Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Influence of the Injection Rate
3.2. Influence of Reservoir Permeability
3.3. Local Capillary Trapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA (International Energy Agency). World Energy Outlook 2020; IEA Publications: Paris, France, 2020. [Google Scholar]
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2010, 39, 159–180. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.C.; Loos, M.; Meyer, L.A. (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Oldenburg, C.M.; Pruess, K.; Benson, S.M. Process Modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels 2002, 16, 293–298. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Gershenzon, N.; Dai, Z.; Ritzi, R.; Xiong, F.; Cole, D.; Moortgat, J. Dissolution trapping of carbon dioxide in heterogeneous aquifers. Environ. Sci. Technol. 2017, 51, 7732–7741. [Google Scholar] [CrossRef]
- Amooie, M.A.; Soltanian, M.R.; Moortgat, J. Solutal convection in porous media: Comparison between boundary conditions of constant concentration and constant flux. Phys. Rev. E 2018, 98, 033118. [Google Scholar] [CrossRef]
- Ershadnia, R.; Wallace, C.; Soltanian, M. CO2 geological sequestration in heterogeneous binary media: Effects of geological and operational conditions. Adv. Geo-Energy Res. 2020, 4, 392–405. [Google Scholar] [CrossRef]
- Meybodi, H.; Hassanzadeh, H. Stability analysis of two-phase buoyancy-driven flow in the presence of a capillary transition zone. Phys. Rev. E 2013, 87, 033009. [Google Scholar] [CrossRef]
- Meybodi, H.; Hassanzadeh, H. Two-phase convective mixing under a buoyant plume of CO2 in deep saline aquifers. Adv. Water Resour. 2015, 76, 55–71. [Google Scholar] [CrossRef]
- Elenius, M.T.; Nordbotten, J.M.; Kalisch, H. Convective mixing influenced by the capillary transition zone. Comput. Geosci. 2014, 18, 417–431. [Google Scholar] [CrossRef]
- Martinez, M.; Hesse, M. Two-phase convective CO2 dissolution in saline aquifers. Water Resour. Res. 2016, 52, 585–599. [Google Scholar] [CrossRef]
- Elenius, M.T.; Voskov, D.V.; Tchelepi, H.A. Interactions between gravity currents and convective dissolution. Adv. Water Resour. 2015, 83, 77–88. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A.; Chu, S.P.; Stauffer, P.H.; Pawar, R.J. Analysis of evolving capillary transition, gravitational fingering, and dissolution trapping of CO2 in deep saline aquifers during continuous injection of supercritical CO2. Int. J. Greenh. Gas Control. 2019, 82, 281–297. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A.; Stauffer, P.H.; Pawar, R.J. Simulation of gravitational instability and thermo-solutal convection during the dissolution of CO2 in deep storage reservoirs. Water Resour. Res. 2020, 56, e2019WR026126. [Google Scholar] [CrossRef]
- Yortsos, Y.C.; Chang, J. Capillary effects in steady-state flow in heterogeneous cores. Transp. Porous Media 1990, 5, 399–420. [Google Scholar] [CrossRef]
- Chaouche, M.; Rakotomalala, N.; Salin, D.; Xu, B.; Yortsos, Y.C. Capillary effects in drainage in heterogeneous porous media: Continuum modelling, experiments and pore network simulations. Chem. Eng. Sci. 1994, 49, 2447–2466. [Google Scholar] [CrossRef]
- van Duijn, C.; Molenaar, J.; De Neef, M. The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transp. Porous Media 1995, 21, 71–93. [Google Scholar] [CrossRef]
- Kueper, B.H.; Abbott, W.; Farquhar, G. Experimental observations of multiphase flow in heterogeneous porous media. J. Contam. Hydrol. 1989, 5, 83–95. [Google Scholar] [CrossRef]
- Kueper, B.H.; Frind, E.O. Two-phase flow in heterogeneous porous media: 2. Model application. Water Resour. Res. 1991, 27, 1059–1070. [Google Scholar] [CrossRef]
