State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review
Abstract
:1. Introduction
- To understand the behavior and dynamics of DC-DC converters under different operating conditions.
- To simulate the behavior of the DC-DC converter before building a physical prototype.
- To facilitate the analysis of the converter’s performance metrics, such as its efficiency, voltage regulation, and transient response.
- To facilitate the design and analysis of control algorithms to achieve stable and desired system behavior.
- To perform sensitivity analysis to understand how variations in component values and parameters affect the performance of the converter. This information is valuable for robust design.
- Mathematical models help us to analyze the transient response of the system, ensuring that it meets the required specifications.
- Mathematical models are used in educational settings to teach students about the principles of DC-DC converters. They also serve as a foundation for research in power electronics and related fields.
2. Modeling of DC-DC Converters
2.1. DC-DC Buck Converter
2.2. DC-DC Boost Converter
2.3. Modeling of Buck-Boost Converter
2.4. Modeling of ĆUK Converter
2.5. Modeling of Sepic Converter
3. Designing of Converters
4. Simulation Results and Discussion
Parameters | Value |
---|---|
Maximum power () | 200 W |
Cells per module | 54 |
Open-circuit voltage () | 32.9 V |
Short-circuit current () | 8.21 A |
Maximum power voltage () | 26.3 V |
Maximum power current () | 7.61 A |
Voltage temperature coefficient | −0.123 V/C |
Current temperature coefficient | 0.00318 A/C |
Item | Buck | Boost | Buck-Boost | ĆUK | SEPIC |
---|---|---|---|---|---|
0.7 | 3.33 | 2.33 | 2.33 | 2.33 | |
≥ 1.13 | ≥ 25.56 | ≥ 12.52 | ≥ 12.52 | ≥ 12.52 | |
≥ 84.75 H | ≥ 402.50 H | ≥ 402.50 H | ≥ 402.50 H | ≥ 402.5 H | |
- | - | - | ≥ 402.50 H | ≥ 402.50 H | |
≥ 221.24 F | ≥ 273.89 F | ≥ 559.11 F | ≥ 685 F | ≥ 685 F | |
- | - | - | ≥ 19.97 F | ≥ 559.11 F | |
≥ 1300 F | ≥ 108.70 F | ≥ 1300 F | ≥ 108.70 F | ≥ 108.70 F |
Converter | Settling Time (ms) | Overshoot (%) |
---|---|---|
Buck | 17.1 | 69 |
Boost | 1.76 | 23.5 |
Buck-Boost | 9.79 | 47.1 |
ĆUK | 103 | 46 |
SEPIC | 118 | 96.7 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Mekhilef, S.; Mubin, M.; Tey, K.S.; Kermadi, M. An enhanced scanning technique for flexible power point tracking under partial shading condition. Sol. Energy 2023, 262, 111817. [Google Scholar] [CrossRef]
- Ghodusinejad, M.H.; Ghodrati, A.; Zahedi, R.; Yousefi, H. Multi-criteria modeling and assessment of PV system performance in different climate areas of Iran. Sustain. Energy Technol. Assess. 2022, 53, 102520. [Google Scholar] [CrossRef]
- Khah, M.V.; Zahedi, R.; Eskandarpanah, R.; Mirzaei, A.M.; Farahani, O.N.; Malek, I.; Rezaei, N. Optimal sizing of residential photovoltaic and battery system connected to the power grid based on the cost of energy and peak load. Heliyon 2023, 9, e14414. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Sher, H.A.; Addoweesh, K.E.; El-Leathy, A.; Al-Ansary, H.; Al-Haddad, K. Simulation of sun tracking system for point focus fresnel collector. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1023–1028. [Google Scholar]
- Katche, M.L.; Makokha, A.B.; Zachary, S.O.; Adaramola, M.S. A comprehensive review of maximum power point tracking (mppt) techniques used in solar pv systems. Energies 2023, 16, 2206. [Google Scholar] [CrossRef]
- Sah, B.; Kumar, G.V.E.S. A comparative study of different MPPT techniques using different dc-dc converters in a standalone PV system. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1690–1695. [Google Scholar]
- Shaikh, A.M.; Shaikh, M.F.; Shaikh, S.A.; Krichen, M.; Rahimoon, R.A.; Qadir, A. Comparative analysis of different MPPT techniques using boost converter for photovoltaic systems under dynamic shading conditions. Sustain. Energy Technol. Assess. 2023, 57, 103259. [Google Scholar]
