L.; Kim, B.-T.; Kim, B.-O.; Han, S.-H. Chemical–Mechanical Characteristics of Crushed Oyster-Shell. Waste Manag. 2003, 23, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ruslan, H.N.; Muthusamy, K.; Syed Mohsin, S.M.; Jose, R.; Omar, R. Oyster Shell Waste as a Concrete Ingredient: A Review. Mater. Today Proc. 2022, 48, 713–719. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Kuo, W.-T.; Lin, C.-C.; Po-Yo, C. Study of the Material Properties of Fly Ash Added to Oyster Cement Mortar. Constr. Build. Mater. 2013, 41, 532–537. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of Seashell Waste in Concrete: A Review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Ubachukwu, O.A.; Okafor, F.O. Towards Green Concrete: Response of Oyster Shell Powder-Cement Concrete to Splitting Tensile Load. Niger. J. Technol. 2020, 39, 363–368. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite Cement Mortars Based on Marine Sediments and Oyster Shell Powder. Mater. Constr. 2016, 66, e080. [Google Scholar] [CrossRef]
- Olivia, M.; Mifshella, A.A.; Darmayanti, L. Mechanical Properties of Seashell Concrete. Procedia Eng. 2015, 125, 760–764. [Google Scholar] [CrossRef]
- Olivia, M.; Oktaviani, R.; Ismeddiyanto. Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Yang, B.; Jang, J.G. Environmentally Benign Production of One-Part Alkali-Activated Slag with Calcined Oyster Shell as an Activator. Constr. Build. Mater. 2020, 257, 119552. [Google Scholar] [CrossRef]
- Le, T.-T.; Park, S.-S.; Lee, J.-C.; Lee, D.-E. Strength Characteristics of Spent Coffee Grounds and Oyster Shells Cemented with GGBS-Based Alkaline-Activated Materials. Constr. Build. Mater. 2021, 267, 120986. [Google Scholar] [CrossRef]
- Choi, S.-G.; Park, S.-S.; Wang, K. Early-Age Strength of Alkali-Activated Slag Mortar Based on Burned Oyster Shell and Other Chemical Activators. J. Mater. Civ. Eng. 2019, 31, 4019186. [Google Scholar] [CrossRef]
- Lu, H.; Sun, Q. Preparation and Strength Formation Mechanism of Calcined Oyster Shell, Red Mud, Slag, and Iron Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 2199. [Google Scholar] [CrossRef] [PubMed]
- Falade, F. An Investigation of Periwinkle Shells as Coarse Aggregate in Concrete. Build. Environ. 1995, 30, 573–577. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Baraud, F.; Leleyter, L. Durability of Pervious Concrete Using Crushed Seashells. Constr. Build. Mater. 2017, 135, 137–150. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Salmiati; Hussin, M.W.; Khan, R.; Rafieizonooz, M. Properties of Quiet Pervious Concrete Containing Oil Palm Kernel Shell and Cockleshell. Appl. Acoust. 2017, 122, 113–120. [Google Scholar] [CrossRef]
- Yoon, H.; Park, S.; Lee, K.; Park, J. Oyster Shell as Substitute for Aggregate in Mortar. Waste Manag. Res. J. Sustain. Circ. Econ. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- Safi, B.; Saidi, M.; Daoui, A.; Bellal, A.; Mechekak, A.; Toumi, K. The Use of Seashells as a Fine Aggregate (by Sand Substitution) in Self-Compacting Mortar (SCM). Constr. Build. Mater. 2015, 78, 430–438. [Google Scholar] [CrossRef]
- Yang, E.-I.; Yi, S.-T.; Leem, Y.-M. Effect of Oyster Shell Substituted for Fine Aggregate on Concrete Characteristics: Part I. Fundamental Properties. Cem. Concr. Res. 2005, 35, 2175–2182. [Google Scholar] [CrossRef]
- Yang, E.-I.; Kim, M.-Y.; Park, H.-G.; Yi, S.-T. Effect of Partial Replacement of Sand with Dry Oyster Shell on the Long-Term Performance of Concrete. Constr. Build. Mater. 2010, 24, 758–765. [Google Scholar] [CrossRef]
- Cuadrado-Rica, H.; Sebaibi, N.; Boutouil, M.; Boudart, B. Properties of Ordinary Concretes Incorporating Crushed Queen Scallop Shells. Mater. Struct. 2016, 49, 1805–1816. [Google Scholar] [CrossRef]
