Morpho-Quantitative Traits and Interrelationships between Environmental Factors and Phytophthora infestans (Mont.) de Bary Attack in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Experimental Design
- AD—attack degree, %.
- F—attack frequency; it is the relative value of the number of plants infected by P. infestans related to the number of plants observed. The value of frequency is obtained by direct observations on a number of plants (10 by experimental variant in our case).
- I—attack intensity; it is the value by which the degree of coverage or extension of the infection is given, reporting the infected surface compared to the total observed surface.
2.3. Statistics
3. Results and Discussions
3.1. Environmental Factors in Studied Area
3.2. The Impact of Conventional and Non-Conventional Agricultural Inputs on the Morpho-Productive Properties of Tomatoes
3.2.1. Untreated Plants
3.2.2. Conventional Phytosanitary Treatment
3.2.3. Treatment with Herbal Extracts
3.2.4. Untreated Plants
3.2.5. Conventional Phytosanitary Treatment
3.2.6. Treatment with Herbal Extracts
3.3. P. infestans Levels of Infection in cv. Ruxandra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, Y.; Rahman, Z. Factors Affecting Green Purchase Behaviour and Future Research Directions. Int. Strateg. Manag. Rev. 2015, 3, 128–143. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.fao.org/faostat (accessed on 10 October 2023).
- Athinodorou, F.; Foukas, P.; Tsaniklidis, G.; Kotsiras, A.; Chrysargyris, A.; Delis, C.; Kyratzis, A.C.; Tzortzakis, N.; Nikoloudakis, N. Morphological Diversity, Genetic Characterization, and Phytochemical Assessment of the Cypriot Tomato Germplasm. Plants 2021, 10, 1698. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Forbes, G.A.; Walker, T.S. Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol. 2000, 49, 697–705. [Google Scholar] [CrossRef]
- Chakraborty, S. Potential impact of climate change on plant–pathogen interactions. Aust. Plant Pathol. 2005, 34, 443–448. [Google Scholar] [CrossRef]
- Rempelos, L.; Baránski, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Srednicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.S.; Hajslova, J. Effect of Climatic Conditions, and Agronomic Practices Used in Organic and Conventional Crop Production on Yield and Nutritional Composition Parameters in Potato, Cabbage, Lettuce and Onion; Results from the Long-Term NFSC-Trials. Agronomy 2023, 13, 1225. [Google Scholar] [CrossRef]
- Baker, K.M.; Lake, T.; Benston, S.F.; Trenary, R.; Wharton, P.; Duynslager, L.; Kirk, W. Improved weather-based late blight risk management: Comparing models with a ten-year forecast archive. J. Agric. Sci. 2015, 153, 245–256. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.K.; Kumar, A. Disease management of tomato through PGPB: Current trends and future perspective. Biotech 2017, 7, 255. [Google Scholar] [CrossRef]
- Runion, G.B. Climate change and plant pathosystems: Future disease prevention starts here. New Phytol. 2003, 159, 531–533. [Google Scholar] [CrossRef]
- Waheed, A.; Haxim, Y.; Islam, W.; Ahmad, M.; Muhammad, M.; Alqahtani, F.M.; Hashem, M.; Salih, H.; Zhang, D. Climate change reshaping plant-fungal interaction. Environ. Res. 2023, 238, 117282. [Google Scholar] [CrossRef]
- Albery, G.F.; Sweeny, A.R.; Becker, D.J.; Bansal, S. Fine-scale spatial patterns of wildlife disease are common and under-studied. Funct. Ecol. 2022, 36, 214–225. [Google Scholar] [CrossRef]
- Meno, L.; Abuley, I.K.; Escuredo, O.; Seijo, M.C. Factors influencing the airborne sporangia concentration of Phytophthora infestans and its relationship with potato disease severity. Sci. Hortic. 2023, 307, 111520. [Google Scholar] [CrossRef]
