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Abstract: Today, many countries are focused on smart grids due to their positive effects on all sectors
of a power system, including those of operators, utilities, and consumers. Furthermore, the usage
of renewable energy sources for power production is quickly expanding due to the depletion of
fossil fuels and the emissions caused by their use. Additionally, intermittent power generation from
renewable energy sources, such as wind and solar, necessitates the use of energy storage devices with
which to ensure a continuous power supply to meet demand. This can be accomplished by employing
an appropriate storage device with a sufficient storage capacity, thus enabling a grid-connected solar
PV and wind system to have enhanced performance and to reduce adverse effects on the power
quality of the grid. In this study, a probabilistic planning model that takes the intermittent natures of
solar irradiances, wind speeds, and system demands into account is introduced. A novel criterion
is also adopted to map the three-dimensional spaces of intermittency with the proposed model for
optimizing BESS charging/discharging decisions. This planning model is intended to minimize the
economic costs of investment and operation of a battery energy storage system (BESS) for a planning
period. Moreover, the substation and feeder upgrade costs, as well as the overall system loss costs,
are included in the proposed model. Particle swarm optimization (PSO) is utilized to find the optimal
sizing, location, and operation of energy storage systems. The proposed methodology was validated
using a 69-bus distribution system.

Keywords: BESS; PV-based DG; wind-based DG; power system planning; smart distribution network;
PSO

1. Introduction

Electricity distribution networks hold a pivotal position within power delivery sys-
tems, which is primarily because of their proximity to end users. Over the last few years,
distribution networks have witnessed the integration of numerous innovative technologies
in response to various technical and economic factors. Among these advancements, energy
storage systems (ESSs) have emerged as a technology poised to assume a vital role in the
energy sector’s imminent future. ESSs are anticipated to deliver electricity with the utmost
cost efficiency and the requisite level of quality [1].

ESSs come in various forms, from traditional batteries to cutting-edge technologies,
such as pumped hydro energy storage and thermal energy storage. The planning, deploy-
ment, and management of these systems are at the heart of the energy transition, enabling
us to harness the full potential of renewable resources and enhance grid resilience.

The challenges of ESS planning are formidable but surmountable. Energy storage plan-
ning requires interdisciplinary collaboration among engineers, policymakers, economists,
and environmentalists. It demands a holistic approach that considers not only techni-
cal feasibility but also the socioeconomic and environmental impacts of energy storage
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projects. It necessitates innovation in policy frameworks, market structures, and regulatory
mechanisms to incentivize investments in energy storage infrastructure.

Saudi Arabia has taken significant measures to incorporate renewable energy sources—
alongside its traditional reliance on oil and gas—within the national energy blend. Saudi
Vision 2030 lays out a strategic plan for the nation to reduce its dependence on oil in the
energy mix, acknowledging that Saudi Arabia is currently progressing in the development
of a competitive renewable energy sector. One of the main forces behind sustainability
is the development of renewable energy projects, which will help reduce emissions and
replace high-value fuel in power production. Indeed, energy storage can help address the
problems with renewable energy, such as intermittent solar and wind output power levels.

ESSs possess the ability to swiftly address substantial shifts in energy demand, en-
hancing grid responsiveness, minimizing the necessity for constructing backup power
facilities, and effectively mitigating the intermittency challenges associated with solar and
wind energy generation. However, incorporating ESSs in a distribution system without
optimizing their size, location, and operation mechanisms will affect the stability and
dependability of the power system. Therefore, optimizing the allocation and capacity of
ESSs within a network is essential for enhancing their performance and improving the
overall performance and quality of a power system.

The selection of an ESS is dependent on the application of its use. For example,
suppose that it is used to supply power during transitions between power sources. In
that case, one should select either capacitor storage or an SMES; however, when it is used
for power quality applications, one should choose an ESS such as a PHS, flywheel, SMES,
CAES, or capacitor. Further, if energy management is the desired application, a battery
energy storage system (BESS) is the most proper choice of ESS; therefore, in this study, a
BESS was chosen as the candidate ESS in the application under study since its rated power
and discharge time were suitable for the application of interest [2].

Based on a survey of the literature, the following referenced articles contributed to the
understanding and advancement of BESSs from various perspectives. Ref. [3] presented
a comprehensive review encompassing BESS technologies, optimization objectives, con-
straints, approaches, and outstanding issues, providing a broad overview of the current
landscape. Ref. [4] focused on the specific context of New York State while investigating
the impacts of BESS technologies and the integration of renewable energy on the energy
transition, offering insights into regional dynamics. Ref. [5] presented a modeling approach
for a large-scale BESS and emphasized its application to power grid analysis. Ref. [6]
contributed to the integration of BESSs into multi-megawatt grid-connected photovoltaic
systems and addressed the complexities of large-scale renewable integration. Ref. [7]
offered a methodological framework for site selection and capacity setting for BESSs in
distribution networks with renewable sources, contributing practical strategies for opti-
mal deployment. Additionally, there has been much research providing comprehensive
overviews of ESSs in distribution networks with a focus on placement, sizing, operation,
and power quality to enhance the performance and reliability of distribution networks.
Ref. [8] offered an extensive overview that covered various aspects of ESSs in distribution
networks. Ref. [9] contributed insights into the optimal location, selection, and operation of
BESSs and renewable distributed generation in medium–low-voltage distribution networks.
Ref. [10] presented an approach based on genetic algorithms for the integration of energy
storage systems in AC distribution networks that addressed their optimal location, selec-
tion, and operation. Ref. [11] focused on low-voltage residential networks in the UK while
addressing the optimal placement, sizing, and dispatch of multiple BESSs. Ref. [12] intro-
duced a PSO algorithm for optimizing energy storage capacities in distribution networks
while considering probability correlations between wind farms. Ref. [13] investigated
the installation of battery energy storage systems with renewable energy resources in
distribution systems while considering various load models. Ref. [14] discussed energy
storage optimization in the configuration of active distribution networks using distributed
approaches. Ref. [15] explored the optimal allocation and operation of an energy storage
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system with high-penetration grid-connected photovoltaic systems, contributing to the
sustainable integration of renewable energy in distribution networks. Ref. [16] introduced
the Whale Optimization Algorithm for optimizing the placement and sizing of BESSs to
reduce losses, contributing to efficiency improvements in distribution networks. Ref. [17]
focused on energy storage system scheduling for peak demand reduction by employing
evolutionary combinatorial optimization techniques to enhance sustainable energy tech-
nologies. Ref. [18] addressed distributed generation and energy storage system planning for
a distribution system operator and highlighted the importance of integrated planning for
improving system efficiency. Refs. [19,20] contributed to optimal ESS allocation for benefit
maximization and load shedding to improve the reliability of distribution systems and
employed advanced optimization techniques, respectively. Ref. [21] provided an economic
analysis model for an ESS applied to a distribution substation and offered insights into the
economic feasibility of ESS integration. Ref. [22] conducted an analysis of the adequacy and
economics of distribution systems integrated with electric energy storage and renewable
energy resources, and they emphasized the importance of considering both adequacy and
economic aspects in system planning.

