Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Ash Source
2.2. Determination of Metallic Elements in Solid Waste
2.3. Determination of Hexavalent Chromium in Solid Waste
2.4. Determination of Heavy Metal Elements in Water Quality
2.5. Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony in Water Quality
2.6. Determination of Hexavalent Chromium in Solid Waste
2.7. Determination of pH Value in Ash and Water Samples
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fly Ash Resource Utilization Processes
3.2. Compositional Analysis of Different Ash Fractions
3.3. Analysis of Heavy Metals in Different Ash and Regenerated Salts
3.4. Total Heavy Metals of Recycled Salt Water (TSW) and Industrial Brine (IB)
3.5. pH Analysis
4. Conclusions and Implications for Sustainability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FA | fly ash |
PA | pyrolysis ash |
WA | water-washing ash |
RS | regenerated salt |
TSW | treated saline water |
IB | industrial brine |
References
- Dai, S.F.; Zhao, L.; Peng, S.P.; Chou, C.L.; Wang, X.B.; Zhang, Y.; Li, D.; Sun, Y.Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal. Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Yao, J.; Li, W.B.; Xia, F.F.; Zheng, Y.G.; Fang, C.R.; Shen, D.S. Heavy metals and PCDD/Fs in solid waste incinerator fly ash in Zhejiang province, China: Chemical and bio-analytical characterization. In Environmental Monitoring and Assessment; Springer: Berlin/Heidelberg, Germany, 2012; Volume 184, pp. 3711–3720. [Google Scholar]
- Xu, H.; Miao, J.D.; Chen, P.; Zhan, L.T.; Wang, Y.Z. Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China. Eng. Geol. 2019, 255, 59–68. [Google Scholar] [CrossRef]
- Niu, J.P.; Su, X.L.; Tang, Z.J. Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of in the Desert Region of North China. Agronomy 2021, 11, 590. [Google Scholar] [CrossRef]
- Feng, T.T.; Lu, X.W. Natural radioactivity, radon exhalation rate and radiation dose of fly ash used as building materials in Xiangyang, China. Indoor Built Environ. 2016, 25, 626–634. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, J.X.; Zhang, Q.; Nie, S.J. Backfilling Technology of Substituting Waste and Fly Ash for Coal Underground in China Coal Mining Area. Environ. Eng. Manag. J. 2011, 10, 769–775. [Google Scholar] [CrossRef]
- Wei, X.; Gao, C.Y.; Ai, K.Y.; Zhao, J.; Xu, L. Mechanical Interpretation of Effects of Aeolian FineSands on Coal Fly Ash in Northern Shaanxi Province, China. Adv. Civ. Eng. 2020, 2020, 8885090. [Google Scholar] [CrossRef]
- Hao, Q.J.; Jiang, C.S.; Zhang, J.K.; Tang, Q.W. Particle Size Distribution and Speciation Analysis of Heavy Metals in Municipal Solid Waste Incineration Fly Ash in Chongqing, China. Int. Conf. Bioinform. 2010. [Google Scholar]
- Wang, X.T.; Jiao, Y.Z.; Xu, B.; Jin, B.S. Swirling Melting Characteristics of Fly Ashes from Co-firing of MSWI in China. In Proceedings of the 2009 International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; Volume 3, p. 597. [Google Scholar]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R.M. Applications of fly ash for CO capture, utilization, and storage. J. CO2 Util. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Chi, Y.H.; Peng, L.; Tam, N.F.Y.; Lin, Q.R.; Liang, H.B.; Li, W.C.; Ye, Z.H. Effects of fly ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China. Geoderma 2022, 419, 115879. [Google Scholar] [CrossRef]