- El-Korany, A.E. Occurrence of oospores of Phytophthora infestans in the field and under controlled conditions. J. Agric. Environ. Sci. Alex. Univ. 2008, 7, 31–52. [Google Scholar]
- Strömberg, A.; Boström, U.; Hallenberg, N. Oospore germination and formation by the late blight pathogen Phytophthora infestans in vitro and under field conditions. J. Phytopathol. 2001, 149, 659–664. [Google Scholar] [CrossRef]
- Leesuthiphonchai, W.; Vu, A.L.; Ah-Fong, A.M.V.; Judelson, H.S. Does Phytophthora infestans Evade Control Efforts? Modern Insight into the Late Blight Disease. Phytopathology 2018, 108, 916–924. [Google Scholar] [CrossRef]
- Olanya, M.; Anwar, M.; He, Z.; Larkin, R.; Honeycutt, C. Survival Potential of Phytophthora infestans Sporangia in Relation to Environmental Factors and Late Blight Occurrence. J. Plant Prot. Res. 2016, 56, 73–81. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Sarkhosh, A.; Schaffer, B.; Vargas, A.I.; Palmateer, A.J.; Lopez, P.; Soleymani, A. In vitro evaluation of eight plant essential oils for controlling Colletotrichum, Botryosphaeria, Fusarium and Phytophthora fruit rots of avocado, mango and papaya. Plant Prot. Sci. 2018, 54, 153–162. [Google Scholar] [CrossRef]
- Rezvanpanah, S.; Rezaei, K.; Golmakani, M.-T.; Razavi, S.H. Antibacterial properties and chemical characterization of the essential oils from summer savory extracted by microwave-assisted hydrodistillation. Braz. J. Microbiol. 2011, 42, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Puškárová, A.; Bučková, M.; Kraková, L. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef] [PubMed]
- Dobros, N.; Zawada, K.D.; Paradowska, K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2022, 28, 256. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, K.; Janda, K.; Jakubczyk, K. Properties and use of rosemary (Rosmarinus officinalis L.). Pomeranian J. Life Sci. 2020, 66, 76–82. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Akshay, K.; Swathi, K.; Bakshi, V.; Boggula, N. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. J. Drug. Deliv. Therap. 2019, 9, 323–330. [Google Scholar]
- Soylu, E.M.; Soylu, S.; Kurt, S. Antimicrobial Activities of the Essential Oils of Various Plants against Tomato Late Blight Disease Agent Phytophthora infestans. Mycopathologia 2006, 161, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Jabbar, A.; Mahboob, S.; Nigam, P.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010, 41, 1070–1078. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Rebey, I.B.; Hanafi, M.; Berhal, C.; Fauconnier, M.L.; De Clerck, C.; Ksouri, R.; Jijakli, H. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res. 2019, 17, e1006. [Google Scholar] [CrossRef]
- Najdabbasi, N.; Mirmajlessi, S.M.; Dewitte, K.; Landschoot, S.; Mänd, M.; Audenaert, K.; Ameye, M.; Haesaert, G. Biocidal Activity of Plant-Derived Compounds against Phytophthora infestans: An Alternative Approach to Late Blight Management. Crop Prot. 2020, 138, 105315. [Google Scholar] [CrossRef]
- Fierascu, I.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Velescu, B.S.; Anuta, V.; Ortan, A.; Jinga, V. Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade. Molecules 2018, 23, 2458. [Google Scholar] [CrossRef] [PubMed]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Agar, G.; Özkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Kotan, R.; Dadasoglu, F.; Karagoz, K.; Cakir, A.; Ozer, H.; Kordali, S.; Cakmakci, R.; Dikbas, N. Antibacterial activity of the essential oil and extracts of Satureja hortensis against plant pathogenic bacteria and their potential use as seed disinfectants. Sci. Hortic. 2013, 153, 34–41. [Google Scholar] [CrossRef]
