The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Remote Sensing Data
2.2.2. Drone Data
2.2.3. Groundwater Observation Data
2.3. Research Methodology
2.3.1. Normalised Difference Vegetation Index
2.3.2. Calculation and Accuracy Verification of Vegetation Cover
2.3.3. Image Difference Method
2.3.4. Slope Trend Analyses
2.3.5. Inverse Distance Weight Interpolation
3. Results
3.1. Test of the Degree of Fit of Vegetation Cover
3.2. Spatial and Temporal Changes in Vegetation Cover
3.3. Spatial and Temporal Groundwater Distribution Patterns
3.4. Groundwater Dynamics in Relation to Changes in Vegetation Cover
4. Discussion
4.1. Extraction of Vegetation Cover
4.2. Influence of Groundwater Depth on Vegetation Distribution Patterns
4.3. Climatic and Anthropogenic Impacts on Vegetation Distribution Patterns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DiMiceli, C.; Townshend, J.; Carroll, M.; Sohlberg, R. Evolution of the Representation of Global Vegetation by Vegetation Continuous Fields. Remote Sens. Environ. 2021, 254, 112271. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of Vegetation Coverage Changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Zhang, H.; Yan, W.; Zhao, C. Trade-Offs and Synergies in Ecosystem Service Values of Inland Lake Wetlands in Central Asia under Land Use/Cover Change: A Case Study on Ebinur Lake, China. Glob. Ecol. Conserv. 2020, 24, e01253. [Google Scholar] [CrossRef]
- Glanville, K.; Sheldon, F.; Butler, D.; Capon, S. Effects and Significance of Groundwater for Vegetation: A Systematic Review. Sci. Total Environ. 2023, 875, 162577. [Google Scholar] [CrossRef] [PubMed]
- Ponzoni, F.J.; da Silva, C.B.; dos Santos, S.B.; Montanher, O.C.; dos Santos, T.B. Local Illumination Influence on Vegetation Indices and Plant Area Index (PAI) Relationships. Remote Sens. 2014, 6, 6266–6282. [Google Scholar] [CrossRef]
- Sun, G.Q.; Li, L.; Li, J.; Liu, C.; Wu, Y.P.; Gao, S.; Wang, Z.; Feng, G.L. Impacts of Climate Change on Vegetation Pattern: Mathematical Modeling and Data Analysis. Phys. Life Rev. 2022, 43, 239–270. [Google Scholar] [CrossRef]
- Tian, P.; Tian, X.; Geng, R.; Zhao, G.; Yang, L.; Mu, X.; Gao, P.; Sun, W.; Liu, Y. Response of Soil Erosion to Vegetation Restoration and Terracing on the Loess Plateau. CATENA 2023, 227, 107103. [Google Scholar] [CrossRef]
- Danyar, S.; Yudong, S.; Jumakeld, M. Influence of Groundwater Level Change on Vegetation Coverage and Their Spatial Variation in Arid Regions. J. Geogr. Sci. 2004, 14, 323–329. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, D.; Chen, X. Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef]
- Zeng, X.L.; Liu, T.; Zhang, W.B.; Sun, Q.M.; Shen, X.Y.; Si, L.M. Variations in Groundwater Levels and Quality and Their Effects on Vegetation in the Western Grurbantonggut Desert. Acta Ecol. Sin. 2012, 32, 1490–1501. [Google Scholar] [CrossRef]
- Zhao, S.T.; Zhao, X.Y.; Li, Y.L.; Mao, W.; Wang, N.; Chen, Y.; Lu, J.N.; Chen, X.P.; Wang, R.X. A Review on the Driving Effect of Groundwater Depth on the Evolution of Sandy Plant Soil Systems in Arid and Semi⁃arid Region. Acta Ecol. Sin. 2022, 42, 9898–9908. [Google Scholar] [CrossRef]
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; Rafik, A. An Assessment of Groundwater from Semi-arid Environment of Morocco for Drinking and Agricultural Uses with Reference to Water Quality Indices Technique. Carbonates Evaporites 2021, 36, 62. [Google Scholar] [CrossRef]