Even though numerous studies have explored various optimization methods for en-
ergy storage technologies (ESTs), there is a noticeable scarcity of comprehensive information
and up-to-date data pertaining to the comprehensive planning and application potential
of ESSs for the integration of renewable energy sources (RESs) into distribution planning.
In addition, in response to the escalating energy demand, the heightened integration of
renewable sources, and the recent evolution of grid demand, there is a critical need for
comprehensive energy storage planning strategies. Additionally, there is a pressing need for
further research that assesses the impacts of ESSs on distribution systems while considering
both technical and economic constraints. Thus, this study aims to bridge this knowledge
gap by investigating the optimization of energy storage within distribution systems that
incorporate renewable energy sources, such as DGs, and a novel criterion for mapping the
three-dimensional spaces of intermittency with the proposed model is adopted to optimize
BESS charging/discharging decisions. The objective is to minimize the total planning and
operational costs while considering technical and economic constraints and, ultimately,
identifying the most cost-effective solutions for the placement and sizing of energy storage
units within a smart distribution network.

The main contributions of this study are the following.

1. A robust probabilistic planning model for BESSs in distribution networks is developed
in order to optimize the location, sizing, and operation of BESSs and to determine the
most economical BESS with the lowest overall planning cost while taking uncertainties
in wind speed, solar irradiance, and system demand into account and considering
technical and economic factors.

2. The proposed model brings a significant advantage for distribution companies, as it
strategically addresses challenges such as energy losses, deferral of system upgrades,
and effective energy management during off-peak and on-peak periods. By maxi-
mizing benefits through these considerations, the model contributes to the overall
efficiency and sustainability of distribution networks.

3. In contrast to previous approaches that focused solely on the demand state for charg-
ing and discharging BESSs, this study introduces a novel paradigm. It employs
three-dimensional spaces encompassing the wind state, PV state, and demand state
to optimize charging and discharge decisions. By evaluating the interplay of these
dimensions, the optimization model makes informed decisions regarding energy
production or absorption, ultimately minimizing the planning and operational costs
for the entire system.

4. This research makes a valuable contribution to the electricity sector by providing an
opportunity for electricity utilities to leverage the study’s findings to advance the
transition toward renewable energy sources.



Sustainability 2024, 16, 290 4 of 23

5. This study’s findings can be leveraged to advance the transition toward sustainability
in the energy sector.

2. Modeling of Uncertainties

The uncertainty in smart distribution networks is a critical area of research and de-
velopment in the field of electrical power systems. As the integration of renewable energy
sources, advanced monitoring and control technologies, and the increasing complexity of
grid operation become more prevalent, it is essential to have a robust theoretical founda-
tion for dealing with uncertainty. In this context, uncertainty refers to the variations and
unpredictability in generation, consumption, and grid conditions that can affect the safe
and efficient operation of an electrical grid.

The most significant theoretical enhancements and considerations related to the de-
scription of uncertainty in a smart distribution network are as follows.

1. Stochastic models: Traditional deterministic models of power system operation are no
longer sufficient to capture the complexity of modern distribution networks. Stochas-
tic models, which incorporate probability distributions for various parameters, are
gaining importance. These models allow for a more realistic representation of un-
certainties, such as the intermittent nature of renewable energy generation or the
variability in electricity demand.

2. Incorporating renewable energy sources: With the increasing penetration of renew-
able energy sources, such as wind and solar, uncertainty in generation becomes a
significant concern. Theoretical improvements involve better modeling of the variabil-
ity and intermittency of renewable generation, as well as their spatial and temporal
correlations. This can be achieved through advanced statistical methods, such as
time-series analysis and probabilistic forecasting techniques.

3. Demand uncertainty: Electricity demand can also be uncertain due to factors such as
weather conditions, economic fluctuations, and changes in consumer behavior. Theo-
retical improvements should focus on capturing this demand uncertainty, including
short-term load forecasting and the development of probabilistic demand models.

Therefore, the location of renewable resources in a distribution system requires effec-
tive modeling of demand and DGs. In some research, such as that in Ref. [13], the authors
used deterministic methods that represented the demand and DGs as constant power based
on their average or maximum power; although these methods can be easily executed, they
may lead to unrealistic and inaccurate results. Therefore, much research considered the
stochastic nature of demand and renewable resources to find more accurate and realistic
results. This stochastic nature can be taken into account by using either time-series model-
ing or probabilistic modeling, which are the two main methods for modeling the nature of
such systems [18–20,23–25]. However, in a recent lecture [26], the methodologies employed
for modeling the nature of systems were thoroughly examined in order to move beyond
conventional time-series and probabilistic approaches. The lecture spotlighted alternative
techniques, such as robust optimization, information gap decision theory (IGDT), and
interval approaches, among others, offering a mosaic of tools for researchers. The selection
of a specific method depends on the nature of the system, the type of data available, and
the goals of the analysis.

Much research, such as that in Ref. [18], has used the time series to model the stochastic
nature of system components; this approach proposes a forecasting horizon of one year
ahead for both demand and renewable resources. Then, it uses the forecasted shape to
determine an ESS’s charging and discharging power at each hour. This is hard to implement
for a year-long planning model, and it requires a very long time for the simulation for
vast sets of historical data. This may lead to unrealistic and inaccurate results. Therefore,
probabilistic methods are effective for year-long planning models, as they can handle the
stochastic nature of demand, wind speed, and solar irradiance, as described in [19,20,23–25].
This is because they can be easily implemented and require less time for simulations with
vast sets of historical data in comparison with time-series models. A probabilistic model
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was applied in this study to model the stochastic nature of wind speed, solar irradiance,
and demand fluctuation. In this method, historical data on the wind speed, solar irradiance,
and demand fluctuation were described by using a specific probability distribution function
(PDF) (1). Then, this PDF was divided into several states, which were used to generate a
probabilistic model for the load, wind speed, and solar irradiance.

The wind speed, solar irradiance, and load are assumed to be independent in this work.

p(x) = P[a < x ≤ b] =
∫ b

a
f (x).dx (1)

These were modeled as described in the following.

2.1. Modeling of the Wind Speed and Wind Turbine Output Power

In this study, we opted for the Weibull distribution to capture the intermittent nature
of wind speed data, a choice that is commonly employed in numerous studies [23,24]. We
developed a probabilistic wind speed model with a step size of 1.1 m/s. For any given wind
speed dataset, it is crucial to ascertain the mean (µ) and the standard deviation (σ) of the
data. Additionally, the wind speed characteristics at any location are characterized by the
Weibull scale parameter (c) and the Weibull shape parameter (k). The key parameters of a
wind turbine include the cut-in speed (vin), rated speed (vr), cut-out speed (vout), and rated
or maximum output power (Pwr). Equation (2) defines the Weibull distribution function,
while Equation (3) is used to compute the Weibull distribution parameters [24].

f (v) =
k
c

(v
c

)k−1
exp
[
−
(v

c

)k
]

(2)

k =

(
σ

µ

)−1.086
, c =

µ

Γ
(

1 + 1
k

) (3)

As can be seen in Figure 1, the characteristic curve of wind power can be categorized
into three distinct regions: no wind power, de-rated power, and rated power. The area
in which there is no wind power is defined as the area in which the wind speed is less
than the turbine’s cut-off speed. The turbine’s blades are unable to overcome the friction
generated prior to a speed reduction because there is not enough torque. In the de-rated
speed region, the output power of the turbine dramatically increases to achieve the rated
power of the turbine as the wind speed rises over the cut-off speed. In the rated power
region, the wind speed exceeds the turbine’s cut-out speed, and the wind turbine will shut
down as a preventative measure to protect the rotor from the strong forces acting on the
turbine’s structure. A wind turbine’s output power can be obtained from (4) [23,24]. Table 1
provides the data parameters for the wind turbine and required wind speed in this study,
while Table 2 presents the multistate probability model of a wind-based DG.

