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Abstract: Economic dispatch, emission dispatch, or their combination (EcD, EmD, EED) are essential
issues in power systems optimization that focus on optimizing the efficient and sustainable use of
energy resources to meet power demand. A new algorithm is proposed in this article to solve the
dispatch problems with/without considering wind units. It is based on the Social Group Optimization
(SGO) algorithm, but some features related to the selection and update of heuristics used to generate
new solutions are changed. By applying the highly disruptive polynomial operator (HDP) and by
generating sequences of random and chaotic numbers, the perturbation of the vectors composing
the heuristics is achieved in our Modified Social Group Optimization (MSGO). Its effectiveness was
investigated in 10-unit and 40-unit power systems, considering valve-point effects, transmission line
losses, and inclusion of wind-based sources, implemented in four case studies. The results obtained
for the 10-unit system indicate a very good MSGO performance, in terms of cost and emissions. The
average cost reduction of MSGO compared to SGO is 368.1 $/h, 416.7 $/h, and 525.0 $/h for the
40-unit systems. The inclusion of wind units leads to 10% reduction in cost and 45% in emissions.
Our modifications to MSGO lead to better convergence and higher-quality solutions than SGO or
other competing algorithms.

Keywords: economic/emission dispatch; wind power; logistic map; highly disruptive polynomial
operator; optimization

1. Introduction

The power generation sector has been undergoing continuous development in recent
years, with a focus on diversification of energy sources and production technologies, but
also on efficiency and constant innovation. Decision makers aim through regulations and
policies to create a competitive and attractive framework for investors while ensuring
the sustainable development of the energy system [1]. In order for electricity producers
and companies to remain in a competitive market, it is necessary for them to operate
with the lowest possible costs and to use sources/technologies with the lowest possible
environmental impact. One way to optimize operating costs while taking emissions into
account is to solve the economic emission dispatch (EED) problem [2]. The goal of the
EED problem is to determine the optimal operating mode of energy sources to minimize
the two objectives—cost and emissions—considering a given power demand, as well as
the operating limits of the generating units [3]. If the EED problem aims only at cost
optimization (without considering emissions), then this is called the economic dispatch
problem (EcD) [4]. If EED only aims to optimize emissions (without considering costs),
then it is called the emission dispatch (EmD) problem [5]. For a more complete approach,
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both the economic aspects and the level of emissions released into the atmosphere must be
taken into account, which implies solving the EED problem.

Initially, the solution to EcD, EmD, and EED problems focused mainly on conventional
unit power plants (firing coal, gas, etc.), as they had a very large share of the power system
structure. However, last year’s warnings about the environmental impact of these types
of power plants led to an increased use of both high-efficiency co-generation units (CU)
(that simultaneously produce both electricity and heat), and renewable energy power
generation systems (RESPSs) to steer the electricity generation sector towards sustainable
development [6,7]. The EED problem that includes CU aims at the optimal scheduling (in
terms of cost and emissions) of power-only units, heat-only units, and their combination:
co-generation units [8]. It is a similar situation for EcD [9] or EmD [8] problems, with both
aiming to manage all categories of units operating in the power system: power-only, heat-
only, and CU units. For systems that include CU units, in addition to costs and constraints
specific to power-only units, the EED optimization model must also consider the fuel costs
related to heat-only and CU units, power-heat dependencies, and the produced-demand
heat balance [10]. In the case of including RESPSs in the power system, an important
option is the use of wind energy, which can be converted into electricity without producing
greenhouse gases. Wind energy is considered a renewable and clean energy source, having
only a low secondary impact on the environment due to the manufacturing process of
the equipment and its transport. Increasing the share of wind energy in the energy mix
has a positive impact on the quality of the environment and reduces dependence on
conventional sources. Since wind is an uncontrollable and variable source of energy, the
energy production from wind units is influenced by weather conditions and wind speed.
Thus, the operation of power systems that include wind units must also take into account
the unpredictable variations in the power of these units [4].

The integration of wind units into EcD, EmD, or EED problems brings challenges
related to wind speed distribution, mathematical optimization models, and solution algo-
rithms. One of the most common parametric distributions used in wind speed modeling
is the Weibull distribution [11–13], but other distributions can be considered, such as [14]
Gamma, inverse Gamma, Gaussian, Burr, Halphen, etc.