- Hossain, M.; Rahim, N. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renew. Sustain. Energy Rev. 2018, 81, 205–230. [Google Scholar] [CrossRef]
- Tan, S.C.; Lai, Y.M.; Chi, K.T. General design issues of sliding-mode controllers in DC–DC converters. IEEE Trans. Ind. Electron. 2008, 55, 1160–1174. [Google Scholar]
- Perry, A.G.; Feng, G.; Liu, Y.F.; Sen, P.C. A design method for PI-like fuzzy logic controllers for DC–DC converter. IEEE Trans. Ind. Electron. 2007, 54, 2688–2696. [Google Scholar] [CrossRef]
- Forsyth, A.; Mollov, S. Modelling and control of DC-DC converters. Power Eng. J. 1998, 12, 229–236. [Google Scholar] [CrossRef]
- Tan, R.H.; Hoo, L.Y. DC-DC converter modeling and simulation using state space approach. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015; pp. 42–47. [Google Scholar]
- Priewasser, R.; Agostinelli, M.; Unterrieder, C.; Marsili, S.; Huemer, M. Modeling, control, and implementation of DC–DC converters for variable frequency operation. IEEE Trans. Power Electron. 2013, 29, 287–301. [Google Scholar] [CrossRef]
- Ghodusinejad, M.H.; Noorollahi, Y.; Zahedi, R. Optimal site selection and sizing of solar EV charge stations. J. Energy Storage 2022, 56, 105904. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Predictive Control of Voltage Source Inverter: An Online Reinforcement Learning Solution. IEEE Trans. Ind. Electron. 2023, 54, 495–503. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Finite control-set learning predictive control for power converters. IEEE Trans. Ind. Electron. 2023, 2023, 1–7. [Google Scholar] [CrossRef]
- Guesmi, K.; Hamzaoui, A. On the modelling of DC-DC converters: An enhanced approach. Int. J. Numer. Model. Electron. Netw. Devices Fields 2011, 24, 36–57. [Google Scholar] [CrossRef]
- Lehman, B.; Bass, R.M. Switching frequency dependent averaged models for PWM DC-DC converters. IEEE Trans. Power Electron. 1996, 11, 89–98. [Google Scholar] [CrossRef]
- Hussain, A.; Sher, H.A.; Murtaza, A.F.; Al-Haddad, K. Improved voltage controlled three phase voltage source inverter using model predictive control for standalone system. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5308–5313. [Google Scholar]
- Guan, Y.; Wang, Y.; Wang, W.; Xu, D. Analysis and design of a high-frequency DC/DC converter based on a resonant rectifier. IEEE Trans. Ind. Electron. 2017, 64, 8492–8503. [Google Scholar] [CrossRef]
- Hasanpour, S.; Baghramian, A.; Mojallali, H. Analysis and modeling of a new coupled-inductor buck–boost DC–DC converter for renewable energy applications. IEEE Trans. Power Electron. 2019, 35, 8088–8101. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Zhang, B.; Qiu, D. A modeling and analysis method for fractional-order DC–DC converters. IEEE Trans. Power Electron. 2016, 32, 7034–7044. [Google Scholar] [CrossRef]
- Levis, C.; O’Loughlin, C.; O’Donnell, T.; Hill, M. A comprehensive state-space model of two-stage grid-connected PV systems in transient network analysis. Int. J. Electr. Power Energy Syst. 2019, 110, 441–453. [Google Scholar] [CrossRef]
- Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Shams Eng. J. 2021, 12, 3747–3763. [Google Scholar] [CrossRef]
- Rim, C.T.; Joung, G.B.; Cho, G.H. Practical switch based state-space modeling of DC-DC converters with all parasitics. IEEE Trans. Power Electron. 1991, 6, 611–617. [Google Scholar] [CrossRef]
- Azer, P.; Emadi, A. Generalized state space average model for multi-phase interleaved buck, boost and buck-boost DC-DC converters: Transient, steady-state and switching dynamics. IEEE Access 2020, 8, 77735–77745. [Google Scholar] [CrossRef]