- van Duijn, C.; de Neef, M. Similarity solution for capillary redistribution of two phases in a porous medium with a single discontinuity. Adv. Water Resour. 1998, 21, 451–461. [Google Scholar] [CrossRef]
- Dawe, R.; Wheat, M.; Bidner, M. Experimental investigation of capillary pressure effects on immiscible displacement in lensed and layered porous media. Transp. Porous Media 1992, 7, 83–101. [Google Scholar] [CrossRef]
- Dale, M.; Ekrann, S.; Mykkeltveit, J.; Virnovsky, G. Effective relative permeabilities and capillary pressure for one-dimensional heterogeneous media. Transp. Porous Media 1997, 26, 229–260. [Google Scholar] [CrossRef]
- Han, W.S.; Lee, S.Y.; Lu, C.; Mcpherson, B.J. Effects of permeability on CO2 trapping mechanisms and buoyancy driven CO2 migration in saline formations. Water Resour. Res. 2010, 46, 1–20. [Google Scholar] [CrossRef]
- Saadatpoor, E.; Bryant, S.L.; Sepehrnoori, K. New trapping mechanism in carbon sequestration. Transp. Porous Media 2010, 82, 3–17. [Google Scholar] [CrossRef]
- Suekane, T.; Izumi, T.; Okada, K. Capillary trapping of supercritical CO2 in porous media at the pore scale. WIT Trans. Eng. Sci. 2011, 70, 311–320. [Google Scholar]
- Krevor, S.C.; Pini, R.; Li, B.; Benson, S.M. Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Deng, H.; Stauffer, P.H.; Dai, Z.; Jiao, Z.; Surdam, R.C. Simulation of industrial-scale CO2 storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Int. J. Greenh. Gas Control 2012, 10, 397–418. [Google Scholar] [CrossRef]
- Ren, B.; Sun, Y.; Bryant, S. Maximizing local capillary trapping during CO2 injection. Energy Procedia 2014, 63, 5562–5576. [Google Scholar] [CrossRef]
- Rabinovich, A.; Itthisawatpan, K.; Durlofsky, L.J. Upscaling of CO2 injection into brine with capillary heterogeneity effects. J. Pet. Sci. Eng. 2015, 134, 60–75. [Google Scholar] [CrossRef]
- Trevisan, L.; Krishnamurthy, P.G.; Meckel, T.A. Impact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO2 saturation for buoyant flow in clastic aquifers. Int. J. Greenh. Gas Control 2017, 56, 237–249. [Google Scholar] [CrossRef]
- Trevisan, L.; Pini, R.; Cihan, A.; Birkholzer, J.T.; Zhou, Q.; Gonzalez-Nicolas, A.; Illangasekare, T.H. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resour. Res. 2017, 53, 485–502. [Google Scholar] [CrossRef]
- Gershenzon, N., Jr.; Ritzi, R.W.; Dominic, D.F.; Mehnert, E.; Okwen, R.T. Capillary trapping of CO2 in heterogeneous reservoirs during the injection period. Int. J. Greenh. Gas Control 2017, 59, 13–23. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Y.; Bielicki, J.; Amooie, M.; Zhang, M.; Yang, C.; Zou, Y.; Ampomah, W.; Xiao, T.; Jia, W.; et al. Heterogeneity-assisted carbon dioxide storage in marine sediments. Appl. Energy 2018, 10, 134–147. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Lichtner, P. Evaluating model complexity in simulating supercritical CO2 dissolution, leakage, footprint, and reservoir pressure for three-dimensional hierarchical aquifer. Int. J. Greenh. Gas Control 2017, 64, 284–299. [Google Scholar] [CrossRef]
- Zulqarnain, M.; Zeidouni, M.; Hughes, R.G. Implications of fault structure heterogeneities, dissolution and capillary trapping mechanisms for CO2 storage integrity. Int. J. Greenh. Gas Control 2018, 76, 53–61. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2018, 68, 216–229. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A.; Soltanian, M.R.; Stauffer, P.H. Coupled multiphase flow and transport simulation to model CO2 dissolution and local capillary trapping in permeability and capillary heterogeneous reservoir. Int. J. Greenh. Gas Control 2021, 108, 103329. [Google Scholar] [CrossRef]