Pw(v) =


0, 0 < v < vin and v > vout

Pwr

(
v−vin
vr−vin

)
, vin < v < vr

Pwr vr < v < vr

(4)
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Figure 1. Power characteristic curve of a wind turbine.

Table 1. Wind speed and wind turbine parameters.

Parameters Value

Rated power (Pr) 1000 kW
Cut-in speed (vin) m/s 3
Rated speed ( vr) m/s 14

Cut-out speed (vout) m/s 25
Weibull scale parameter c 4.2483

Weibull shape parameter k 1.6515

Table 2. Multi-state probability model of a wind-based DG.

State Lower (m/s) Upper (m/s) % Output Power Probability

1 0 3 and >25 0 0.4305
2 3 4.1 5 0.18007
3 4.1 5.2 15 0.14195
4 5.2 6.3 25 0.10046
5 6.3 7.4 35 0.06501
6 7.4 8.5 45 0.0389
7 8.5 9.6 55 0.0217
8 9.6 10.7 65 0.01134
9 10.7 11.8 75 0.00558
10 11.8 12.9 85 0.00259
11 12.9 14 95 0.00114
12 14 25 100 0.000772

2.2. Solar Irradiance and PV Output Power Models

Similar to when modeling the wind speed, there are various distributions available for
studying the uncertainty associated with solar irradiance based on its statistical properties.
The probability density function that mirrors the probabilistic behavior of solar irradiance
(s) can be represented by using the Beta probability density function f (s), as outlined in
Equation (5). The calculation of the Beta distribution parameters β and α is demonstrated
in Equation (6) [23,24]. Table 3 provides the data parameters of the solar system needed in
this study.

f (s) =

{
Γ(α+β)

Γ(α) Γ(β)
s(α−1)(1− s)(β−1) , 0 ≤ s ≤ 1

0 o.w
(5)

β =
(1− µ)σ2

µ(1− µ)− σ2 and α =
β× µ

(1− µ)
(6)



Sustainability 2024, 16, 290 7 of 23

Table 3. Solar irradiance and PV parameters.

Parameters Value

Rated PV power (PPVr) 500 kW
Adjustable value of irradiance rC 200 W/m2

Standard irradiance sSTD 1000 W/m2

Beta parameter β 0.45
Beta parameter α 1.438

The level of PV generation power is intricately linked to the solar irradiance. Conse-
quently, the PV output power can be obtained by using Equation (7) [27]. Table 4 presents
the multi-state probability model of a PV-based DG.

PPV(s) =


PPVr

(
s2

sSTD×rC

)
f or 0 < s < rC

PPVr

(
s

sSTD

)
f or rC ≤ s < sSTD

PPVr f or s > sSTD

(7)

Table 4. Multi-state probability model of a PV-based DG.

State Lower (kW/m2) Upper (kW/m2) % Output Power Probability

1 0 0.084 0 0.395786
2 0.084 0.168 7.94 0.138345
3 0.168 0.252 21 0.098823
4 0.252 0.334 29.3 0.076266
5 0.334 0.418 37.6 0.064414
6 0.418 0.502 46 0.054077
7 0.502 0.586 54.4 0.045772
8 0.586 0.67 62.8 0.03867
9 0.67 0.754 71.2 0.032253
10 0.754 0.838 79.6 0.026061
11 0.838 0.922 88 0.019489
12 0.922 1 96.1 0.010005

2.3. Demand Models

The normal distribution function ( f (d)), as outlined in Equation (8), was employed
to serve as a probabilistic model for representing the system demand behavior, a choice
aligned with prior studies [23,24]. The analysis encompassed 8760 hours of load data
points—specifically, those of the IEEE’s Reliability Test System (RTS)—with a mean of
µ = 0.6142 and a standard deviation of σ = 0.1448. Table 5 illustrates the multi-state proba-
bility model for demand.

f (d) =
1

σ
√

2π
e−

1
2 (

d−µ
σ )

2

(8)

Table 5. Multi-state probability model of demand.

State Lower Load (pu) Upper Load (pu) Probability

1 0 0.35 0.03402
2 0.35 0.41 0.045205
3 0.41 0.47 0.08042
4 0.47 0.53 0.1208
5 0.53 0.59 0.1532
6 0.59 0.65 0.164
7 0.65 0.71 0.14825
8 0.71 0.77 0.1131
9 0.77 0.83 0.0729
10 0.83 0.89 0.0397
11 0.89 0.95 0.01821
12 0.95 1 0.00634
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2.4. Generating Operating Scenarios for the Overall System

After establishing the probability distribution functions for the wind speed, solar irra-
diance, and system demand, the next step involved partitioning these PDFs into numerous
discrete states for their integration into the calculations. The process of selecting these
states carried significant importance, as it entailed striking a delicate balance between the
precision of the outcomes and the intricacy of the analysis. The division of the PDFs into
multiple equidistant intervals depended on factors such as the maximum value and the
number of intervals necessary, as shown in Ref. [25].

Once all of the states for the wind power, solar power, and system load were defined,
a three-column matrix encompassing every conceivable combination of these states—or
scenario—was constructed. In this matrix, the first column signified the various levels
of load states, the second column represented the states of the solar DG output power,
and the third column signified the wind-based DG output, as shown in Table 6. This
multi-scenario matrix was structured with a number of rows equal to the total number of
scenarios, which was determined by multiplying the numbers of wind states, solar states,
and load states. The probability associated with each scenario was calculated as the product
of the probabilities of the wind state, solar state, and load state for that specific scenario,
assuming that the wind speed, solar irradiance, and load were independent events.

Table 6. The column matrix for all possible scenarios for all states.

Scenarios Demand Power (PL) PV Power (PPV) Wind Power (Pw)

1 L L L
2 L L H
3 L H L
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
N H H H

L represents a lower-power state and H represents a higher-power state; N = 12 × 12 × 12.

3. Problem Formulation and Planning Model

This section outlines the formulation of the problem of the proposed probabilistic
planning model for a BESS and explains how BESSs can be integrated into power distribu-
tion networks alongside renewable energy resources. The probabilistic planning model
encompassed the modeling of probabilistic PV and wind power outputs, as well as the
probabilistic representation of system demand. Within this model, various factors were
considered, including the costs associated with investment in and operation of BESSs,
substation and transmission line upgrades, and power losses. The primary objective of this
planning was to minimize the cumulative investment and operational costs over the plan-
ning horizon, and this optimization was achieved by determining the optimal placement,
sizing, and operation of BESSs.

3.1. Objective Function

The objective function is composed of BESS investment costs ( BCi) and economic costs
of operation (BC eop), along with substation and feeder costs (SCsu) and power loss costs
(LCL ). Equation (9) presents the mathematical representation of this objective function.