- Razzaghi-Abyaneh, M.; Shams-Ghahfarokhi, M.; Yoshinari, T.; Rezaee, M.-B.; Jaimand, K.; Nagasawa, H.; Sakuda, S. Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int. J. Food Microbiol. 2008, 123, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Heuvelink, E.; Bakker, M.J.; Elings, A.; Kaarsemaker, R.; Marcelis, L.F.M. Effect of Leaf Area on Tomato Yield. Acta Hortic. 2005, 691, 43–50. [Google Scholar] [CrossRef]
- Jo, W.J.; Shin, J.H. Efect of leaf-area management on tomato plant growth in greenhouses. Hortic. Environ. Biotechnol. 2020, 61, 981–988. [Google Scholar] [CrossRef]
- Ilieș, M.; Ilieș, G. The Geography of Romania; Dacia Publishing House: Cluj-Napoca, Romania, 2001. (In Romanian) [Google Scholar]
- Mihalache, M.; Ilie, L. Agricultural Land Scoring; Dominor Publishing House: Bucharest, Romania, 2006; pp. 111–123. (In Romanian) [Google Scholar]
- Camen, D. Research Methods in Vegetal Physiology; Eurobit Publishing House: Timișoara, Romania, 2014; pp. 50–52. (In Romanian) [Google Scholar]
- Keeney, D.R. Nitrogen management for maximum efficiency and minimum pollution. In Nitrogen in Agricultural Soils, Agronomy Monograph 22; Stevenson, F.J., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 605–649. [Google Scholar]
- Șara, A.; Odagiu, A. Determination of Fodder Quality; Academic Press Publishing House: Cluj-Napoca, Romania, 2002; pp. 60–72. (In Romanian) [Google Scholar]
- Grudnicki, M.; Ianovici, N. Theoretical and Practical Notions of Vegetal Physiology; Mirton Publishing House: Timișoara, Romania, 2014; pp. 70–75. (In Romanian) [Google Scholar]
- Puia, C.E. Phytopathology. Pathography; Risoprint, Publishing House: Cluj-Napoca, Romania, 2005; pp. 90–95. (In Romanian) [Google Scholar]
- Puia, C.; Florian, V.; Oroian, I. Phytopathology—Practical Guide; Digital Data Publishing House: Cluj-Napoca, Romania, 2003; pp. 101–103. (In Romanian) [Google Scholar]
- Merce, E.; Merce, C. Statistics-Established and Fulfilling Paradigms; Academic Press, Publishing House: Cluj-Napoca, Romania, 2009; pp. 178–190. (In Romanian) [Google Scholar]
- Sajid, A.; Javed, H.U.; Rehman, R.N.U.; Sabir, I.A.; Naeem, M.S.; Siddiqui, M.Z.; Saeed, D.A.; Nawa, M.A. Foliar application of some macro and micro nutrients improves tomato growth, flowering and yield. Int. J. Biosci. 2013, 3, 280–287. [Google Scholar]
- Saleem, M.Y.; Iqbal, Q.; Asghar, M. Genetic variability, heritability, character association and path analysis in F1 hybrids of tomato. Pak. J. Agri. Sci. 2013, 50, 649–653. [Google Scholar]
- Higo, M.; Azuma, M.; Kamiyoshihara, Y.; Kanda, A.; Tatewaki, Y.; Isobe, K. Impact of Phosphorus Fertilization on Tomato Growth and Arbuscular Mycorrhizal Fungal Communities. Microorganisms 2020, 8, 178. [Google Scholar] [CrossRef]
- Kazemi, M. Effect of Foliar Application of Humic Acid and Calcium Chloride on tomato growth. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 41–46. [Google Scholar]
- Anwar, A.; Hussain, I.; Gul, H.; Masoud, S.; Khan, A.; Wahab, F.; Khan, J. Effect of different doses of foliar fertilizer on yield and physiochemical characteristics of tomato (Lycopersicon esculentum Mill) cultivars under the agro climatic condition of Peshawar. Int. J. Biosci. 2015, 7, 58–65. [Google Scholar]
- Ashraf, M.I.; Shoukat, S.; Bilal, H.; Muhammad, S.; Muhammad, A.; Muhammad, I. Foliar Application Effect of Boron, Calcium and Nitrogen on Vegetative and Reproductive Attributes of Tomato (Solanum lycopersicum L.). J. Agric. Sci. Food Res. 2018, 9, 199. Available online: https://www.longdom.org/open-access-pdfs/foliar-application-effect-of-boron-calcium-and-nitrogen-on-vegetativeand-reproductive-attributes-of-tomato-solanum-lycopersicum-l.pdf (accessed on 28 October 2023).