In the following, some articles are presented which propose mathematical models and
solution algorithms for solving EcD, EmD, or EED problems considering the uncertainties
caused by unpredictable wind speed fluctuations. Thus, in [4], an optimization model is
presented that includes the costs related to the overestimation and underestimation of the
wind power. The case study considers a Weibull distribution of the wind speed, and it
shows that the optimal solutions to the EcD problem can be influenced by factors associated
with the overestimation and underestimation of wind power. Based on a linear relationship
between wind speed and wind power, and considering a Weibull distribution for wind
speed, in [11], an optimization model is developed for the minimization of emissions,
in which the uncertainty of the wind power is included in the constraints of the model.
In [12], both the cost of emissions and the cost of overestimation and underestimation
of wind power are included in the bi-objective EED problem. Starting from the classical
formulation of EcD and EmD problems, in [2], the objective functions related to costs and
emissions are extended with terms that include the uncertainty of the wind power. The
resulting models are tested on a system consisting of two conventional units and two wind
units, considering a mixed Gamma-Weibull distribution for the wind speed. To solve the
EED problem with the inclusion of wind power, in [15], the Honey Bee Mating Optimizer
(HBMO) is applied, where a so-called 2m-point model is used to estimate the uncertainty
of the wind power. In [16], a new evolutionary technique called Lightning Flash Algorithm
(LFA) is proposed to solve the bi-objective EED problem by considering different levels
of wind power penetration and multiple fuel sources. The LFA technique is efficient for
the EED problem, having a good convergence and achieving lower costs and emissions
than other algorithms. A robust and efficient optimization model for dispatching wind-
thermal power under uncertainties is developed in [1], taking into account robustness,
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economics, and environmental aspects. In [17], another robust model for the optimization
of the EcD problem is presented. It is based on the identification of a set of discrete bad
scenarios, where the objective function aims at minimizing all the penalties associated with
the bad scenarios.

The EcD, EmD, or EED problems that include or do not include wind power un-
certainty are non-convex with multiple local optima and nonlinear constraints [12,15,16]
requiring advanced solution algorithms.

For the study of both systems (the ones comprising conventional-only units and
the ones comprising thermal-wind units), several algorithms are presented in the follow-
ing lines. Considering the first category of systems, in [18], an Improved Class Topper
Optimization (ICTO) has been developed by including in the classical CTO three new
concepts: adaptive improvement factor, adaptive acceleration coefficient, and chaos local
search, which help to enhance the exploration and exploitation capability of the ICTO. The
ICTO is tested on five systems with conventional units, and it performs better, in terms
of cost and emissions, than the original CTO and several other competing algorithms.
A quasi-oppositional-based political optimizer is used, in [19], to solve the bi-objective
EED problem considering valve-point loading effect, transmission line losses, and other
constraints related to conventional units. Recently, two new population-based algorithms
(Criminal Search Optimization Algorithm (CSOA) [20] and Kho-Kho optimization algo-
rithm (KKO) [21]) have been developed and applied to solve the EED problem. Both
algorithms (CSOA and KKO) show good exploitation and exploration capabilities, and they
can be used to solve complex problems in various domains. Another option for solving
the EED problem is presented in [22], where two metaheuristic algorithms, Exchange
Market Algorithm (EMA) and Adaptive Inertia Weight Particle Swarm Optimization (AI-
WPSO), are combined to obtain a new algorithm with improved global and local search
abilities. The constraints of the EED problem are maintained using the multiple constraints
ranking technique. The best compromise solution (BCS) obtained using EMA-AIWPSO
dominates the BCSs obtained using other algorithms (such as KKO, ISA, or GSA). Also, sev-
eral multi-objective algorithms have been proposed for solving the EED problem, such as
multi-objective SSA [23], multi-objective cultural algorithm [24], NSGA-III algorithm [25],
or multi-objective quasi-oppositional TLBO [26], each of which uses a basic metaheuristic
algorithm (SSA, CA, GA, or TLBO) that is endowed with the Pareto-dominance principle to
generate successive Pareto fronts. The multi-objective algorithms mentioned [23–26] have
been tested on various power systems with conventional units, their performance being
superior to other recognized multi-objective techniques (MODE, NSGA II, or SPEA-2).