Min ∑ cost= min
(

NPV
(

BCin + BCeop + SCsu+LCLine
))

(9)
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The mathematical formulations for each term in the objective function are displayed
in Equations (10) through (13). The net present value (NPV) can be computed either from
the future value (FV), as expressed in Equation (14), or from the annual value (AV), as
described in Equation (15).

BCin =
N

∑
i=1

(
Cp × Prated

BESS,N + CE × Erated
BESS,N) (10)

BCeopyr
= ∑

ξ
((8760× p(ξch)× Cprice_o f f × Pch

yr,ξch
)

−
(

8760× p(ξdis)× Cprice_on × Pdis
yr,ξdis

)
), ∀yr

(11)

LCLineyr = ∑
ξ
((C price_o f f × 8760× p(ξch)×

Nline
∑

ij=1
Ploss

ij, yr,ξch,
)

+ (C price_on × 8760× p(ξdis)×
Nline
∑

ij=1
Ploss

ij, yr,ξdis,
)), ∀yr

(12)

SCsuyr = Transmission cost + substation cost (13)

NPV =
FV

(1 + IR)n (14)

NPV = AV
(1 + IR)n − 1
IR(1 + IR)n (15)

where Cp is the BESS’s power cost in $/kW, CE is the BESS’s energy cost in $/kWh, Prated
BESS,N

is the BESS’s rated power at bus number N, Erated
BESS,N is the BESS’s rated energy at bus

number N, ξch and ξdis, are the charging and discharging states, p(ξ) is the probability of
each state ξ, Cprice_o f f is the energy price at off-peak hours, Cprice_on is the energy price
during peak hours, and Pch

yr,ξch
and Pdis

yr,ξdis
are the charging and discharging of power at

state ξ in year y, respectively. Ploss
ij,yr,ξch,

is the power loss of line ij at state ξ, Ploss
ij,yr,ξdis,

is the
power loss of line ij at state ξ in year yr, IR is the interest rate, and n represents the number
of years.

3.2. Model Constraints
3.2.1. Network Constraints

Equations (16) and (17) define the power-flow equation during the charging and
discharging of the BESS at each bus i and state ξ. Equation (18) is used to calculate the
reactive power at each bus i and state ξ.

PGi,ξ,yr + Cwξ
× P

wri
+ CPVξ

× P
PVri
− PD i,ξ,yr − ηch × Pch

BESSξ,yr
= ∑N

j=1 Vi,ξ,yr×Vj,ξ,yr ×Yij×
cos(θij + δj,ξ,yr − δi,ξ,yr), ∀i, ξ ∈ ξch, yr

(16)

PGi,ξ,yr + Cwξ
× P

wri
+ CPVξ

× P
PVri
− PD i,ξ,yr − ηdiξ × Pdis

BESSξ,yr
= ∑N

j=1 Vi,ξ,yr×Vj,ξ,yr ×Yij×
cos
(
θij + δj,ξ,yr − δi,ξ,yr

)
, ∀i, ξ ∈ ξdis, yr

(17)

QGi,ξ,yr −QD i,ξ,yr
= −∑N

j=1 Vi,ξ,yr×Vj,ξ,yr ×Yij × sin
(
θij + δj,ξ,yr − δi,ξ,yr

)
, ∀i, ξ, yr (18)

where PGi,,ξ,yr is the generated power at bus i in state ξ during year yr, PDi,ξ,yr is the demand
power at bus i in state ξ during year yr, Pwr is the rated power of the wind turbine, Cwξ

is the percentage of output power of wind in each state, PPVr is the rated power of the
PV unit, CPVξ

is the percentage of the PV output power in each state, ηch and ηdiξ are the
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charging and discharging efficiency of the BESS,
(
Vi,ξ,yr

)
is the defined voltage at bus i in

state ξ in year yr, (Yij
)

defines the magnitude of admittances of the line between buses i
and j, θij is the angle of admittances, and δ is the voltage angle.

Equation (19) is used to calculate the total power loss in the line in state ξ during year
yr, and Equation (20) defines the line current between bus i and bus j in state ξ during
year yr. Equations (21) and (22) define the per-unit limit of voltage

(
Vi,ξyr

)
at bus i in

state ξ during year yr and the slake voltage (V i,ξ,yr) in state ξ during year yr, respectively.
Equation (23) constrains the feeder capacity limit, where Iij,max is the maximum permissible
current in the feeder between i and j.

Ploss
ξ,yr = ∑N

j=1 I2
ij,ξ,yrR(ij), ∀i, ξ, yr (19)

Iij,ξ,yr =

(
Pj,ξ,yr + jQj,ξ,yr

Vj,ξ,yr

)∗
, ∀i, ξ, yr (20)

Vmin ≤ Vi,ξ,yr≤ Vmax , ∀i, ξ, yr (21)

Vξ,1,yr = 1 , δξ,1,yr = 0, ∀ξ, yr (22)

0 ≤ Iij,ξ,yr ≤ Iijmax∀ξ, yr (23)

3.2.2. DG Constraints

Equations (24)–(26) constrain the output power of the DG between zero and the
rated power.

(P_DG)2 + (Q_DG)2 ≤ (S_DG_rated)2 (24)

0 ≤ P_DG ≤ P_DG_rated (25)

0 ≤ Q_DG ≤ Q_DG_rated (26)

3.2.3. BESS Constraints

Equations (27) and (28) define the charging and discharging power of the BESS and
constrain its rated power.

Pch
BESS =

{
Prated

BESS, Pch
BESS ≥ Prated

BESS_ch
Pch

BESS , Prated
BESS_ch ≥ Pch

BESS ≥ 0
(27)

Pdis
BESS =

{
−Pdis

BESS , 0 ≥ Pdis
BESS ≥ −Prated

BESS_dis
−Prated

BESS ,−PBESS_dis _Max ≥ Pdis
BESS

(28)

where Pch
BESS is the charging power, Prated

BESS is the rated charging power, Pdis
BESS is the discharg-

ing power of the BESS, and Prated
BESS is the rated discharging power of the BESS.

3.3. Algorithm for Solving the Proposed Planning Model

In this study, the particle swarm optimization (PSO) algorithm was utilized to solve
the optimization model, as it is gaining recognition as an efficient technique for solving this
type of optimization problem. Probabilistic models of the demand, wind-based DG units,
PV-based DG units, load growth, system topology, energy price, system data, planning
period, discount rate, BESS data, and BESS costs were the main methodology’s inputs, and
the main outputs of the optimization were the optimal size and location of the BESS units
and the BESS units’ optimized operation. The proposed methodology’s justification was
the optimization of the planning costs for distribution utilities through the deployment and
management of BESSs. In the process, as shown in Figure 2, before the simulation started,
a matrix consisting of the magnitude and the corresponding probability of each state of
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the load, wind turbines, and PV units was defined (this represented all of the operating
scenarios); then, all required data of the system under study and the PSO algorithm were
input to start the simulation. First, the simulation began with the first year to optimize the
location, operation, and sizing of the BESSs, and this was controlled by all states of the
load, wind, and PV. Secondly, a load flow analysis was performed to calculate the overall
system losses and determine the required system upgrades. Finally, the total NPV of the
planning was computed, and the most economical solution for PSO was obtained. Then,
the algorithm moved to the next year; the load was increased by 5%, and the simulation
was performed again until the final planning year was computed. After that, the particle
velocity and position in the PSO algorithm were updated, and all steps were repeated
until the simulation’s termination criteria were fulfilled; then, the final output results
were obtained. Table 7 shows a comparison of our proposed model featuring a three-
dimensional ESS dispatch with the probabilistic model outlined in Refs. [19,20], which
was designed for a load-based ESS dispatch. This comparison took place for the scenario
of a lithium-ion PV-based DG, and key performance metrics were assessed. Our model
exhibited superior accuracy, resulting in a reduced total cost of 2.451 M$ in comparison with
the load-based ESS dispatch probabilistic model’s 3.08 M$. Despite the high complexity
introduced by our three-dimensional ESS dispatch strategy, our model demonstrated
competitive computational efficiency, as it completed the analysis in about 2.5 h, whereas
the previous probabilistic model required approximately 2 h. These findings underscore
the advancements of our proposed model, which offers improved accuracy and complexity
without compromising computational efficiency.
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Table 7. Comparison of our proposed model with an existing model from the literature.