- Litschmann, T.; Hausvater, E.; Dolezal, P.; Bastova, P. Climate Change and its Impact on the Conditions of Late Blight Occurrence. Sci. Agric. Bohem. 2018, 49, 173–180. [Google Scholar] [CrossRef]
Issue | N | X | S | Min. | Max. | s |
---|---|---|---|---|---|---|
Temperature (°C) | 122 | 17.15 | 2092.17 | 3.90 | 26.78 | 5.42 |
Rainfall regimen, mm | 52 | 3.50 | 181.80 | 0.50 | 36.00 | 5.96 |
Relative humidity, % | 122 | 71.01 | 8662.80 | 51.10 | 92.40 | 8.95 |
Wind velocity, % | 122 | 9.07 | 1107.07 | 3.70 | 20.28 | 3.26 |
Trait | Phytosanitary Treatment | Fertilization | N | X | s | CV (%) |
---|---|---|---|---|---|---|
Foliar area, cm2 | Untreated | Unfertilized | 20 | 52.80 a | 7.53 | 14.26 |
NPK soil fertilization | 20 | 56.10 b | 6.70 | 11.95 | ||
Foliar fertilization | 20 | 57.55 b | 5.79 | 10.06 | ||
Mixed fertilization | 20 | 60.40 c | 5.97 | 9.88 | ||
Leaf number | Unfertilized | 20 | 20.45 a | 2.68 | 13.13 | |
NPK soil fertilization | 20 | 21.30 a | 2.87 | 13.46 | ||
Foliar fertilization | 20 | 22.30 ab | 2.25 | 10.09 | ||
Mixed fertilization | 20 | 23.25 b | 3.55 | 15.28 | ||
Fruit number | Unfertilized | 20 | 5.65 a | 1.42 | 25.21 | |
NPK soil fertilization | 20 | 5.60 a | 0.94 | 16.79 | ||
Foliar fertilization | 20 | 6.45 b | 1.57 | 24.37 | ||
Mixed fertilization | 20 | 6.75 b | 1.62 | 23.97 | ||
Chlorophyll, SPAD | Unfertilized | 20 | 54.70 a | 5.19 | 9.49 | |
NPK soil fertilization | 20 | 55.30 a | 4.50 | 8.13 | ||
Foliar fertilization | 20 | 55.35 a | 3.90 | 7.04 | ||
Mixed fertilization | 20 | 57.70 b | 2.52 | 4.36 | ||
Foliar area, cm2 | Conventional | Unfertilized | 20 | 53.90 a | 6.92 | 12.84 |
NPK soil fertilization | 20 | 58.10 b | 5.96 | 10.26 | ||
Foliar fertilization | 20 | 58.30 b | 5.41 | 9.28 | ||
Mixed fertilization | 20 | 62.55 c | 5.31 | 8.48 | ||
Leaf number | Unfertilized | 20 | 21.45 a | 3.22 | 15.01 | |
NPK soil fertilization | 20 | 22.75 a | 2.36 | 10.37 | ||
Foliar fertilization | 20 | 23.00 a | 2.70 | 11.72 | ||
Mixed fertilization | 20 | 23.95 ab | 3.14 | 13.10 | ||
Fruit number | Unfertilized | 20 | 6.15 a | 1.53 | 24.90 | |
NPK soil fertilization | 20 | 6.55 a | 1.64 | 25.00 | ||
Foliar fertilization | 20 | 6.90 a | 1.41 | 20.44 | ||
Mixed fertilization | 20 | 7.25 b | 1.71 | 23.63 | ||
Chlorophyll, SPAD | Unfertilized | 20 | 56.45 a | 4.66 | 8.26 | |
NPK soil fertilization | 20 | 55.85 a | 4.30 | 7.69 | ||