Over the time, when trying to solve the EED problem, various techniques have been
used to optimally program the units of the thermal-wind systems. Thus, in [6], the tech-
niques of weighted goal programming and the progressive bounded constraint method
are combined to generate a set of Pareto solutions that are efficient in the cost–emission
space, and then extract the best compromise solution. For instance, four cases are analyzed
to quantify and demonstrate the benefits of including wind units in the structure of a
power system comprising only thermal units. In [12], the Artificial Bee Colony (ABC)
algorithm is strengthened by including the best solution in the update equations, and
in [27], chaos is inserted into the sine–cosine algorithm to obtain better-quality solutions to
the EED problem. Additionally, in [13]—where wind units are considered—a number of
eight metaheuristic algorithms (Flower Pollination Algorithm (FPA), Mine Blast Algorithm
(MBA), Backtracking Search Algorithm (BSA), Symbiotic Organisms Search (SOS), Ant
Lion Optimizer (ALO), Moth-Flame Optimization (MFO), Stochastic Fractal Search (SFS),
and Lightning Search Algorithm (LSA)) are applied to identify the best solutions to the
EcD, EmD, or EED problem. The FPA and BSA algorithms provide the best scheduling
of thermal/wind units for cost and/or emission minimization. To study the behavior of
systems in which thermal, wind, and solar units operate, in [28], the Dragonfly Algorithm
(DA) is proposed for the EcD problem. Uncertainties related to the power generated by
using wind and solar energy are modeled using the 2-m point estimation technique. The
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DA algorithm outperforms other algorithms, such as Crow Search Algorithm (CSA), Ant
Lion Optimizer (ALO), oppositional RCCRO, Biogeography-Based Optimization (BBO),
PSO, and GA, in terms of cost and execution time.

SGO is a metaheuristic algorithm proposed relatively recently by Satapathy SC
(2016) [29], which is based on the fact that a social group of individuals has a greater
ability to solve a real-life problem than a single individual. For some mathematical func-
tions, SGO is more efficient than other well-known metaheuristic algorithms (such as [29]:
DE, PSO, ABC, GA, TLBO, etc.), being an easy-to-implement algorithm, having two main
phases (improving phase and acquiring phase) and a single specific parameter. However,
for some mathematical functions or applications, it can provide a low performance due to
an imbalance between exploration and exploitation, which ultimately leads to getting stuck
in a local optimum [30]. Also, SGO may suffer due to the reduced diversity of the popula-
tion [31]. To overcome the mentioned shortcomings and to obtain better quality solutions,
there have been attempts to improve the performance of SGO by different strategies, such
as modifying the relations for updating the solutions [30], inertia weight strategies [32],
and hybridizations with other algorithms [31].

In this paper, some changes have been made to the original SGO algorithm, aim-
ing to increase efficiency, resulting in the MSGO algorithm. In order to improve the
exploration–exploitation balance, the commutation condition between the equations for
updating the solutions in the acquiring phase was changed. Also, to increase the diversity of
the population, a logistic map and a highly disruptive polynomial operator were inserted.

The main contributions of this paper are:

• We propose a modified version of SGO (called MSGO) in which the way of updating
and adapting the individuals in the social group is changed by inserting chaos and
an HDP operator (in the original SGO only uniformly randomly generated number
sequences are used). The operators associated with chaos and HDP aim at increasing
the efficiency of the MSGO algorithm by reducing the number of close solutions and
overcoming some drawbacks related to slow convergence. To the best of the authors’
knowledge the HDP operator has never been used to improve the performance of the
SGO algorithm.

• Implementation of MSGO to solve EcD, EmD, and EED problems with or without
consideration of wind units.

• Conducting experiments to evaluate and statistically compare the effectiveness of
MSGO with SGO and other well-known algorithms (or their varieties) for thermal or
wind-thermal power systems of different sizes and characteristics.

2. Statement of the EcD, EmD, and EED Problems
2.1. Statement of the EcD Problem

The EcD problem for a power system that includes thermal and wind units aims to
determine the power outputs of these generating units so that the operating cost of the entire
system is minimized, and a number of technical constraints are met. For the formulation
of the mathematical optimization model, we consider a power system comprising Nt
thermal units and Nw wind units, and the total power demand (PD) of the consumers in
the system is considered known and constant for the period of analysis. The variables to be
optimized are continuos, being represented by the output power vectors of the thermal units
PT = [PT1, PT2,. . ., PTi,. . ., PTNt] and of wind units PW = [PW1, PW2,. . ., PWj,. . ., PWNw].