- Deng, J.; Xiao, Y.; Lu, J.H.; Wen, H.; Jin, Y.F. Application of composite fly ash gel to extinguish outcrop coal fires in China. Nat. Hazards 2015, 79, 881–898. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution. Waste Manag. Res. 2015, 33, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Malarski, M.; Wichowski, P.; Czajkowska, J. Heavy Metals in Fly Ash as a Factor Limiting Its Use in Fertilizing Composts. Water 2023, 15, 2247. [Google Scholar] [CrossRef]
- Cao, Z. Discussion of “A review of the alumina recovery from coal fly ash, with a focus in China”. Fuel 2014, 134, 698. [Google Scholar] [CrossRef]
- Panday, K.K.; Prasad, G.; Singh, V.N. Fly Ash-China Clay for Removal of Cr(Vi) from Aqueous-Solutions. Indian J. Chem. A 1984, 23, 514–515. [Google Scholar]
- Wang, H.; Zhu, F.F.; Liu, X.Y.; Han, M.L.; Zhang, R.Y. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash. Waste Manag. Res. 2021, 39, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhan, M.X.; Lin, X.Q.; Fu, J.Y.; Lu, S.Y.; Li, X.D. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China. Environ. Sci. Pollut. Res. 2015, 22, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.Z. Utilization of Pulverized Fly-Ash in the Peoples-Republic-of-China. Energy 1986, 11, 1359–1362. [Google Scholar] [CrossRef]
- Quina, M.J.; Bordado, J.C.; Quinta-Ferreira, R.M. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 2008, 28, 2097–2121. [Google Scholar] [CrossRef]
- Yu, Z.K.; Liu, W.; Peng, Z.Y.; Zhang, L.; Bu, S.; Xu, W.G.; Xu, C.; Yao, H.Q.; Ma, Z.L. Experimental study on the stabilization of heavy metals in fly ash from municipal solid waste incineration by N-30 alkaline silica sol. Process Saf. Environ. 2021, 148, 1367–1376. [Google Scholar] [CrossRef]
- Zhu, F.F.; Xiong, Y.Q.; Wang, Y.Y.; Wei, X.; Zhu, X.M.; Yan, F.W. Heavy metal behavior in “Washing-Calcination-Changing with Bottom Ash” system for recycling of four types of fly ashes. Waste Manag. 2018, 75, 215–225. [Google Scholar] [CrossRef]
- GB 18598–2019; Standard for Pollution Control on the Hazardous Waste Landfill. National Standards of People’s Republic of China: Beijing, China, 2020.
- Zhou, J.Z.; Wu, S.M.; Pan, Y.; Su, Y.W.; Yang, L.B.; Zhao, J.; Lu, Y.S.; Xu, Y.F.; Oh, K.; Qian, G.R. Mercury in municipal solids waste incineration (MSWI) fly ash in China: Chemical speciation and risk assessment. Fuel 2015, 158, 619–624. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.S.; Ma, C.; Qiao, Y.; Xiang, J.; Hu, S.; Yao, H. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl · 6HO. Waste Manag. 2016, 49, 124–130. [Google Scholar] [CrossRef]
- Cao, D.Z.; Selic, E.; Herbell, J.D. Utilization of fly ash from coal-fired power plants in China. J. Zhejiang Univ. Sci. A 2008, 9, 681–687. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.M.; Qin, Q.; Wang, H.D. Life cycle assessment of magnetized fly-ash compound fertilizer production: A case study in China. Renew. Sust. Energ. Rev. 2017, 73, 706–713. [Google Scholar] [CrossRef]
- Fang, J.H.; Lu, J.L.; Saco, K.; Beér, J.M.; Sarofim, A.F. High unburned carbon in fly ash from stoker boilers in China. Prospect. Coal Sci. 21st Century 1999, 471–474. [Google Scholar]
- Wang, W.; Wan, X.; Ye, T.M.; Gao, X.B. A study on the character of heavy metals from municipal solid waste incinerator fly ash in China. In Proceedings of the World Engineers’ Convention 2004: Vol D, Environment Protection and Disaster Mitigation, Taiyuan, China, 15 January 2004; pp. 54–57. [Google Scholar]