- Ghanbari, N.; Shabestari, P.M.; Mehrizi-Sani, A.; Bhattacharya, S. State-space modeling and reachability analysis for a dc microgrid. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Virtual, 17–21 March 2019; pp. 2882–2886. [Google Scholar]
- Chewale, M.A.; Wanjari, R.A.; Savakhande, V.B.; Sonawane, P.R. A review on isolated and non-isolated DC-DC converter for PV application. In Proceedings of the 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), Kannur, India, 23–24 March 2018; pp. 399–404. [Google Scholar]
- Patel, B.D.; Rana, A. A pole-placement approach for buck converter based PV array Emulator. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–5. [Google Scholar]
- Darbali-Zamora, R.; Ortiz-Rivera, E.I. A State Space Average Model for Dynamic Microgrid Based Space Station Simulations. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 2957–2962. [Google Scholar]
- Yao, J.; Zheng, K.; Abramovitz, A. Small-signal model of switched inductor boost converter. IEEE Trans. Power Electron. 2018, 34, 4036–4040. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, X.; Wang, K.; Li, T.; Chen, J. Design for boost DC-DC converter controller based on state-space average method. Integr. Ferroelectr. 2016, 172, 152–159. [Google Scholar] [CrossRef]
- Duong, M.Q.; Sava, G.N.; Scripcariu, M.; Mussetta, M. Design and simulation of PI-type control for the Buck Boost converter. In Proceedings of the 2017 International Conference on Energy and Environment (CIEM), Bucharest, Romania, 19–20 October 2017; pp. 79–82. [Google Scholar]
- Cuk, S.M.; Middlebrook, R.D. DC-to-DC Switching Converter. US Patent 4,184,197, 28 September 1980. [Google Scholar]
- Darwish, A.; Holliday, D.; Ahmed, S.; Massoud, A.M.; Williams, B.W. A single-stage three-phase inverter based on Cuk converters for PV applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 797–807. [Google Scholar] [CrossRef]
- Chiang, S.; Shieh, H.J.; Chen, M.C. Modeling and control of PV charger system with SEPIC converter. IEEE Trans. Ind. Electron. 2008, 56, 4344–4353. [Google Scholar] [CrossRef]
- Kircioğlu, O.; Ünlü, M.; Camur, S. Modeling and analysis of DC-DC SEPIC converter with coupled inductors. In Proceedings of the 2016 International Symposium on Industrial Electronics (INDEL), Banja Luka, Bosnia and Herzegovina, 3–5 November 2016; pp. 1–5. [Google Scholar]
- Taghvaee, M.; Radzi, M.; Moosavain, S.; Hizam, H.; Marhaban, M.H. A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 17, 216–227. [Google Scholar] [CrossRef]
- Verma, M.; Kumar, S.S. Hardware design of sepic converter and its analysis. In Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March 2018; pp. 1–4. [Google Scholar]
- Babaei, E.; Mahmoodieh, M.E.S. Calculation of output voltage ripple and design considerations of SEPIC converter. IEEE Trans. Ind. Electron. 2013, 61, 1213–1222. [Google Scholar] [CrossRef]
- Seguel, J.L.; Seleme, S.I., Jr.; Morais, L.M. Comparative study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC converters using different MPPT methods for photovoltaic applications. Energies 2022, 15, 7936. [Google Scholar] [CrossRef]
- Panigrahi, R.; Mishra, S.K.; Joshi, A.; Ngo, K.D. DC-DC converter synthesis: An inverse problem. IEEE Trans. Power Electron. 2020, 35, 12633–12638. [Google Scholar] [CrossRef]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ned, M.; Ullmann, F.; Robbins, W. Power Electronics; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Xiao, W.; Ozog, N.; Dunford, W.G. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron. 2007, 54, 1696–1704. [Google Scholar] [CrossRef]
- Xiao, W. Photovoltaic Power System: Modeling, Design, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Datasheet Kyocera KC200GT. Available online: https://www.datasheets.com/en/part-details/kc200gt-kyocera62747508 (accessed on 7 August 2023).