The objective function C(PT, PW) is represented by two components; one related to
the fuel cost of the thermal units, CT(PT), and the other related to the operating cost of the
wind units, CW(PW) [4]:

C(PT, PW) = CT(PT) + CW(PW) (1)

CT(PT) =
Nt

∑
i=1

CT
i (PTi) (2)
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CW(PW) =
Nw

∑
j=1

CW
j
(

PWj
)
=

Nw

∑
j=1

{
cd

j · PWj + co
j ·Eo

j
(

PWj
)
+ cu

j ·Eu
j
(

PWj
) }

(3)

where, CT
i(PTi) is the fuel cost corresponding to thermal unit i, and CW

j(PWj) is the
operating cost corresponding to the wind unit j.

In this paper, the relationship between the fuel cost CT
i(PTi) and output power PTi

of a thermal unit i is modeled via a non-convex function consisting of a quadratic and a
sinusoidal term [33]:

CT
i (PTi) = aiPT2

i + biPTi + ci + |eisin( fi(PTmin,i − PTi))|, i = 1, 2, . . . , Nt (4)

The operating cost of wind unit j, CW
j(PWj), consists of three terms [4]: the direct

operating cost of unit j (cd
j · PWj), the cost corresponding to the overestimation of the wind

power (co
j ·Eo

j
(

PWj
)
), and the cost corresponding the underestimation the wind power

(cu
j ·Eu

j
(

PWj
)
).

The wind power overestimation for unit j occurs if the estimated wind power for this
unit PWj is higher than the available power represented by a random variable Wj. In this
situation, the difference between the two powers is covered by a reserve source and implies
the reserve cost co

j ·Eo
j
(

PWj
)
. In the opposite situation of the underestimation (if PWj is less

than Wj), a part of the available power of unit j remains unused, which implies a penalty
cost cu

j ·Eu
j
(

PWj
)
. Since Wj is a random variable, the powers Eo

j
(

PWj
)

and Eu
j
(

PWj
)

will
include the uncertainty of the wind power, and their calculation method is presented below.

For the calculation of the average powers Eo
j
(

PWj
)

and Eu
j
(

PWj
)
, it is considered that

the wind speed is modeled by a Weibull distribution whose probability density function
(pdf) is given by relation (5) [11]:

fV(v) =
k
c

(v
c

)k−1
exp

[
−
(v

c

)k
]

(5)

where, V is the random variable wind speed, v denotes the wind speed (a value of V), and
fV(v) is the pdf of the variable V, k is the shape parameter, and c is the scale parameter.

Also, between the random variable wind power (W) and the random variable wind
speed (V), we consider a linear relationship expressed as follows [11]:

W =


0, i f V < vinor V > vout
(V−vin)PWr

vr−vin
, i f vin ≤ V ≤ vr

PWr, i f vr ≤ V ≤ vout

(6)

The use of the linear model (6) requires knowledge of three limit speeds: cut-in wind
speed (vin), rated wind speed (vr), and cut-out wind speed (vout). PWr is the rated output
power of the wind unit, which corresponds to the speed vr.

The pdf for wind power (W) over the continuous interval (0, PWr) has the expression:

fW(w) =
k · vin · R
c · PWr

(
vin
c

·
(

1 +
w · R
PWr

))k−1
exp

[
−
(

vin
c

·
(

1 +
w · R
PWr

))k
]

(7)

where R = (vr − vin)/vin. Given relation (6) and the Weibull distribution of the wind speed,
the event probabilities W = 0 and W = PWr are calculated using relations [4]:

Prob(W = 0) = Prob(V < vin) + Prob(V > vout) = 1 − exp[−(vin/c)k] + exp[−(vout/c)k] (8)

Prob(W = PWr) = Prob(vr < V < vout) = exp[−(vr/c)k] − exp[−(vout/c)k] (9)

We must say that, in general, the distributions of the variables V and W, as well as
the pdfs derived from them, differ depending on the location of the wind turbine units.
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Thus, for wind unit j, the average powers associated with the overestimation and the
underestimation of the wind power are mathematically expressed as follows [4]:

Eo
j
(

PW j
)
=

∫ PW j

0

(
PWj − w

)
fWj(w)dw +

(
PWj − 0

)
· Prob

(
Wj = 0

)
(10)

Eu
j
(

PW j
)
=

∫ PWrj

PWj

(
w − PWj

)
fWj(w)dw +

(
PWrj − PWj

)
· Prob

(
Wj = PWrj

)
(11)

where fWj(w) is probability density function for the random variable Wj having the form
given by relation (7), while w are the values of the continuous random variable Wj. The
discrete probabilities Prob