Foliar fertilization | 20 | 56.30 a | 4.23 | 7.52 | ||
Mixed fertilization | 20 | 58.50 b | 3.03 | 5.19 | ||
Foliar area, cm2 | Herbal extracts | Unfertilized | 20 | 52.50 a | 6.96 | 13.26 |
NPK soil fertilization | 20 | 57.10 b | 6.05 | 10.60 | ||
Foliar fertilization | 20 | 57.30 b | 6.48 | 11.31 | ||
Mixed fertilization | 20 | 61.50 c | 4.98 | 8.10 | ||
Leaf number | Unfertilized | 20 | 21.10 a | 3.42 | 16.19 | |
NPK soil fertilization | 20 | 22.10 a | 2.59 | 11.74 | ||
Foliar fertilization | 20 | 21.80 a | 2.42 | 11.10 | ||
Mixed fertilization | 20 | 23.00 ab | 3.13 | 13.60 | ||
Fruit number | Unfertilized | 20 | 5.80 a | 1.36 | 23.47 | |
NPK soil fertilization | 20 | 6.15 a | 1.14 | 18.48 | ||
Foliar fertilization | 20 | 6.55 a | 1.15 | 17.50 | ||
Mixed fertilization | 20 | 6.60 a | 1.27 | 19.29 | ||
Chlorophyll, SPAD | Unfertilized | 20 | 53.60 a | 4.92 | 9.19 | |
NPK soil fertilization | 20 | 54.95 a | 4.12 | 7.50 | ||
Foliar fertilization | 20 | 54.50 a | 5.30 | 9.72 | ||
Mixed fertilization | 20 | 56.55 b | 3.87 | 6.85 |
Trait | Phytosanitary Treatment | Fertilization | N | X | s | CV (%) |
---|---|---|---|---|---|---|
Fruit weight, g | Untreated | Unfertilized | 20 | 188.45 a | 6.85 | 3.63 |
NPK soil fertilization | 20 | 190.70 a | 6.08 | 3.19 | ||
Foliar fertilization | 20 | 190.00 a | 5.87 | 3.09 | ||
Mixed fertilization | 20 | 193.20 b | 5.91 | 3.06 | ||
NUE, % | Unfertilized | 20 | 0.18 a | 0.02 | 11.12 | |
NPK soil fertilization | 20 | 0.34 b | 0.08 | 23.51 | ||
Foliar fertilization | 20 | 0.32 b | 0.07 | 22.80 | ||
Mixed fertilization | 20 | 0.27 b | 0.02 | 8.57 | ||
Dry matter, g | Unfertilized | 20 | 5.70 a | 0.80 | 14.06 | |
NPK soil fertilization | 20 | 6.41 a | 0.45 | 7.03 | ||
Foliar fertilization | 20 | 6.21 a | 0.59 | 9.43 | ||
Mixed fertilization | 20 | 6.59 a | 0.67 | 10.12 | ||
Fruit weight, g | Conventional | Unfertilized | 20 | 188.90 a | 5.69 | 3.01 |
NPK soil fertilization | 20 | 196.10 b | 4.10 | 2.09 | ||
Foliar fertilization | 20 | 193.60 b | 5.04 | 2.60 | ||
Mixed fertilization | 20 | 193.50 b | 6.51 | 3.36 | ||
NUE, % | Unfertilized | 20 | 0.28 a | 0.03 | 10.71 | |
NPK soil fertilization | 20 | 0.35 b | 0.05 | 13.26 | ||
Foliar fertilization | 20 | 0.33 b | 0.04 | 11.95 | ||
Mixed fertilization | 20 | 0.29 a | 0.04 | 17.35 | ||
Dry matter, g | Unfertilized | 20 | 5.52 a | 0.63 | 11.42 | |