- Yue, Z.X.; Chen, J.N. Fly ash the status of resource-oriented utilization in construction material. Adv. Mater. Res. 2013, 753–755, 628–631. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cui, S.P.; Liu, Y.; Sun, B.X.; Gong, X.Z.; Gao, F. Evaluation and comparison of exergy-based resource consumption for fly ash utilisation in a cement clinker production system and landfill disposal. Int. J. Exergy 2021, 36, 414–429. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.C.; Shen, Y.Z.; Fu, C.K.; Li, M.J.; Lin, X.Q.; Li, X.D.; Yan, J.H. Resource utilization of ultrasonic carbonated MSWI fly ash as cement aggregates: Compressive strength, heavy metal immobilization, and environmental-economic analysis. Chem. Eng. J. 2023, 472, 144860. [Google Scholar] [CrossRef]
- Wong, G.J.; Fan, X.H.; Gan, M.; Ji, Z.Y.; Ye, H.D.; Zhou, Z.; Wang, Z.C. Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: A novel thermal treatment. J. Clean Prod. 2020, 263, 121400. [Google Scholar] [CrossRef]
Technology | Input | |
---|---|---|
Fly ash treatment system | Solid Phase Catalytic Pyrolysis Furnace Solid Phase Thermal Dioxin Removal System | Natural gas: 20 m3/ton Electricity: 43 kWh |
Fly ash rinsing system | Industrial water: 180 kg | |
Exhaust gas treatment process | Water washing system workshop | Electricity: 32 kWh |
Evaporation crystallization drying waste gas | Industrial water: 0.96 kg | |
Wastewater treatment process | Heavy metal removal system | Electricity: 12 kWh Hydrochloric acid: 25.8 kg PAM: 0.028 kg Sodium sulfide: 0.112 kg |
Primary softening system | Electricity: 17 kWh Sodium sulfate: 170 kg | |
Secondary softening system | Electricity: 10.5 kWh Sodium carbonate: kg Hydrochloric acid: kg | |
Separation membrane system | Electricity: 31 kWh | |
Medium water tank | Industrial water: 0 kg | |
MVR evaporation and crystallization system | Electricity: 140 kWh | |
Total process energy consumption | Electricity: 285.5 kWh Natural gas: 20 m3 Industrial water: 180.96 kg |
Detection Limit | TSW | IB | |
---|---|---|---|
Cl−/mg·L−1 | / | 184,000 | 210,000 |
SO42−/mg·L−1 | / | 281.5 | 10,800 |
NO2−/mg·L−1 | / | 0.52 | <0.003 |
S2−/mg·L−1 | / | 0.7135 | 0.007 |
NO3−/mg·L−1 | / | 4.045 | 128 |
Cd/mg·L−1 | 0.05 | <0.05 | <0.05 |
Cr/mg·L−1 | 0.03 | <0.03 | <0.03 |
Cu/mg·L−1 | 0.04 | 0.398 ± 0.007 | <0.04 |
Fe/mg·L−1 | 0.01 | 0.164 ± 0.010 a | 0.179 ± 0.007 b |
Pb/mg·L−1 | 0.1 | 410.373 ± 8.707 a | 0.209 ± 0.022 b |
Mn/mg·L−1 | 0.01 | <0.01 | <0.01 |
Ni/mg·L−1 | 0.007 | <0.007 | <0.007 |
Zn/mg·L−1 | 0.009 | 2.502 ± 0.037 | <0.009 |
Al/mg·L−1 | 0.009 | 0.445 ± 0.007 | <0.009 |
Ba/mg·L−1 | 0.01 | 5.665 ± 0.099 a | 0.030 ± 0.003 b |
Sr/mg·L−1 | 0.01 | 76.415 ± 1.507 a | 0.099 ± 0.002 b |
Ca/mg·L−1 | 0.02 | 47,125 ± 970 a | 37.950 ± 1.372 b |
Mg/mg·L−1 | 0.003 | 0.853 ± 0.348 a | 0.122 ± 0.001 b |
Hg/μg·L−1 | 0.04 | 4.607 ± 0.061 a | 0.060 ± 0.028 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Li, J.; Gong, H.; Zhu, Z.; Xu, S.; Jiang, C.; Cai, W. Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals. Sustainability 2024, 16, 302. https://doi.org/10.3390/su16010302
Pan S, Li J, Gong H, Zhu Z, Xu S, Jiang C, Cai W. Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals. Sustainability. 2024; 16(1):302. https://doi.org/10.3390/su16010302
Chicago/Turabian StylePan, Shuping, Jun Li, Hongping Gong, Zhanheng Zhu, Shunan Xu, Caiping Jiang, and Wenxiang Cai. 2024. "Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals" Sustainability 16, no. 1: 302. https://doi.org/10.3390/su16010302
APA StylePan, S., Li, J., Gong, H., Zhu, Z., Xu, S., Jiang, C., & Cai, W. (2024). Resource Disposal and Products of Fly Ash from Domestic Waste Incineration in Zhejiang Province, China: Migration and Change of Hazardous Heavy Metals. Sustainability, 16(1), 302. https://doi.org/10.3390/su16010302