- Ouhamdouch, S.; Bahir, M.; Ouazar, D.; Rafik, A. Hydrochemical Characteristics of Aquifers from the Coastal Zone of the Essaouira Basin (Morocco) and Their Suitability for Domestic and Agricultural Uses. Sustain. Water Resour. Manag. 2022, 8, 1–15. [Google Scholar] [CrossRef]
- Rafik, A.; Bahir, M.; Beljadid, A.; Chehbouni, A.; Dhiba, D.; Ouhamdouch, S. The Combination of the Quality Index, Isotopic, and GIS Techniques to Assess Water Resources in a Semi-Arid Context (Essaouira Watershed in Morocco). Groundw. Sustain. Dev. 2022, 17, 100768. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Dube, T.; Dondofema, F.; Dalu, T. Spatio–Temporal Variation of Vegetation Heterogeneity in Groundwater Dependent Ecosystems within Arid Environments. Ecol. Inform. 2022, 69, 101667. [Google Scholar] [CrossRef]
- Elmore, A.J.; Manning, S.J.; Mustard, J.F.; Craine, J.M. Decline in Alkali Meadow Vegetation Cover in California: The Effects of Groundwater Extraction and Drought. J. Appl. Ecol. 2006, 43, 770–779. [Google Scholar] [CrossRef]
- Kibler, C.L.; Schmidt, E.C.; Roberts, D.A.; Stella, J.C.; Kui, L.; Lambert, A.M.; Singer, M.B. A Brown Wave of Riparian Woodland Mortality Following Groundwater Declines during the 2012–2019 California Drought. Environ. Res. Lett. 2021, 16, 084030. [Google Scholar] [CrossRef]
- Williams, J.; Stella, J.C.; Voelker, S.L.; Lambert, A.M.; Pelletier, L.M.; Drake, J.E.; Friedman, J.M.; Roberts, D.A.; Singer, M.B. Local Groundwater Decline Exacerbates Response of Dryland Riparian Woodlands to Climatic Drought. Glob. Chang. Biol. 2022, 28, 6771–6788. [Google Scholar] [CrossRef]
- Mata-González, R.; Averett, J.P.; Abdallah, M.A.B.; Martin, D.W. Variations in Groundwater Level and Microtopography Influence Desert Plant Communities in Shallow Aquifer Areas. Environ. Manag. 2022, 69, 45–60. [Google Scholar] [CrossRef]
- Hartfield, K.; van Leeuwen, W.J.D.; Gillan, J.K. Remotely Sensed Changes in Vegetation Cover Distribution and Groundwater along the Lower Gila River. Land 2020, 9, 326. [Google Scholar] [CrossRef]
- Rafik, A.; Ibouh, H.; El Fels, A.E.A.; Eddahby, L.; Mezzane, D.; Bousfoul, M.; Amazirh, A.; Ouhamdouch, S.; Bahir, M.; Gourfi, A.; et al. Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sens. 2022, 14, 1606. [Google Scholar] [CrossRef]
- Orellana, F.; Verma, P.; Loheide, S.P.; Daly, E. Monitoring and Modeling Water-Vegetation Interactions in Groundwater-Dependent Ecosystems. Rev. Geophys. 2012, 50, 3. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, C.; Li, J.; Li, Y.; Lv, G.; Liu, T. Effect of Groundwater Depth on Riparian Plant Diversity along Riverside-Desert Gradients in the Tarim River. J. Plant Ecol. 2018, 12, 564–573. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, T.; Zhou, J.; Cai, W.; Gao, N.; Du, H.; Jiang, L.; Lai, L.; Zheng, Y. Groundwater Depth and Soil Properties Are Associated with Variation in Vegetation of a Desert Riparian Ecosystem in an Arid Area of China. Forests 2018, 9, 34. [Google Scholar] [CrossRef]