NPK soil fertilization | 20 | 6.41 a | 0.66 | 10.34 | ||
Foliar fertilization | 20 | 6.14 a | 0.52 | 8.39 | ||
Mixed fertilization | 20 | 6.65 b | 0.74 | 11.18 | ||
Fruit weight, g | Herbal extract | Unfertilized | 20 | 188.50 a | 6.13 | 3.25 |
NPK soil fertilization | 20 | 190.20 a | 5.05 | 2.66 | ||
Foliar fertilization | 20 | 189.60 a | 5.25 | 2.77 | ||
Mixed fertilization | 20 | 189.90 a | 5.03 | 2.65 | ||
NUE, % | Unfertilized | 20 | 0.18 a | 0.04 | 24.10 | |
NPK soil fertilization | 20 | 0.36 b | 0.03 | 9.66 | ||
Foliar fertilization | 20 | 0.35 b | 0.04 | 10.92 | ||
Mixed fertilization | 20 | 0.35 b | 0.04 | 10.16 | ||
Dry matter, g | Unfertilized | 20 | 5.58 a | 0.82 | 14.75 | |
NPK soil fertilization | 20 | 6.19 a | 0.68 | 11.06 | ||
Foliar fertilization | 20 | 6.11 a | 0.57 | 9.41 | ||
Mixed fertilization | 20 | 6.37 a | 0.70 | 10.94 |
Experimental Variant | Regression Line | R | R2 |
---|---|---|---|
V1 | Y = 17.233 + 0.324X1+ 0.134X2 + 0.039X3 + 0.116X4 − 0.041X5 + 0.334X6 + 0.498X7 | 0.458 | 0.235 |
V2 | Y = 40.555 + 0.591X1 + 0.249X2 + 0.482X3 + 0.126X4 − 0.043X5 + 0.756X6 + 0.223X7 | 0.554 | 0.308 |
V3 | Y = 43.295 + 0.178X1 + 1.283X2 + 0.058X3 + 0.921X4 − 0.046X5 + 1.041X6 + 0.578X7 | 0.751 | 0.564 |
V4 | Y = 12.504 + 0.179X1 + 0.206X2 + 0.221X3 + 0.247X4 − 0.085X5 + 0.157X6 + 0.375X7 | 0.453 | 0.206 |
V5 | Y = 120.003 + 0.614X1 + 0.245X2 + 0.137X3 + 0.424X4 − 0.053X5 +0.078X6 + 0.326X7 | 0.595 | 0.354 |
V6 | Y = 50.083 + 0.328X1 + 0.465X2 + 0.236X3 + 0.317X4 − 0.021X5 + 0.183X6 + 0.729X7 | 0.661 | 0.437 |
V7 | Y = 6.591 + 0.062X1 + 0.355X2 + 0.058X3 + 0.427X4 − 0.065X5 + 0.144X6 + 0.437X7 | 0.429 | 0.184 |
V8 | Y = 4.575 +0.238X1 + 0.148X2 + 0.067X3 + 0.114X4 − 0.209X5 + 0.254X6 +0.4358X7 | 0.741 | 0.549 |
V9 | Y = 18.046 + 0.472X1 + 0.259X2 + 0.135X3 + 0.329X4 − 0.055X5 + 0.179X6 + 0.562X7 | 0.782 | 0.612 |
V10 | Y = 69.467 + 0.120X1 + 0.355X2 + 0.109X3 + 0.562X4 − 0.049X5 + 0.381X6 + 0.529X7 | 0.574 | 0.455 |
V11 | Y = 7.159 +0.470X1 + 0.041X2 + 0.523X3 + 0.079X4 − 0.032X5 + 0.209X6 + 0.591X7 | 0.698 | 0.488 |
V12 | Y = 35.251 + 0.280X1 + 0.176X2 + 0.026X3 + 0.533X4 − 0.057X5 + 0.159X6 + 0.798X7 | 0.711 | 0.505 |
Phytosanitary Treatment | Fertilization | N | X(%) | s | CV (%) |
---|---|---|---|---|---|
Untreated | Unfertilized | 20 | 44.55 a | 5.76 | 12.94 |
NPK soil fertilization | 20 | 35.10 b | 6.42 | 18.30 | |
Foliar fertilization | 20 | 36.75 b | 5.94 | 16.16 | |