Proposed Model Objective Function
For Lithium-Ion Scenario Accuracy Complexity Computation Time

Probabilistic [19,20]
(load-based ESS dispatch) 3.08 M$ High Moderated About 2 h

Our proposed model
(three-dimensional ESS dispatch) 2.451 M$ Very High Relatively High About 2.5 h

4. Case Studies and Results
4.1. The Network System under Study

The proposed planning model was evaluated by using the IEEE69 radial-distribution
system, as shown in Figure 3, and its data can be found in [28]. The total system load was
3.802 MW and 2.7 MVAR, with base values of 12.66 KV and 100 MVA [29]. The planning
period spanned 15 years, as proposed in this study, with an assumed annual load growth
rate of 5%. The costs for off-peak and on-peak power were considered to be $23.6/MWh
and $32.5/MWh, respectively [24]. The fixed and variable transmission line costs were
assumed to be $150,000/km and $1000/MW, respectively. Furthermore, the fixed and
variable substation costs were estimated to be $200,000 and $50,000/MW, respectively [30].
An interest rate of 10% was assumed, and the system operated with a power factor of 0.9.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 24 
 

speed and solar irradiance data utilized in this study. Figures 4–6 depict the voltage pro-
files, line currents, and active power losses of the system when different types of DGs 
operated at their rated capacities within the system. 

 

Figure 3. The IEEE69 distribution system. 

 
Figure 4. The voltage profiles for different DGs. 

 

Figure 3. The IEEE69 distribution system.

Two renewable resources were used in this study as DGs: PV and wind-based DGs.
The choice of DG power capacity was contingent on the capacity factor of each DG, and
DGs with higher capacity factors possessed greater power ratings; in addition, the rating of
DG power and the location of DGs in the system in this study depended on the fluctuations
in the voltage profile and power loss of the system. Therefore, the sizing and placement
of DGs were determined after studying the impacts of different locations and sizes on
the voltage profiles and power losses of the system under study. The optimal size for
the wind-based DG was determined to be 1 MW when connected to bus #61, while the
optimal size for the PV-based DG was found to be 0.5 MW when connected to bus #17. It is
noteworthy that the wind-based DG possessed a higher capacity than that of the PV-based
DG, which was primarily due to its large capacity factor derived from the wind speed and
solar irradiance data utilized in this study. Figures 4–6 depict the voltage profiles, line
currents, and active power losses of the system when different types of DGs operated at
their rated capacities within the system.
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Lead–acid batteries, lithium-ion batteries, redox flow batteries, and sodium sulfur
batteries were chosen as candidate BESSs because they are the most suitable for use in
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power distribution and storage systems [18,19]. The power and energy of these BESSs were
considered to be available on the market with step sizes of 100 KW/100 kWh, respectively.
The candidate buses for the installation of BESSs in the system under study were assumed to
include the following: 12, 16, 21, 29, 40, 48, 52, 59, 64, 67, and 69. The comprehensive cost of
a BESS encompasses the capital expenditure, power conversion expenses, the balance of the
plant cost, construction and commissioning expenditures, fixed operation and maintenance
costs, and variable operational costs. Data on the costs and characteristics of BESSs are
listed in Table 8.

Table 8. Data on the cost and characteristics of BESSs [31,32].

Lead–Acid Lithium Ion Redox Flow Sodium Sulfur

Capital Cost—Energy
Capacity ($/kWh) 260 271 555 661

Power Conversion
System ($/kW) 350 288 350 350

Balance of Plant ($/kW) 100 100 100 100
Construction and

Commissioning Cost
($/kWh)

176 101 190 133

Fixed O&M ($/kW-yr) 10 10 10 10
Efficiency 85% 95% 95% 90%

Life Span (yr) 3 10 15 15

4.2. Results and Discussion

Four cases are presented in this study, and each case had five scenarios in which the
most economical BESS that has the lowest operation and investment costs and lowest power
loss was found. These cases included those with no DGs, a PV-based DG, wind-based DG,
and PV and wind-based DGs together. Each case had four scenarios: no BESS, lithium-ion
batteries, lead–acid batteries, redox flow batteries, and sodium sulfur batteries, as shown
in Table 9. All results will be discussed in detail in the following.

Table 9. The cases and scenarios.

Cases DG Type DG Location Scenarios

1 No DG --

1. No BESSs
2. Lead–acid
3. Lithium ion
4. Redox flow
5. Sodium sulfur

2 PV 17

1. No BESSs
2. Lead–acid
3. Lithium ion
4. Redox flow
5. Sodium sulfur

3 wind 61

1. No BESSs
2. Lead–acid
3. Lithium ion
4. Redox flow
5. Sodium sulfur

4 PV–wind 61–17

1. No BESSs
2. Lead–acid
3. Lithium ion
4. Redox flow
5. Sodium sulfur
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4.2.1. No-DG Case

In this case, it was assumed that the system did not have any DGs, and the impacts
of the optimal placement, operation, and sizing of BESSs on the minimization of the
investment costs and economic costs of operation of the BESSs were studied. Additionally,
we examined the impacts of BESS optimization on system losses and upgrade costs.

In the first scenario, there were no BESSs in the system. The only cost components that
were taken into consideration were the system upgrade costs and energy loss costs. In the
following four scenarios, BESSs were added to the system, with each having investment
and operation costs, as well as system upgrade and energy loss costs. As can be seen in
Table 10, it was found that the optimal placement and sizing of the BESSs were at bus
#64 and 100 kW, respectively. Each BESS has a different investment cost because BESSs
have varying lifespans and different costs on the market. For instance, a lead–acid BESS
has the highest NPV investment cost due to its lower lifespan, so it should be replaced
many times during a planning period, while a lithium-ion BESS has the lowest investment
cost. The economic cost of operation of each BESS is different due to the differences in
their efficiency. For instance, lead–acid BESSs boast the highest cost, whereas lithium-ion
BESSs have a lower cost than that of lead–acid and sodium sulfur BESSs, and they share the
same operational expenses as those of redox flow BESSs due to their identical charging and
discharging efficiency. The system upgrade cost was the same in all BESS scenarios, since
they had the same placement and sizing. However, it was reduced by 10.45% in comparison
with the first scenario due to the deferment of the system upgrade. For instance, feeder #1
was deferred from the third year to the fourth year in this case due to the installation of
BESSs. The energy loss cost was slightly reduced by about 0.9% in comparison with that in
scenario #1 due to the charging of BESSs during off-peak hours and discharging during
on-peak hours. In this case, it was concluded that the lithium-ion BESS had the lowest
cost, resulting in savings of 7.04% in comparison with the first scenario. Figure 7 shows the
convergence of particle swarm optimization (PSO) in the case in which there were no DGs
and in the scenario with lithium-ion batteries.