- Cao, L.; Nie, Z.; Liu, M.; Wang, L.; Wang, J.; Wang, Q. The Ecological Relationship of Groundwater–Soil–Vegetation in the Oasis–Desert Transition Zone of the Shiyang River Basin. Water 2021, 13, 1642. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, G.; Wang, Q.; Wang, J.; Liu, M.; Yan, M. Study on Index of Groundwater Ecological Function Crisis Classification and Early Warning in Northwest China. Water 2022, 14, 1911. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Chen, X.; Li, B. Simulation of the Effects of Groundwater Level on Vegetation Change by Combining FEFLOW Software. Ecol. Model. 2005, 187, 341–351. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.; Yang, Y.; Peng, X.; Li, C.; Zhao, Q. A Method to Determine Optimum Ecological Groundwater Table Depth in Semi-Arid Areas. Ecol. Indic. 2022, 139, 108915. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Huang, Q.; Bai, Q.; Leng, G.; Wang, H.; Zhao, J.; Wei, X.; Zheng, X. Effects of Vegetation Restoration on Groundwater Drought in the Loess Plateau, China. J. Hydrol. 2020, 591, 125566. [Google Scholar] [CrossRef]
- Dong, S.; Liu, B.; Ma, M.; Xia, M.; Wang, C. Effects of Groundwater Level Decline to Soil and Vegetation in Arid Grassland: A Case Study of Hulunbuir Open Pit Coal Mine. Environ. Geochem. Health 2023, 45, 1793–1806. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.; Wang, P.; Zhang, Y.; Yu, Q. Interpreting the Groundwater Attributes Influencing the Distribution Patterns of Groundwater-Dependent Vegetation in Northwestern China. Ecohydrology 2012, 5, 628–636. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, X.J.; Yin, X.W.; Yue, Y.M.; Liu, R.; Xu, G.Q.; Li, Y. Seasonal Variation in the Groundwater Dependency of Two Dominant Woody Species in a Desert Region of Central Asia. Plant Soil 2019, 444, 39–55. [Google Scholar] [CrossRef]
- Peng, M.; He, H.; Wang, Z.; Li, G.; Lv, X.; Pu, X.; Zhuang, L. Responses and Comprehensive Evaluation of Growth Characteristics of Ephemeral Plants in the Desert–Oasis Ecotone to Soil Types. J. Environ. Manag. 2022, 316, 115288. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lu, J.; Jiang, W. Study on Formation and Development of Aeolian Landform and Trend of Environmental Change at Lower Reach of the Kerriya River. J. Desert Res. 1988, 8, 1–10. [Google Scholar]
- Hao, L.; Qingdong, S.; Imin, B.; Kasim, N. Methodology for Optimizing Quadrat Size in Sparse Vegetation Surveys: A Desert Case Study from the Tarim Basin. PLoS ONE 2020, 15, e0235469. [Google Scholar] [CrossRef]
- Chu, G.Q.; Liu, J.Q.; Sun, Q.; Chen, R.; Mu, G. Y Preliminary Research on the Flood Events Based on the Studies of Tree Ring Width (Populus Euphraica) in the Keriya River. Xinjiang Quat. Sci. 2002, 22, 252–257. [Google Scholar]
- Wang, J.; Zhang, F.; Luo, G.; Guo, Y.; Zheng, J.; Wu, S.; Wang, D.; Liu, S.; Shi, Q. Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China. Remote Sens. 2022, 14, 5050. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, F.; Shi, Q.; Li, M.; Dai, Y.; Zhang, Z.; Zhu, C. Responses of Arid Plant Species Diversity and Composition to Environmental Factors. J. For. Res. 2023, 34, 1723–1734. [Google Scholar] [CrossRef]
- Li, T.; Luo, G.-m.; Dong, K.-p.; Peng, L.-p.; Dai, Y.; Marhaba-Nijat. Water Use of Populus Euphratica in Different Development Stages Growing near the River_bank at the Tail of the Keriya River. Chin. J. Ecol. 2021, 40, 989–997. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. UAV-Based Remote Sensing Using Visible and Multispectral Indices for the Estimation of Vegetation Cover in an Oasis of a Desert. Ecol. Indic. 2022, 141, 109155. [Google Scholar] [CrossRef]
- An, P.; Yu, L.P.; Wang, Y.X.; Miao, X.D.; Wang, C.S.; Lai, Z.P.; Shen, H. Holocene Incisions and Flood Activities of the Keriya River, NW Margin of the Tibetan Plateau. J. Asian Earth Sci. 2020, 191, 104224. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, F.; Li, S. The Formation and Evolution of Oasis in the Keriya River Valley. Quat. Sci. 1994, 14, 249–255. [Google Scholar]