(
Wj = 0

)
and Prob(Wj = PWrj), for unit j, are calculated using

relations (8) and (9), where PWrj represents rated wind power for unit j.
In Table A1 are presented the steps to evaluate the cost related to wind power, as well

as a calculation example for a wind unit.
The feasible space of EcD problem solutions is limited by the following constraints [4,12]:

1. The thermal units i must be operated between the minimum capacity (PTmin,i) and the
maximum capacity (PTmax,i):

PTmin,i ≤ PTi ≤ PTmax,i, i = 1, 2,. . ., Nt (12a)

If the power of the thermal unit i in the previous hour is known or specified (PT0
i ),

then the operating limits are given by the constraint:

Max
(

PTmin,i , PT0
i − DRi) ≤ PTi ≤ Min

(
PTmax,i, PT0

i + URi

)
, i = 1, 2, . . . , Nt (12b)

where DRi and URi are the down-ramp and up-ramp limits of the unit i.

2. The wind units j must be operated between the minimum (PWmin,j) and maximum
(PWmax,j) capacity:

PWmin,j ≤ PWj ≤ PWmax,j, j = 1, 2,. . ., Nw (13)

3. The actual powers generated by the thermal and wind units must cover the power
consumed in the system:

Nt

∑
i=1

PTi +
Nw

∑
j=1

PWj − PL − PD = 0 (14)

where PD is the load demand of the system, and PL represents the transmission line losses,
which can be determined considering the constant B coefficients formula:

PL =
Nt+Nw

∑
i=1

Nt+Nw

∑
j=1

PTWi · Bij · PTWj +
Nt+Nw

∑
i=1

B0i · PTWi + B00 (15)

where Bij is an element of the loss coefficients matrix, B0i is i element of the loss coefficients
vector, and B00 is the loss coefficient constant; PTW = [PTW1, PTW2,. . . , PTWi,. . . , PTWNt+Nw]
is a vector that combines the powers of thermal PT and wind PW units, while PTWi
represents the ith component of the PTW vector.

2.2. Statement of the EmD Problem

The EmD problem has a high level of similarity with the EcD problem, aiming to
determine the PT and PW vectors, so that the emissions released into the atmosphere is
minimal while maintaining some technical constrains at the units and system level. Thus,
in the EmD problem, the variables to be optimized (PT and PW vectors), as well as the
constraint relations (12)–(15), are identical to those in the EcD problem. The objective
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function is represented by the total amount of emissions released into the atmosphere,
mathematically defined by the following relation [2]:

E(PT, PW) = ET(PT) + EW(PW) (16)

ET(PT) =
Nt

∑
i=1

ET
i (PTi) (17)

EW(PW) =
Nw

∑
j=1

EW
j
(

PWj
)
=

Nw

∑
j=1

{
eo

j ·Eo
j
(

PW j
)
+ eu

j ·Eu
j
(

PW j
) }

(18)

where ET
i (PTi) and ET(PT) represent the pollutant emissions released into the atmosphere

due to the operation of thermal unit i, respective of all thermal units in the analyzed power
system. EW

j (PWj) and EW(PW) are the pollutant emissions produced due to the need to use
other thermal units to cover the uncertainty of the availability of wind unit j, respective of
all wind units considered. Average powers, Eo

j
(

PW j
)

and Eu
j
(

PW j
)
, are calculated with

relations (10) and (11), which include the uncertainty of wind power in the estimation of
pollutant emissions.

The term eo
j ·Eo

j
(

PW j
)

represents the emissions released into the environment due to the
need to use some thermal units in the system to cover the difference between the scheduled
power of the wind unit PWj (power that cannot be realized due to the unavailability of
the wind resource) and its available power Wj (the case of overestimation of wind power).
The term eu

j ·Eu
j
(

PW j
)

represents the emissions released into the environment by other
thermal units due to the non-use of the full available power of wind unit j (the case of
underestimation of wind power). The quantity of emissions ET

i (PTi) released into the
atmosphere by a thermal unit i can be defined by relation [2]:

ET
i (PTi) =

Nt

∑
i=1

(γi + βiPTi + αiPT2
i + δiexp(λiPTi)) (19)

2.3. Statement of the EED Problem

The EED problem is similar to the EcD and EmD problems, in that the variables to
be optimized and the constraints of the problem are the same, but the objective function
is different. In the EED problem, the objective function Φ(PT, PW) can be formed by the
weighted and normalized summation of the cost C(PT, PW) and emissions E(PT, PW)
objectives [34]:

Φ(PT, PW) = ω
C(PT, PW)− Cmin

Cmax − Cmin
+ (1 −ω)

E(PT, PW)− Emin
Emax − Emin

(20)

where Cmin, Cmax are the minimum and maximum costs corresponding to the function C(PT,
PW); Emin, Emax are the minimum and maximum emissions corresponding to the function
E(PT, PW); ω and (1 − ω) are weighting factors associated with the normalized cost and
emissions objectives, 0 ≤ ω ≤ 1.