Table 10. Results for the first case (no DGs).

No DGs No BESSs Lead–Acid Lithium Ion Redox Flow Sodium Sulfur

NPV of Investment Cost (M$) 0 0.169 0.095 0.127 0.130
NPV of Economic Cost of Operation (M$) 0 −0.008 −0.0094 −0.0094 −0.0089

NPV of System Upgrade Cost (M$) 3.033 2.716 2.716 2.716 2.716
NPV of Energy Loss (M$) 0.298 0.2954 0.2952 0.2952 0.2953
NPV of Total Cost (M$) 3.3314 3.1712 3.0968 3.1287 3.1323

Saving % 0 4.8 7.04 6.1 5.98
Execution Time (h) ≈1 h
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4.2.2. PV-Based DG Case

In this case, it was previously determined that the PV-based DG was located at bus
#17 in order to study its impact on the placement and sizing of BESSs and the impacts of
BESS optimization on the economic costs of investment and operation cost, the system cost,
and the energy loss cost.

As can be noticed in Table 11, in the ‘No BESS’ scenario, the system cost remained the
same as that in Case #1. This was because the calculation of the system upgrade cost was
obtained in the worst-case scenario for the power flow in the network (which was at its
maximum in the peak load state and the minimum PV-based state). Nevertheless, there
was a 4.36% reduction in energy loss costs due to the installation of the PV-based DG. In
the BESS scenario, it was found that the optimal placement and sizing of these BESSs were
at bus #64 and 600 kW, respectively. These increases in BESS sizing are attributed to the
charging power of the BESSs in the minimum and maximum off-peak load states of the PV-
based DG. Each BESS had a different investment cost due to varying lifespans and different
costs on the market. In this case, the investment cost significantly increased because of the
increase in BESS sizing. For instance, lead–acid batteries incurred an investment cost of
$1.011 million, and lithium-ion batteries boasted the lowest investment cost, amounting to
just $0.57 million. The economic cost of operation of each BESS varied due to the efficiency
of each BESS. In this case, the operation cost significantly increased due to an increase in
the power discharge during the peak load state. It was observed that lithium-ion batteries
had the lowest operation cost, while lead–acid batteries had the highest cost, since they
had the lowest efficiency. The system upgrade cost in the BESS scenarios was the same
for all BESS technologies because they shared the same placement and sizing, and their
efficiencies were very close to each other. However, it was reduced by 38.3% in comparison
with the first scenario due to the deferral of the system upgrade and by 31% in comparison
with the first case in the same scenario—for instance, the upgrade decision for feeder #1
was deferred from the third year to the seventh year in the case of BESS inclusion. The
energy loss cost experienced significant reductions from the previous case; for example,
in the lithium-ion scenario, it was reduced by around 12% in comparison with the first
scenario and by about 15.3% in comparison with the first case in the same scenario. It was
concluded that the lithium-ion BESS was the most economical choice in this case, with
savings of 26.2% in comparison with the first scenario and a 20.85% reduction in costs in
comparison with the first case. In contrast, the lead–acid BESS was the least economical
BESS option due to its high investment cost, lower efficiency, and shorter lifespan.

Table 11. Results for the second case (PV).

PV-Based DG No BESS Lead–Acid Lithium Ion Redox Flow Sodium Sulfur

NPV of Investment Cost (M$) 0 1.011 0.5723 0.764 0.781
NPV of the Economic Cost of

Operation (M$) 0 −0.271 −0.243 −0.243 −0.23

NPV of System Upgrade Cost (M$) 3.033 1.872 1.872 1.872 1.872
NPV of Energy Loss (M$) 0.285 0.253 0.2499 0.2499 0.251
NPV of Total Cost (M$) 3.3187 2.9180 2.4512 2.6428 2.6743

Saving % 0 12.1 26.2 20.4 19.4
Execution Time (h) ≈2.5 h

4.2.3. Wind-Based DG Cases

A. Wind-based DG at 1 MW

In this case, it was previously determined that a 1 MW wind-based DG was located at
bus #61 in order to study the impact of a wind-based DG on the placement and sizing of
BESSs and the impact of BESS optimization on BESS planning, including the investment
cost, operation cost, system cost, and energy loss costs.
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Table 12 showcases the NPV of the total planning cost associated with the wind-based
DG and BESSs. In the first scenario (no BESSs), the system cost remained the same as that in
Case #1 and Case #2, and this was attributed to the calculation of the system upgrade that
was obtained in the worst-case scenarios for the power flow in the network, (these occurred
in the maximum peak load state and the minimum wind-based state). Nevertheless, there
was a 16.1% reduction in the energy loss costs in comparison with Case #1 and a 5.6%
reduction in comparison with Case #2. This was due to the installation of the wind-based
DG. For the BESS scenarios, it was observed that the optimal placement and sizing for
the BESSs were at bus #64 and 1100 kW, respectively. These increases in BESS sizing were
attributed to the charging power of the BESSs in the minimum off-peak load state and the
maximum state of the wind-based DG. In the following four scenarios, each BESS had a
different investment cost because each of them had a different lifespan and different costs
on the market. In this case, the investment cost significantly increased due to the increase in
BESS sizing. For instance, lead–acid batteries had an investment cost of $1.58 million, and
lithium-ion batteries boasted the lowest investment cost, amounting to just $1.05 million.

Table 12. Results for the third case (wind).

Wind-Based DG No BESS Lead–Acid Lithium Ion Redox Flow Sodium Sulfur

NPV of Investment Cost (M$) 0 1.85 1.05 1.4 1.43
NPV of Economic Cost of

Operation (M$) 0 −0.577 −0.644 −0.644 −0.611

NPV of System Upgrade Cost (M$) 3.033 1.27 1.27 1.27 1.27
NPV of Energy Loss (M$) 0.269 0.1997 0.1954 0.1954 0.1975
NPV of Total Cost (M$) 3.30 2.7426 1.8666 2.2178 2.2857

Saving % 0 16.9 43.4 32.8 30.7
Execution Time (h) ≈3 h

The economic cost of operation of each BESS varied due to the efficiency of each. In
this case, the operation cost significantly increased due to an increase in power discharging
during on-peak hours. For instance, the lead–acid battery boasted the highest cost, whereas
the lithium-ion battery had a lower cost than that of the lead–acid battery and shared the
same operational expenses as those of the redox flow battery due to their identical charging
and discharging efficiency. The system upgrade cost in the BESS scenarios was the same
for all BESS technologies because they shared the same placement and sizing, and their
efficiencies were very close to each other, but it was reduced by 58% in comparison with
the first scenario due to the deferral of the system upgrade decision. For instance, feeder #1
was deferred from the third to the tenth year, resulting in a 53.2% reduction in its system
upgrade cost in comparison with the first case and a 32.2% reduction in comparison with
Case #2 in the same scenarios.