- Zhang, F.; Wang, J.; Ma, L.; Tuersun, D. OSL Chronology Reveals Late Pleistocene Floods and Their Impact on Landform Evolution in the Lower Reaches of the Keriya River in the Taklimakan Desert. J. Geogr. Sci. 2023, 33, 945–960. [Google Scholar] [CrossRef]
- Shi, H.; Shi, Q.; Dai, Y.; Zhou, X.; Wan, Y.; Peng, L. Response of Age Structure of Populus Euphratica Population to Groundwater Depth in the Oasis at the End of Keriya River. Acta Bot. Boreali-Occidentalia Sin. 2021, 41, 1401–1408. [Google Scholar] [CrossRef]
- Wang, B.; Jia, K.; Liang, S.; Xie, X.; Wei, X.; Zhao, X.; Yao, Y.; Zhang, X. Assessment of Sentinel-2 MSI Spectral Band Reflectances for Estimating Fractional Vegetation Cover. Remote Sens. 2018, 10, 1927. [Google Scholar] [CrossRef]
- Kalinaki, K.; Malik, O.A.; Lai, D.T.C.; Sukri, R.S.; Wahab, R.B.H.A. Spatial-Temporal Mapping of Forest Vegetation Cover Changes along Highways in Brunei Using Deep Learning Techniques and Sentinel-2 Images. Ecol. Inform. 2023, 77, 102193. [Google Scholar] [CrossRef]
- Kang, M.P.; Zhao, C.Z.; Bai, X.; Yang, J.C. The Temporal and Spatial Variation Pattern of Vegetation Coverage in Suganhu Wetland. Acta Ecol. Sin. 2020, 40, 2975–2984. [Google Scholar] [CrossRef]
- Shen, B.; Wei, Y.; Ma, L.; Xu, D.; Ding, L.; Hou, L.; Qin, Q.; Xin, X. Spatiotemporal Changes and Drivers of Fractional Vegetation Cover in Inner Mongolia Grassland of China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 118–126. [Google Scholar] [CrossRef]
- Han, H.; Yin, Y.; Zhao, Y.; Qin, F. Spatiotemporal Variations in Fractional Vegetation Cover and Their Responses to Climatic Changes on the Qinghai–Tibet Plateau. Remote Sens. 2023, 15, 2662. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.L.; Liu, P.Y. Spatio-temporal Changes and Driving Forces of Fraction of Vegetation Coverage in Hulunbuir (1998–2018). Acta Ecol. Sin. 2022, 42, 220–235. [Google Scholar] [CrossRef]
- Liu, C.J.; Zhang, L.; Zhou, Y.; Zhang, B.H.; Hou, X.L. Retrieval and Analysis of Grassland Coverage in Arid Xinjiang, China and Five Countries of Central Asia. Pratacultural Sci. 2016, 33, 861–887. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F. Spatial-Temporal Pattern and Gravity Center Change of Fractional Vegetation Cover in Xinjiang, China from 2000 to 2019. Trans. Chin. Soc. Agric. Eng. 2020, 36, 188–194. [Google Scholar]
- Zhang, K.; Lyu, Y.; Fu, B.; Yin, L.; Yu, D. The Effects of Vegetation Coverage Changes on Ecosystem Service and Their Threshold in the Loess Plateau. Dili Xuebao/Acta Geogr. Sin. 2020, 75, 949–960. [Google Scholar] [CrossRef]
- Dong, D.W.; Abdirahman, H.; Wang, D.W.; Tian, S.Y. Spatio-Temporal Variations in Vegetation Cover in Hotan Oasis from 1994 to 2016. Acta Ecol. Sin. 2019, 39, 3710–3719. [Google Scholar] [CrossRef]
- Guo, H.; Jiapaer, G.; Bao, A.; Li, X.; Huang, Y.; Ndayisaba, F.; Meng, F. Effects of the Tarim River’s Middle Stream Water Transport Dike on the Fractional Cover of Desert Riparian Vegetation. Ecol. Eng. 2017, 99, 333–342. [Google Scholar] [CrossRef]
- Celicourt, P.; Gumiere, S.J.; Lafond, J.A.; Gumiere, T.; Gallichand, J.; Rousseau, A.N. Automated Mapping of Water Table for Cranberry Subirrigation Management: Comparison of Three Spatial Interpolation Methods. Water 2020, 12, 3322. [Google Scholar] [CrossRef]