- Eo, S.-H.; Yi, S.-T. Effect of Oyster Shell as an Aggregate Replacement on the Characteristics of Concrete. Mag. Concr. Res. 2015, 67, 833–842. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Okechukwu, U.E.; Olukanni, D.O.; Bassey, D.E.; Okorie, U.E.; Adebesin, J.; Jolayemi, K.J. Effective Economic Combination of Waste Seashell and River Sand as Fine Aggregate in Green Concrete. Sustainability 2022, 14, 12822. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Wang, H.-Y.; Shu, C.-Y.; Su, D.-S. Engineering Properties of Controlled Low-Strength Materials Containing Waste Oyster Shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef]
- Liao, Y.; Shi, H.; Zhang, S.; Da, B.; Chen, D. Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling. Materials 2021, 14, 6813. [Google Scholar] [CrossRef]
- Chen, D.; Pan, T.; Yu, X.; Liao, Y.; Zhao, H. Properties of Hardened Mortars Containing Crushed Waste Oyster Shells. Environ. Eng. Sci. 2019, 36, 1079–1088. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, P.; Pan, T.; Liao, Y.; Zhao, H. Evaluation of the Eco-Friendly Crushed Waste Oyster Shell Mortars Containing Supplementary Cementitious Materials. J. Clean. Prod. 2019, 237, 117811. [Google Scholar] [CrossRef]
- Liu, R.; Chen, D.; Cai, X.; Deng, Z.; Liao, Y. Hardened Properties of Mortar Mixtures Containing Pre-Treated Waste Oyster Shells. J. Clean. Prod. 2020, 266, 121729. [Google Scholar] [CrossRef]
- González, J.G.; Robles, D.R.; Valdés, A.J.; Morán del Pozo, J.M.; Romero, M.I.G. Influence of Moisture States of Recycled Coarse Aggregates on the Slump Test. Adv. Mater. Res. 2013, 742, 379–383. [Google Scholar] [CrossRef]
- Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. Influence of Moisture Conditioning of Recycled Aggregates on the Properties of Fresh and Hardened Concrete. J. Clean. Prod. 2013, 54, 282–288. [Google Scholar] [CrossRef]
- Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. Mechanical Properties Modeling of Recycled Aggregate Concrete. Constr. Build. Mater. 2010, 24, 421–430. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. Influence of Pre-Soaked Recycled Fine Aggregate on the Properties of Masonry Mortar. Constr. Build. Mater. 2014, 70, 71–79. [Google Scholar] [CrossRef]
- Mora-Ortiz, R.S.; Del Angel-Meraz, E.; Díaz, S.A.; Magaña-Hernández, F.; Munguía-Balvanera, E.; Pantoja Castro, M.A.; Alavez-Ramírez, J.; Alejandro Quiroga, L. Effect of Pre-Wetting Recycled Mortar Aggregate on the Mechanical Properties of Masonry Mortar. Materials 2021, 14, 1547. [Google Scholar] [CrossRef]
- Zhao, Z.; Remond, S.; Damidot, D.; Xu, W. Influence of Fine Recycled Concrete Aggregates on the Properties of Mortars. Constr. Build. Mater. 2015, 81, 179–186. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Pascual, J.; Martín-Morales, M.; Valverde-Palacios, I.; Zamorano, M. Effects of Water to Cement Ratio, Recycled Fine Aggregate and Air Entraining/Plasticizer Admixture on Masonry Mortar Properties. Constr. Build. Mater. 2020, 230, 116929. [Google Scholar] [CrossRef]
- Izquierdo Domínguez, F.G.; Mora Ortiz, R.S.; Mora Ortiz, T.d.J.; Munguía Balvanera, E. Uso Del Vidrio Molido Como Sustituto Del Agregado Fino En Mezclas de Mortero de Albañilería. Espac. I+D Innov. Desarro. 2022, 11, 48–61. [Google Scholar] [CrossRef]
- Varhen, C.; Carrillo, S.; Ruiz, G. Experimental Investigation of Peruvian Scallop Used as Fine Aggregate in Concrete. Constr. Build. Mater. 2017, 136, 533–540. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Leleyter, L.; Baraud, F. Valorization of Seashell By-Products in Pervious Concrete Pavers. Constr. Build. Mater. 2013, 49, 151–160. [Google Scholar] [CrossRef]
- Ballester, P.; Mármol, I.; Morales, J.; Sánchez, L. Use of Limestone Obtained from Waste of the Mussel Cannery Industry for the Production of Mortars. Cem. Concr. Res. 2007, 37, 559–564. [Google Scholar] [CrossRef]
- ASTM C33-07; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C136M-19; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C128-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- UNE-EN 1744:2013; Tests for Chemical Properties of Aggregates—Part 1: Chemical Analysis. Spanish Association for Standardization: Madrid, Spain, 2013.