The energy loss cost experienced significant reductions from those in the previous
cases; for instance, in the lithium-ion scenario, it decreased by around 27.4% in comparison
with the first scenario and by about 33.8% in comparison with the first case, and it decreased
by 21.8% in comparison with Case #2 in the same scenarios. It was concluded that the
lithium-ion BESS was the most economical choice in this case, with cost savings of 43.4% in
comparison with the first scenario, a cost reduction of about 39.8% in comparison with the
first case, and a reduction of approximately 23.85% in comparison with Case #2.

Table 13 shows the optimal operation and charging and discharging power of the
BESSs in the case of a 1 MW wind-based DG (i.e., in each wind-based DG state and load
state); this could help system operators control the operation of BESSs to maximize their
benefits for the distribution system. It can be observed in Table 13 that in the initial load
state, the charging of the BESSs increased with the increase in the wind state. Conversely,
in the final load state, the discharging power of the BESSs decreased with the increase in
the wind state. Therefore, the lowest state (i.e., load state = 1 and wind state = 1) had the
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lowest charging power. On the other hand, the highest state (i.e., load state = 12 and wind
state = 12) had the lowest discharging power.

Table 13. Optimal operation and capacity of BESSs (kW) in the 1 MW wind-based case.

State
Wind State

1 2 3 4 5 6 7 8 9 10 11 12

1 68 118 218 318 418.0004 518.0018 618.002 718.0119 818.0231 918.04 1018.064 1068.078
2 54.38 101.88 196.88 291.88 386.8805 481.882 576.886 671.8937 766.9067 861.9263 956.9537 1004.471
3 40.76 81.16 160.76 240.7601 323.7605 404.1622 484.767 565.7754 646.3901 726.8124 807.8436 848.3628
4 27.14 65.54 142.14 219.1401 295.1405 372.1424 449.143 525.757 602.1735 679.1984 756.2333 794.3749
5 13.52 49.52 122.52 195.5201 282.0206 341.5226 413.528 487.5386 560.1567 633.5842 703.6227 742.6466
6 −0.1 34.9 103.9 169.9001 254.9006 310.9028 379.906 449.9201 518.9398 589.9698 658.012 690.0382
7 −703.72 −671.72 −603.72 −532.72 −463.719 −393.717 −324.711 −268.698 −183.677 −117.645 −48.1989 −13.5705
8 −756.34 −717.34 −647.34 −573.94 −501.339 −427.337 −355.33 −295.817 −209.294 −136.259 −63.7101 −27.1795
9 −807.96 −769.96 −692.96 −615.96 −539.559 −462.957 −385.95 −308.936 −232.911 −155.874 −79.1215 −40.7887

10 −904.58 −821.58 −740.58 −660.18 −579.579 −498.577 −417.569 −337.554 −254.529 −174.489 −94.433 −54.3981
11 −1018.2 −970.7 −918.9 −780.7 −685.699 −2158.2 −495.689 −400.673 −305.646 −210.604 −115.545 −68.0077
12 −1079.5 −1029.5 −929.55 −829.55 −729.549 −629.546 −529.539 −429.522 −329.494 −229.45 −129.388 −79.3492

− indicates the discharging mode.

B. Wind-based DG at 4 MW

In this case, the penetration level of the wind-based DG was increased to 4 MW, which
was greater than the rated demand of the system under study. This was to demonstrate
how the DG’s state 19 controlled the BESSs’ status (charging and discharging). In this
case, the generated power was greater than the demand, which resulted in excess energy
in some scenarios. In order to solve this issue, the system’s operator should curtail the
excess power from the wind-based DG to reduce its impact on the system’s operation (i.e.,
maintaining the voltages and line currents within their operation limits), and this is not
efficient from an economic perspective. Therefore, BESSs can solve this issue due to their
ability to absorb excess power. Table 14 shows the optimal operation and charging and
discharging power of BESSs in the 4 MW wind-based case (i.e., in each wind-based DG state
and load state). Figure 8 illustrates the operation of BESSs and the amounts of charging
and discharging power in different selected states of the load and wind (i.e., states #1, 4, 9,
and 12 for the load state and wind state) in the 1 MW wind-based DG case and in the 4 MW
wind-based DG case. Unlike in the previous case (i.e., the 1 MW wind-based DG), where
the charging decisions of the BESSs took place in an off-peak load state and discharging
decisions happened in an on-peak load state, the 4 MW wind-based DG case showcased
that the BESSs were charged in the maximum wind state (i.e., state #12) regardless of the
load state. This was because of the increase in the penetration level of the wind-based
DG, which produced excess energy that could be stored by BESSs and used when needed
(i.e., the on-load state and off-wind state). Figure 9 shows the voltage profile at each bus
in the no-DG, 4 MW wind-based DG, and 4 MW-wind based DG cases with BESSs in the
maximum load state and maximum wind state.
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Table 14. Optimal operation and capacity of BESSs (kW) in the 4 MW wind-based case.

State
Wind State

1 2 3 4 5 6 7 8 9 10 11 12

1 −1262.7 −862.7 −62.7 737.3 1537.3 1868.002 2268.05 2668.012 2068.023 3468.04 3868.064 4068.078
2 −1466.42 −1066.42 −266.42 533.58 1333.58 1754.382 2184.38 2554.394 2964.407 3350.726 3738.554 4004.471
3 −2050.34 −1656.44 −868.64 −80.8399 706.9605 1640.762 2070.76 2440.775 2808.79 3177.312 3550.844 3918.863
4 −2252.9 −1869.86 −1100.56 −331.56 437.4405 1206.442 1975.45 2317.157 2665.173 3016.698 3367.233 3717.255
5 −2456.5 −2081.93 −1330.23 −578.53 173.1706 924.8726 1676.58 2193.539 2526.057 2861.084 3196.123 3530.647
6 −2660.1 −2294 −1559 −824 −88.9994 646.0028 1381.01 2115.92 2392.44 2711.47 3030.512 3350.038
7 −2865.7 −2505.72 −1786.72 −1067.72 −348.719 370.283 1089.29 1808.302 2153.823 2568.655 2872.501 3176.429
8 −3068.9 −2717.04 −2013.34 −1309.44 −605.639 98.16312 801.97 1505.683 1905.806 2429.241 2718.29 3010.821
9 −3272.7 −2928.16 −2239.16 −1550.16 −861.159 −172.157 516.851 1205.864 1605.889 2301.726 2577.379 2849.211

10 −3476.4 −3138.58 −2462.98 −1787.38 −1111.78 −436.177 239.431 915.0455 1315.071 2266.311 2583.067 2701.602
11 −3680.1 −3348.85 −2686.4 −2023.85 −1361.4 −698.847 −36.3389 625.8267 1025.854 1951.246 2421.955 2556.992
12 −3881.6 −3556.55 −2906.55 −2256.55 −1606.55 −956.546 −306.539 343.4777 743.506 1643.55 2295.612 2420.651

− indicates the discharging mode.
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4.2.4. PV and Wind-Based DG Case

In this case, it was determined previously that a 500 kW PV-based DG and a 1 MW
wind-based DG were connected to bus #17 and bus #61, respectively, in order to study the
common impact of the PV-based DG and wind-based DG on the placement and sizing
of BESSs and the impact of BESS optimization on BESS planning, including the BESS
investment cost, economic cost of operation, system cost, and energy loss cost.