- Sun, Y.; Kang, S.; Li, F.; Zhang, L. Comparison of Interpolation Methods for Depth to Groundwater and Its Temporal and Spatial Variations in the Minqin Oasis of Northwest China. Environ. Model. Softw. 2009, 24, 1163–1170. [Google Scholar] [CrossRef]
- Nistor, M.M.; Rahardjo, H.; Satyanaga, A.; Hao, K.Z.; Xiaosheng, Q.; Sham, A.W.L. Investigation of Groundwater Table Distribution Using Borehole Piezometer Data Interpolation: Case Study of Singapore. Eng. Geol. 2020, 271, 105590. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T.B.; Lei, M.; Yang, J.; Guo, Q.J.; Song, B.; Zhou, X.Y. Spatial Distribution of Soil Heavy Metal Pollution Estimated by Different Interpolation Methods: Accuracy and Uncertainty Analysis. Chemosphere 2011, 82, 468–476. [Google Scholar] [CrossRef]
- Ashraf, M.; Loftis, J.C.; Hubbard, K.G. Application of Geostatistics to Evaluate Partial Weather Station Networks. Agric. For. Meteorol. 1997, 84, 255–271. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, C.; Wang, G.; Liang, X. Study on Ecological Threshold of Groundwater in Typical Salinization Area of Qian’an County. Water 2021, 13, 856. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing Vegetation Response to Climatic Variations and Human Activities: Spatiotemporal NDVI Variations in the Hexi Corridor and Surrounding Areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Ishiyama, T.; Nakajima, Y.; Kajiwara, K.; Tsuchiya, K. Extraction of Vegetation Cover in an Arid Area Based on Satellite Data. Adv. Sp. Res. 1997, 19, 1375–1378. [Google Scholar] [CrossRef]
- Lu, Q.; Zhao, D.; Wu, S.; Dai, E.; Gao, J. Using the NDVI to Analyze Trends and Stability of Grassland Vegetation Cover in Inner Mongolia. Theor. Appl. Climatol. 2019, 135, 1629–1640. [Google Scholar] [CrossRef]
- Li, H.; Shi, Q.; Wan, Y.; Shi, H.; Imin, B. Using Sentinel-2 Images to Map the Populus Euphratica Distribution Based on the Spectral Difference Acquired at the Key Phenological Stage. Forests 2021, 12, 147. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Khamehchiyan, M.; Nikudel, M.R.; Ghassemi, M.R. Numerical Simulation and Prediction of Regional Land Subsidence Caused by Groundwater Exploitation in the Southwest Plain of Tehran, Iran. Eng. Geol. 2016, 201, 6–28. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, D.; Duan, B.; Qiao, W. A Novel Groundwater Burial Depth Prediction Model—Based on the Combined VMD-WSD-ELMAN Model. Environ. Sci. Pollut. Res. 2022, 29, 76310–76320. [Google Scholar] [CrossRef]
Grade | Vegetation Cover (%) | Year | |||||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | |||||||||
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |||
Ⅰ | 0–15 | Bare ground, very low vegetation cover | 3164 | 3090 | 3119 | 3167 | 3016 | 3103 | 3127 |
Ⅱ | 15–30 | Low vegetation cover | 166 | 199 | 182 | 176 | 247 | 181 | 194 |
Ⅲ | 30–50 | Medium vegetation cover | 71 | 100 | 95 | 67 | 121 | 91 | 87 |
Ⅳ | ≥50 | High vegetation cover | 27 | 39 | 32 | 18 | 44 | 53 | 20 |
Total area of vegetation cover | 264 | 338 | 309 | 261 | 412 | 325 | 301 |
Trend Rating | Area (km2) | Proportion (%) |
---|---|---|
Significant reduction | 47.17 | 1.38 |
Mild reduction | 67.70 | 1.97 |
Basic stability | 3136.97 | 91.51 |
Mild increase | 83.88 | 2.45 |
Significant increase | 92.28 | 2.69 |
Total area | 3428.00 | 100 |
Year | Type | 2016 | |||||||
---|---|---|---|---|---|---|---|---|---|
Bare Ground, Very Low Cover | Low Coverage | Medium Coverage | High Coverage | ||||||
Area km2 | % | Area km2 | % | Area km2 | % | Area km2 | % | ||