- Solanki, C.S. Solar Photovoltaics: Fundamentals, Technologies and Applications; Phi Learning Pvt. Ltd.: New Delhi, India, 2015. [Google Scholar]
- Nadeem, A.; Sher, H.A.; Murtaza, A.F.; Ahmed, N.; Al-Durra, A. An improved sliding mode control–based GMPPT algorithm for photovoltaic system. Trans. Inst. Meas. Control 2023, 45, 1726–1737. [Google Scholar] [CrossRef]
- Shan, Z.; Tan, S.C.; Chi, K.T. Transient mitigation of dc–dc converters for high output current slew rate applications. IEEE Trans. Power Electron. 2012, 28, 2377–2388. [Google Scholar] [CrossRef]
- Zhen, S.; Zeng, P.; Chen, J.; Zhou, W.; Wang, J.; Luo, P.; Zhang, B. Transient response improvement of DC-DC converter by current mode variable on time control. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 603–606. [Google Scholar]
- Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Murtaza, A.F.; Sher, H.A.; Khan, F.U.; Nasir, A.; Spertino, F. Efficient mpp tracking of photovoltaic (pv) array through modified boost converter with simple smc voltage regulator. IEEE Trans. Sustain. Energy 2022, 13, 1790–1801. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, M.; Majji, M.; Skelton, R.E. Q-Markov Covariance equivalent realizations for unstable and marginally stable systems. Mech. Syst. Signal Process. 2023, 196, 110343. [Google Scholar] [CrossRef]
- Levine, W.S. Control System Fundamentals; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Hussain, A.; Sher, H.A.; Murtaza, A.F.; Al-Haddad, K. A novel sensor-less current technique for photovoltaic system using DC transformer model based model predictive control. Int. J. Electr. Power Energy Syst. 2020, 122, 106165. [Google Scholar] [CrossRef]
Converter | (W) | (V) | ||
---|---|---|---|---|
1000 | 500 | 1000 | 500 | |
Buck | 1156 | 587 | 50.5 | 51.6 |
Boost | 1147 | 583 | 50.2 | 50.1 |
Buck-Boost | 1131 | 584 | 52.2 | 53.8 |
ĆUK | 1136 | 582 | 49.7 | 50.9 |
SEPIC | 1133 | 50.8 | 585 | 50.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.U.; Murtaza, A.F.; Noman, A.M.; Sher, H.A.; Zafar, M. State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review. Sustainability 2024, 16, 202. https://doi.org/10.3390/su16010202
Khan MU, Murtaza AF, Noman AM, Sher HA, Zafar M. State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review. Sustainability. 2024; 16(1):202. https://doi.org/10.3390/su16010202
Chicago/Turabian StyleKhan, M. Usman, Ali Faisal Murtaza, Abdullah M. Noman, Hadeed Ahmed Sher, and Maria Zafar. 2024. "State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review" Sustainability 16, no. 1: 202. https://doi.org/10.3390/su16010202
APA StyleKhan, M. U., Murtaza, A. F., Noman, A. M., Sher, H. A., & Zafar, M. (2024). State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review. Sustainability, 16(1), 202. https://doi.org/10.3390/su16010202