Table 15 showcases the NPV of the total planning cost associated with the PV and
wind-based DGs and BESSs. In the first scenario (no BESSs), the system cost remained
the same as that in Cases #1–#3, and this was attributed to the calculation of the system
upgrades that was obtained in the worst-case scenarios for the power flow in the network
(which occurred in the maximum on-peak load state and the minimum PV and wind-based
state). Nevertheless, there was a significant reduction in the energy loss costs in comparison
with Case #1, as well as a 14.1% reduction and 10% reduction in comparison with Case #2
and a 4.8% reduction in comparison with Case #3. This reduction was attributed to the
installation of PV-based and wind-based DGs together in the system.

Table 15. Results for fourth case (PV and wind).

Wind-Based DG No BESS Lead–Acid Lithium Ion Redox Flow Sodium Sulfur

NPV of Investment Cost (M$) 0 2.864 1.622 2.165 2.214
NPV of the Economic Cost of

Operation (M$) 0 −0.798 −0.892 −0.892 −0.845

NPV of System Upgrade Cost (M$) 3.033 0.67 0.67 0.67 0.67
NPV of Energy Loss (M$) 0.256 0.185 0.181 0.181 0.183
NPV of Total Cost (M$) 3.2893 2.9212 1.5812 2.1241 2.2221

Saving % 0 11.2 51.9 35.4 32.4
Execution Time (h) ≈8 h

For the BESS scenario, it became essential to increase the number of BESS units to
store a larger amount of energy due to the installation of two DGs with large capacities
in the system. Therefore, two BESS units were installed in these cases. It was observed
that the optimal placement and sizing of BESS #1 and BESS #2 were at bus #12 and bus #64
with capacities of 600 kW and 1100 kW, respectively. These increases in BESS sizing are
attributed to the charging power of the BESSs during the minimum off-peak load state and
the maximum output power state of the wind-based and PV-based DGs.

In the following four scenarios, each BESS unit had a different investment cost due
to varying lifespans and different costs on the market. In this case, the investment cost
significantly increased due to the increase in BESS sizing. Lead–acid batteries had an
investment cost of $2.86 million, and lithium-ion batteries boasted the lowest investment
cost, amounting to just $1.62 million. The operational cost of each BESS unit varied due to
the efficiency of each. In this case, the economic cost of operation significantly increased
due to the increase in power charging during the peak load hours. For instance, lead–acid
batteries boasted the highest cost, whereas lithium-ion batteries had a lower cost than that
of lead–acid batteries and shared the same operational expenses as those of redox flow
batteries due to their identical charging and discharging efficiencies.

The system upgrade cost in the BESS scenarios remained the same for all BESS tech-
nologies because they shared the same placement and sizing, and their efficiencies were
very close to each other. However, the system upgrade cost in the BESS scenario was re-
duced by 77.9% in comparison with that in the first scenario. This reduction was attributed
to the deferral of the system upgrade, as shown in Table 16. For example, feeder #1 was
deferred from the 3rd to the 13th year of the planning horizon, and feeders #6, 7, 8, and 9
did not require any upgrades during the planning period. This was due to the installation
of BESS units with a large capacity in this case, resulting in a 75% reduction in comparison
with the first case, a 64% reduction in comparison with Case #2, and a 47% reduction in
comparison with Case #3 in the same scenarios.
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Table 16. Years in which distribution feeders were upgraded with and without BESSs in different cases.

State NO DGs PV-Based DG Wind-Based DG PV- and Wind-Based DGs

Upgrade
Year

without
BESSs

Upgrade
Year with

BESSs

Upgrade
Year

without
BESSs

Upgrade
Year with

BESSs

Upgrade
Year

without
BESSs

Upgrade
Year with

BESSs

Upgrade
Year

without
BESSs

Upgrade Year with
BESSs

1 3 4 3 7 3 10 3 13
2 3 4 3 7 3 10 3 13
3 3 4 3 7 3 10 3 13
4 5 5 5 9 5 12 5 15

5 3 4 3 8 3 12 3 No upgrade required
during planning period

6 3 4 3 8 3 12 3 No upgrade required
during planning period

7 3 4 3 9 3 13 3 No upgrade required
during planning period

8 4 5 4 9 4 13 4 No upgrade required
during planning period

9 5 6 5 10 5 15 5 No upgrade required
during planning period

The energy loss cost experienced a significant reduction from those in the previous
cases. For example, in the lithium-ion scenario, it decreased by around 29.3% in comparison
with the first scenario; it decreased by about 38.7% in comparison with Case #1, by 27.6% in
comparison with Case #2, and by 7.4% in comparison with Case #3 in the same scenarios.

In conclusion, the lithium-ion BESS proved to be the most economical choice in this
case, with total cost savings of 51.9% in comparison with the first scenario and total cost
reductions of about 48.9% in comparison with the first case, about 35.5% in comparison
with Case #2, and about 15.3% in comparison with Case #3.

4.3. Sensitivity Analysis

The sensitivity analysis of our proposed model involved varying the key parameters in
PSO, such as by exploring different inertia weights (e.g., 0.1, 0.5, 0.9), adjusting the cognitive
and social coefficients (e.g., 1.5, 2.0, 2.5), and introducing variations in the initial particle
positions. Surprisingly, the results did not exhibit substantial differences when compared
with our main PSO configuration with an inertia weight of 0.99 and cognitive and social
coefficients of 1.5 and 2, respectively. This suggested that our primary model was robust
and displayed a notable insensitivity to parameter variations for the specific optimization
task. While these findings affirm the stability of our chosen parameters, future adjustments
may be considered based on the requirements of different optimization scenarios.

5. Conclusions

In recent years, numerous innovative technologies such as ESSs and distributed energy
resources (DERs) have been seamlessly integrated into distribution networks in response to
various technical and economic considerations in order to deliver electricity at the most cost-
effective rates while maintaining the necessary level of quality. However, the integration of
these ESSs into power systems without thorough research, design, and optimized planning
and operational processes could potentially compromise the overall quality and security
of electrical grids. Consequently, the optimization of the planning and operation of ESSs
is indispensable for bolstering their performance and enhancing the overall quality and
reliability of power systems.

The primary objectives of this research were to integrate energy storage systems into
distribution systems alongside renewable energy sources and to optimize their placement,
operation, and sizing to maximize their benefits while minimizing the total planning and
economic costs operation and considering both technical and economic aspects.

This study proposed a probabilistic planning model for BESSs in distribution net-
works to optimize the location, sizing, and operation of BESSs and to determine the most
economically efficient BESS technologies that minimized the overall planning costs. Four
different BESS technologies were examined and compared against the base scenario (i.e.,
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without BESSs) and each other. It was concluded that the integration of these BESSs
into a distribution system in conjunction with a wind-based DG and PV-based DG had
a significant impact on reducing energy losses, deferring required system upgrades, and
maximizing benefits through energy purchases during off-peak hours and energy selling
during on-peak hours. The proposed model demonstrated that lithium-ion battery energy
storage was the most cost-effective BESS option for the case under study.

The proposed model proved its effectiveness in accommodating all possible operating
scenarios of the system, as well as the intermittent nature of renewable-based DGs. Unlike
in previous research work, the proposed model allowed the optimizer to freely make
charging and discharging decisions without imposing any unrealistic constraints, leading
to more efficient outcomes.
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