2022 | Bare ground, very low cover | 3078 | 97.29 | 44.73 | 26.94 | 3.36 | 4.71 | 0.57 | 2.13 |
Low coverage | 75.75 | 2.39 | 91.77 | 55.28 | 22.46 | 31.46 | 2.47 | 9.21 | |
Medium coverage | 9.16 | 0.29 | 27.54 | 16.59 | 37.34 | 52.3 | 12.82 | 47.84 | |
High coverage | 0.61 | 0.02 | 1.96 | 1.18 | 6.23 | 8.73 | 10.94 | 40.8 | |
Amount of change | −36.80 | 26.40 | 17.47 | −7.06 |
Type Number | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Depth of Burial (m) | Bare Ground, Very Low Cover | % | Low Coverage | % | Medium Coverage | % | High Coverage | % |
2019 | 0–1 | 4 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 |
1–2 | 357 | 1.79 | 91 | 2.52 | 24 | 1.92 | 8 | 3.35 | |
2–3 | 2801 | 14.01 | 592 | 16.38 | 233 | 18.63 | 55 | 23.01 | |
3–4 | 4693 | 23.47 | 907 | 25.10 | 303 | 24.22 | 49 | 20.50 | |
4–5 | 3366 | 16.84 | 593 | 16.41 | 209 | 16.71 | 36 | 15.06 | |
5–6 | 4010 | 20.06 | 715 | 19.78 | 253 | 20.22 | 40 | 16.74 | |
6–7 | 3559 | 17.80 | 574 | 15.88 | 189 | 15.11 | 38 | 15.90 | |
7–8 | 1202 | 6.01 | 142 | 3.93 | 40 | 3.20 | 13 | 5.44 | |
2020 | 0–1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1–2 | 20 | 0.12 | 11 | 0.24 | 1 | 0.04 | 2 | 0.27 | |
2–3 | 493 | 2.88 | 130 | 2.79 | 63 | 2.45 | 14 | 1.89 | |
3–4 | 4437 | 25.90 | 1419 | 30.41 | 833 | 32.40 | 243 | 32.75 | |
4–5 | 4016 | 23.44 | 1091 | 23.38 | 568 | 22.09 | 174 | 23.45 | |
5–6 | 4880 | 28.49 | 1376 | 29.48 | 770 | 29.95 | 216 | 29.11 | |
6–7 | 2756 | 16.09 | 553 | 11.85 | 302 | 11.75 | 82 | 11.05 | |
7–8 | 528 | 3.08 | 87 | 1.86 | 34 | 1.32 | 11 | 1.48 | |
2021 | 0–1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1–2 | 82 | 0.44 | 24 | 0.65 | 6 | 0.30 | 5 | 0.51 | |
2–3 | 1653 | 8.95 | 410 | 11.12 | 258 | 12.87 | 119 | 12.16 | |
3–4 | 5913 | 32.03 | 1401 | 38.00 | 769 | 38.37 | 363 | 37.08 | |
4–5 | 3222 | 17.45 | 590 | 16.00 | 326 | 16.27 | 159 | 16.24 | |
5–6 | 4511 | 24.44 | 931 | 25.25 | 462 | 23.05 | 253 | 25.84 | |
6–7 | 2368 | 12.83 | 271 | 7.35 | 157 | 7.83 | 67 | 6.84 | |
7–8 | 711 | 3.85 | 60 | 1.63 | 26 | 1.30 | 13 | 1.33 | |
2022 | 0–1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1–2 | 1108 | 5.71 | 260 | 7.24 | 148 | 8.06 | 34 | 7.73 | |
2–3 | 3679 | 18.97 | 827 | 23.04 | 456 | 24.82 | 101 | 22.95 | |
3–4 | 4167 | 21.49 | 756 | 21.06 | 391 | 21.28 | 93 | 21.14 | |
4–5 | 2944 | 15.18 | 474 | 13.20 | 210 | 11.43 | 56 | 12.73 | |
5–6 | 4798 | 24.74 | 894 | 24.90 | 466 | 25.37 | 113 | 25.68 | |
6–7 | 2432 | 12.54 | 339 | 9.44 | 157 | 8.55 | 39 | 8.86 | |
7–8 | 266 | 1.37 | 40 | 1.11 | 9 | 0.49 | 4 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Guo, Y.; Wang, H.; Wang, N.; Wei, X.; Zhou, M.; Lu, T.; Zhang, Z. The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert. Sustainability 2024, 16, 378. https://doi.org/10.3390/su16010378
Bai Y, Guo Y, Wang H, Wang N, Wei X, Zhou M, Lu T, Zhang Z. The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert. Sustainability. 2024; 16(1):378. https://doi.org/10.3390/su16010378
Chicago/Turabian StyleBai, Yunbao, Yuchuan Guo, Huijing Wang, Ning Wang, Xuan Wei, Mingtong Zhou, Tiantian Lu, and Zihui Zhang. 2024. "The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert" Sustainability 16, no. 1: 378. https://doi.org/10.3390/su16010378
APA StyleBai, Y., Guo, Y., Wang, H., Wang, N., Wei, X., Zhou, M., Lu, T., & Zhang, Z. (2024). The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert. Sustainability, 16(1), 378. https://doi.org/10.3390/su16010378