- Ershadnia, R.; Wallace, C.D.; Hajirezaie, S.; Hosseini, S.A.; Nguyen, T.N.; Sturmer, D.M.; Dai, Z.; Soltanian, M.R. Hydro-thermo-chemo-mechanical modeling of carbon dioxide injection in fluvial heterogeneous aquifers. Chem. Eng. J. 2022, 431, 133451. [Google Scholar] [CrossRef]
- Guo, R.; Dalton, L.; Crandall, D.; McClure, J.; Wang, H.; Li, Z.; Chen, C. Role of heterogeneous surface wettability on dynamic immiscible displacement, capillary pressure, and relative permeability in a CO2-water-rock system. Adv. Water Resour. 2022, 165, 104226. [Google Scholar] [CrossRef]
- Fang, X.; Lv, Y.; Yuan, C.; Zhu, X.; Guo, J.; Liu, W.; Li, H. Effects of reservoir heterogeneity on CO2 dissolution efficiency in randomly multilayered formations. Energies 2023, 16, 5219. [Google Scholar] [CrossRef]
- Hansen, S.K.; Tao, Y.; Karra, S. Impacts of permeability heterogeneity and background flow on supercritical CO2 dissolution in the deep subsurface. Water Resour. Res. 2023, 59, e2023WR035394. [Google Scholar] [CrossRef]
- Schütz, F.; Winterleitner, G.; Huenges, E. Geothermal exploration in a sedimentary basin: New continuous temperature data and physical rock properties from northern Oman. Geotherm. Energy 2018, 6, 1–23. [Google Scholar] [CrossRef]
- Procesi, M.; Ciotoli, G.; Mazzini, A.; Etiope, G. Sediment-hosted geothermal systems: Review and first global mapping. Earth-Sci. Rev. 2019, 192, 529–544. [Google Scholar] [CrossRef]
- Kolawole, O.; Ispas, I.; Kolawole, F.; Germay, C.; McLennan, J.D. Mechanical zonation of rock properties and the development of fluid migration pathways: Implications for enhanced geothermal systems in sedimentary-hosted geothermal reservoirs. Geotherm. Energy 2021, 9, 14. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Xiong, S.Q.; Yu, C.C.; Zhang, G.B.; Zhang, X.Y.; Hu, B. Geothermal distribution characteristics and sedimentary basin geothermal system in the severe cold region of Northeast China. Appl. Geophys. 2020, 17, 321–337. [Google Scholar] [CrossRef]
- Bielicki, J.M.; Leveni, M.; Johnson, J.X.; Ellis, B.R. The promise of coupling geologic CO2 storage with sedimentary basin geothermal power generation. iScience 2023, 26, 105618. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Tangirala, S.K.; Chaudhuri, A. Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 16. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T.J.; Bourcier, W.L.; Court, B.; Celia, M.A.; Friedmann, S.J.; Aines, R.D. Active CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Control 2012, 6, 230–245. [Google Scholar] [CrossRef]
- Elliot, T.; Buscheck, T.; Celia, M. Active CO2 reservoir management for sustainable geothermal energy extraction and reduced leakage. Greenh. Gases Sci. Technol. 2013, 3, 50–65. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Elliot, T.R.; Celia, M.A.; Chen, M.; Sun, Y.; Hao, Y.; Lu, C.; Wolery, T.J.; Aines, R.D. Integrated geothermal-CO2 reservoir systems: Reducing carbon intensity through sustainable energy production and secure CO2 storage. Energy Procedia 2013, 37, 6587–6594. [Google Scholar] [CrossRef]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. On the importance of the thermosiphon effect in CPG (CO2 Plume Geothermal) power systems. Energy 2014, 69, 409–418. [Google Scholar] [CrossRef]
- Cihan, A.; Birkholzer, J.T.; Bianchi, M. Optimal well placement and brine extraction for pressure management during CO2 sequestration. Int. J. Greenh. Gas Control 2015, 42, 175–187. [Google Scholar] [CrossRef]
- Jayne, R.S.; Zhang, Y.; Pollyea, R.M. Using heat as a predictor of CO2 breakthrough in highly heterogeneous reservoirs. Geophys. Res. Lett. 2019, 46, 5879–5888. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Z.; Lu, Y.; Tang, G.; Li, H. Influences of reservoir heterogeneity and anisotropy on CO2 sequestration and heat extraction for CO2-based enhanced geothermal system. J. Therm. Sci. 2019, 28, 319–325. [Google Scholar] [CrossRef]