- Liu, W.; Huang, R.; Fu, J.; Tang, W.; Dong, Z.; Cui, H. Discussion and Experiments on the Limits of Chloride, Sulphate and Shell Content in Marine Fine Aggregates for Concrete. Constr. Build. Mater. 2018, 159, 725–733. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- Yousri, K.M.; Osman, T.A.; Ezzat, E.-S. International Standards and Codes for Chloride Limits in Reinforced Concrete Structures; Housing & Building Research Center: Cairo, Egypt, 2020. [Google Scholar]
- NMX-C-414-ONNCCE; Building Industry—Hydraulic Cements—Specifications and Testing Methods. National Body for Standardization and Certification of Construction and Building: Mexico City, Mexico, 2017.
- ASTM C150/C150M-19a; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2019.
- Bosiljkov, V.B. SCC Mixes with Poorly Graded Aggregate and High Volume of Limestone Filler. Cem. Concr. Res. 2003, 33, 1279–1286. [Google Scholar] [CrossRef]
- Fonseca, N.; de Brito, J.; Evangelista, L. The Influence of Curing Conditions on the Mechanical Performance of Concrete Made with Recycled Concrete Waste. Cem. Concr. Compos. 2011, 33, 637–643. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. Use of Fine Recycled Aggregates from Ceramic Waste in Masonry Mortar Manufacturing. Constr. Build. Mater. 2013, 40, 679–690. [Google Scholar] [CrossRef]
- Dapena, E.; Alaejos, P.; Lobet, A.; Pérez, D. Effect of Recycled Sand Content on Characteristics of Mortars and Concretes. J. Mater. Civ. Eng. 2011, 23, 414–422. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C185-20; Standard Test Method for Air Content of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C109-21; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2021.
- NMX-C-082-ONNCCE; Building Industry—Masonry—Determination of Shear Bond Strength of Mortar to Masonry Units—Test Method. National Body for Standardization and Certification of Construction and Building: Mexico City, Mexico, 2013.
- UNE-EN 1015-7:1999; Methods of Test for Mortar for Masonry—Part 7: Determination of Air Content of Fresh Mortar. Spanish Association for Standardization (Aenor): Madrid, Spain, 1999.
- Martínez-García, C.; González-Fonteboa, B.; Carro-López, D.; Martínez-Abella, F. Design and Properties of Cement Coating with Mussel Shell Fine Aggregate. Constr. Build. Mater. 2019, 215, 494–507. [Google Scholar] [CrossRef]
- Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; de Brito, J. Maximum Feasible Use of Recycled Sand from Construction and Demolition Waste for Eco-Mortar Production—Part-I: Ceramic Masonry Waste. J. Clean. Prod. 2015, 87, 692–706. [Google Scholar] [CrossRef]
- Ledesma, E.F.; Jiménez, J.R.; Fernández, J.M.; Galvín, A.P.; Agrela, F.; Barbudo, A. Properties of Masonry Mortars Manufactured with Fine Recycled Concrete Aggregates. Comput. Chem. Eng. 2014, 71, 289–298. [Google Scholar] [CrossRef]
- ASTM C270-19; Standard Specification for Mortar for Unit Masonry. ASTM International: West Conshohocken, PA, USA, 2019.