Mixed fertilization | 20 | 32.75 bc | 5.16 | 15.75 | |
Conventional | Unfertilized | 20 | 22.65 a | 1.81 | 8.01 |
NPK soil fertilization | 20 | 14.60 b | 2.56 | 17.55 | |
Foliar fertilization | 20 | 17.25 b | 5.07 | 29.37 | |
Mixed fertilization | 20 | 12.30 bc | 1.87 | 15.18 | |
Herbal extracts | Unfertilized | 20 | 24.70 a | 4.55 | 18.44 |
NPK soil fertilization | 20 | 18.80 b | 2.21 | 11.78 | |
Foliar fertilization | 20 | 20.90 b | 2.61 | 12.51 | |
Mixed fertilization | 20 | 14.00 c | 2.53 | 18.10 |
Fertilization | Treatments | ||
---|---|---|---|
Untreated | Conventional | Herbal Extracts | |
Control | 44.55 a | 22.65 a | 24.70 a |
NPK soil fertilization | 35.10 b | 14.60 b | 18.80 b |
Foliar fertilization | 36.75 b | 17.25 b | 20.90 b |
Mixed fertilization | 32.75 b | 12.30 c | 14.00 c |
Average level of infection with P. infestans (%) | 37.28 a | 16.70 b | 19.60 b |
CV(%) | 13.71 | 26.66 | 22.75 |
LSD5% | 3.012 | 1.265 | 2.004 |
F | 16.395 ** | 6.314 * | 7.113 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabo, R.A.; Racz, C.-P.; Oroian, I.; Burduhos, P.; Mîrza, C.M.; Balint, C.; Mălinaș, C.; Odagiu, A.C.M. Morpho-Quantitative Traits and Interrelationships between Environmental Factors and Phytophthora infestans (Mont.) de Bary Attack in Tomato. Sustainability 2024, 16, 301. https://doi.org/10.3390/su16010301
Sabo RA, Racz C-P, Oroian I, Burduhos P, Mîrza CM, Balint C, Mălinaș C, Odagiu ACM. Morpho-Quantitative Traits and Interrelationships between Environmental Factors and Phytophthora infestans (Mont.) de Bary Attack in Tomato. Sustainability. 2024; 16(1):301. https://doi.org/10.3390/su16010301
Chicago/Turabian StyleSabo, Roxana Alexandra, Csaba-Pál Racz, Ioan Oroian, Petru Burduhos, Camelia Manuela Mîrza, Claudia Balint, Cristian Mălinaș, and Antonia Cristina Maria Odagiu. 2024. "Morpho-Quantitative Traits and Interrelationships between Environmental Factors and Phytophthora infestans (Mont.) de Bary Attack in Tomato" Sustainability 16, no. 1: 301. https://doi.org/10.3390/su16010301
APA StyleSabo, R. A., Racz, C. -P., Oroian, I., Burduhos, P., Mîrza, C. M., Balint, C., Mălinaș, C., & Odagiu, A. C. M. (2024). Morpho-Quantitative Traits and Interrelationships between Environmental Factors and Phytophthora infestans (Mont.) de Bary Attack in Tomato. Sustainability, 16(1), 301. https://doi.org/10.3390/su16010301