- Babaei, M. Integrated carbon sequestration-geothermal heat recovery: Performance comparison between open and close systems. Transp. Porous Media 2019, 126, 249–273. [Google Scholar] [CrossRef]
- Pan, C.; Romero, C.E.; Levy, E.K.; Wang, X.; Rubio-Maya, C.; Pan, L. Fully coupled wellbore-reservoir simulation of supercritical CO2 injection from fossil fuel power plant for heat mining from geothermal reservoirs. J. CO2 Util. 2018, 27, 480–492. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, G.; Wang, H.; Li, T.; Wang, Y. Application of carbon dioxide as working fluid in geothermal development considering a complex fractured system. Energy Convers. Manag. 2019, 180, 1055–1067. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A. Evaluation of low-to moderate-enthalpy shallow sedimentary reservoirs for CCS-CPG Systems. In Enhanced Geothermal Systems (EGS); CRC Press: Boca Raton, FL, USA, 2023; pp. 1–16. [Google Scholar]
- COMSOL Multiphysics. Comsol Multiphysics®. COMSOL Multiphysics: Burlington, MA, USA. Available online: https://www.comsol.com/ (accessed on 5 February 2020).
- Lemmon, E.W.; McLinden, M.O.; Friend, D.G. Thermophysical properties of fluid systems. In NIST Chemistry WebBook; Linstrom, P.J., Mallard, W.G., Eds.; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User’s Guide; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Mahmoodpour, S.; Singh, M.; Turan, A.; Bär, K.; Sass, I. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir. Energy 2022, 247, 123511. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Kong, X.Z.; Seyfried, W.E.; Saar, M.O. Experimental investigation of permeability and porosity evolution during reactive transport in a fracture. Geophys. Res. Lett. 2015, 42, 10704–10713. [Google Scholar]
- Juanes, R.; Spiteri, E.J.; Orr, F.M.; Blunt, M.J. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Ide, S.T.; Jessen, K.; Orr, F.M., Jr. Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping. Int. J. Greenh. Gas Control 2007, 1, 481–491. [Google Scholar]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Injection rate | Case dependent | Mean porosity | 0.2 |
Injection temperature | Case dependent | Mean permeability | 5 mD |
Mean capillary entry pressure | 30 kPa | Residual CO2 saturation | 0 |
Residual water saturation | 0.2 | Rock density | 2600 kg/m3 |
Thermophysical properties of CO2 and water | f(p, T), NIST webbook | Thermal gradient | 30 K/km |
Rock thermal conductivity | 3 W/m/K | Rock-specific heat capacity | 850 J/kg/K |
Wellbore radius | 0.2 m | Wellbore length | 50 m |
Surface temperature | 10 °C | System thickness | 300 m |
System length | 500 m | System width | 500 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Mahmoodpour, S.; Schmidt-Hattenberger, C.; Sass, I.; Drews, M. Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage. Sustainability 2024, 16, 387. https://doi.org/10.3390/su16010387
Singh M, Mahmoodpour S, Schmidt-Hattenberger C, Sass I, Drews M. Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage. Sustainability. 2024; 16(1):387. https://doi.org/10.3390/su16010387
Chicago/Turabian StyleSingh, Mrityunjay, Saeed Mahmoodpour, Cornelia Schmidt-Hattenberger, Ingo Sass, and Michael Drews. 2024. "Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage" Sustainability 16, no. 1: 387. https://doi.org/10.3390/su16010387
APA StyleSingh, M., Mahmoodpour, S., Schmidt-Hattenberger, C., Sass, I., & Drews, M. (2024). Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO2 Storage. Sustainability, 16(1), 387. https://doi.org/10.3390/su16010387