- Silva, J.; de Brito, J.; Veiga, R. Incorporation of Fine Ceramics in Mortars. Constr. Build. Mater. 2009, 23, 556–564. [Google Scholar] [CrossRef]
- Amorim, L.V.; Lira, H.L.; Ferreira, H.C. Use of Residential Construction Waste and Residues from Red Ceramic Industry in Alternative Mortars. J. Environ. Eng. 2003, 129, 916–920. [Google Scholar] [CrossRef]
- Elliott Richardson, A.; Fuller, T. Sea Shells Used as Partial Aggregate Replacement in Concrete. Struct. Surv. 2013, 31, 347–354. [Google Scholar] [CrossRef]
Property | Standard | Limit Value | NS | COS |
---|---|---|---|---|
Fine content (%) | ASTM C136 [46] | ≤30 | 4.5 | 6.2 |
Specific gravity (gr/cm3) | ASTM C128 [47] | No limit | 2.65 | 2.58 |
Water absorption (%) | ASTM C128 [47] | No limit | 1.25 | 3.1 |
Soluble sulphates (% SO3) | EN 1744-1 [48] | ≤0.8 | <0.01 | <0.01 |
Chlorides (% Cl) | EN 1744-1 [48] | ≤0.06 | 0.002 | 0.093 |
Mortar Type | Aggregate Type | NS/COS (%) | NS (g) | COS (g) | CEM (g) | Pre-Wetting Water (g) | Mixing Water (g) | Total Water (g) | Consistency Index (mm) | W/C |
---|---|---|---|---|---|---|---|---|---|---|
Control | Natural sand | 100/0 | 2200 | 0 | 650 | 0 | 380 | 380 | 175 | 0.585 |
COSnh-10 | COS without pre-wetting | 90/10 | 1980 | 220 | 650 | 0 | 380 | 385 | 174 | 0.592 |
COSnh-20 | 80/20 | 1760 | 440 | 650 | 0 | 380 | 392 | 174 | 0.603 | |
COSnh-30 | 70/30 | 1540 | 660 | 650 | 0 | 380 | 397 | 176 | 0.611 | |
COSnh-40 | 60/40 | 1320 | 880 | 650 | 0 | 380 | 404 | 175 | 0.622 | |
COSnh-50 | 50/50 | 1100 | 1100 | 650 | 0 | 380 | 411 | 174 | 0.632 | |
COSnh-60 | 40/60 | 880 | 1320 | 650 | 0 | 380 | 418 | 175 | 0.643 | |
COSw-10 | COS with pre-wetting | 90/10 | 1980 | 220 | 650 | 5 | 380 | 385 | 176 | 0.592 |
COSw-20 | 80/20 | 1760 | 440 | 650 | 9 | 380 | 389 | 173 | 0.599 | |
COSw-30 | 70/30 | 1540 | 660 | 650 | 14 | 380 | 394 | 172 | 0.606 | |
COSw-40 | 60/40 | 1320 | 880 | 650 | 18 | 380 | 398 | 171 | 0.613 | |
COSw-50 | 50/50 | 1100 | 1100 | 650 | 23 | 380 | 403 | 170 | 0.620 | |
COSw-60 | 40/60 | 880 | 1320 | 650 | 27 | 380 | 407 | 172 | 0.627 |
Test | Standard | Specimens and Dimensions | Curing Time (Days) |
---|---|---|---|
Fresh mortar | |||
Entrained air mortar | ASTM C185 [60] | 3 | -- |
Bulk density of the fresh | ASTM C185 [60] | 3 | -- |
Hardened mortar | |||
Dry bulk density | ASTM C642 [61] | 3 (50 × 50 × 50 mm) | 28 |
Compressive strength | ASTM C109 [62] | 3 (50 × 50 × 50 mm) | 28 |
Shear bond strength | NMX-C-082-ONNCCE [63] | 5 (2 pieces of 50 × 100 × 200 mm and 2 pieces of 50 × 100 × 100 mm) | 28 |
Water absorption coefficient due to capillary action | EN 1015-18 [64] | 3 (40 × 40 × 80 mm) | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Ortiz, R.S.; Del Angel-Meraz, E.; Díaz, S.A.; Munguía-Balvanera, E.; Magaña-Hernández, F.; Alavez-Ramírez, J.; Pantoja Castro, M.A.; Torres-Hernández, J.d.R. The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell. Sustainability 2024, 16, 199. https://doi.org/10.3390/su16010199
Mora-Ortiz RS, Del Angel-Meraz E, Díaz SA, Munguía-Balvanera E, Magaña-Hernández F, Alavez-Ramírez J, Pantoja Castro MA, Torres-Hernández JdR. The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell. Sustainability. 2024; 16(1):199. https://doi.org/10.3390/su16010199
Chicago/Turabian StyleMora-Ortiz, René Sebastián, Ebelia Del Angel-Meraz, Sergio A. Díaz, Emmanuel Munguía-Balvanera, Francisco Magaña-Hernández, Justino Alavez-Ramírez, Mayra Agustina Pantoja Castro, and Jazmín del Rosario Torres-Hernández. 2024. "The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell" Sustainability 16, no. 1: 199. https://doi.org/10.3390/su16010199
APA StyleMora-Ortiz, R. S., Del Angel-Meraz, E., Díaz, S. A., Munguía-Balvanera, E., Magaña-Hernández, F., Alavez-Ramírez, J., Pantoja Castro, M. A., & Torres-Hernández, J. d. R. (2024). The Use of Pre-Wetting to Improve the Mechanical Behavior of Masonry Mortar Elaborated with Crushed Oyster Shell. Sustainability, 16(1), 199. https://doi.org/10.3390/su16010199