To use relation (20) it is necessary to calculate the minimum (Cmin and Emin) and
maximum (Cmax and Emax) values for the two objectives. The determination of the minimum
values (Cmin, Emin) is done by first solving the EcD and EmD problems formulated in
Sections 2.1 and 2.2. The maximum values (Cmax, Emax) are determined while considering
that the EcD and EmD problems have opposite tendencies [35]. Thus, the solution for which
a minimum cost is obtained in the EcD problem will be considered to result in maximum
emissions, and vice versa.

In current practice, system operators or decision makers look for a single solution that
takes into account both objectives, which is generally the best compromise solution. By
solving the EED problem for different values of the ω factor, one can estimate the set of
non-dominant solutions that form the discrete Pareto front [5] (from which the BCS between
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the two objectives is extracted). To extract the BCS from the set of solutions belonging to
the Pareto front, a fuzzy approach is used [5]. Thus, the solutions in the Pareto front are
ordered according to one of the objectives, then for each objective i and non-dominant
solution s, a fuzzy membership function µi,s is assigned. This is defined by relation [5]:
µi,s = (fi,max − fi,s)/(fi,max − fi,min), i = {1, 2} and s = {1, 2,. . ., P}, where fi,min and fi,max are the
minimum and maximum value of the ith objective function; fi,s is the value of the objective
function corresponding to solution s and objective i; P is the number of non-dominated
solutions from the Pareto front. In order to demonstrate the merit of all the objectives
corresponding to solution s, the normalized membership function µ∗

S is calculated [5]:

µ∗
s =

∑2
i=1 µi,s

∑P
s=1 ∑2

i=1 µi,s
, s = 1, 2, . . . , P (21)

The BCS corresponds to the maximum value of the index µ∗
S: µmax = Max(µ∗

S, s = 1,
2,. . . , P).

3. The Modified SGO Algorithm
3.1. Classic SGO

The SGO is a metaheuristic, population-based algorithm that is inspired by human
social group behavior and is used for solving complex problems [29]. In the SGO, the pop-
ulation consists of a social group of N individuals Xi = [x1,i, x2,i,. . ., xj,i,. . ., xn,i]|i = 1,2,. . ., N
interacting and exchanging knowledge with each other, each individual representing a
solution Xi to the problem. The characteristics of the individuals represent the components
xj,i, j = 1, 2,. . ., n (n is the number of characteristics of an individual, which equals the
size of the problem to be solved) of the solutions Xi, and the ability of an individual to
find a solution to the problem is measured by the fitness function fi = f (Xi). The SGO
algorithm has three phases: initialization phase, improving phase, and acquiring phase. In
the initialization phase, each component xj,i, j = 1, 2,. . ., n of the solution Xi, is randomly
generated between the minimum (xmin,j) and maximum (xmax,j) limits:

xj,i = xmin,j + r1(xmax,j − xmin,j) (22)

where r1 is a random number uniformly distributed in the range (0, 1).
In the improving phase, each individual Xi, i = 1, 2,. . ., N of the group seeks to

improve their traits xj,I by interacting with the best individual of the group at that moment,
Xbest = [x1

best, x2
best,. . ., xj

best,. . . xn
best]. Thus, the new traits (xj,i

new) of the individual Xi
new

are determined with relation [29]:

xnew
j,i = c xj,i + r2 (xj

best − xj,i) (23)

where c is the self-introspection parameter with values between 0 and 1, and r2 is a
uniformly generated random number in the range (0, 1). If the new vector Xi

new is better,
then it is retained; otherwise, the old solution is kept.

In the acquiring phase, each individual Xi aims to improve its traits (level of knowl-
edge) through mutual, cumulative interactions with both the best individual Xbest and an
individual randomly r (r ̸= i) chosen from the population, Xr = [x1,r, x2,r,. . ., xj,r,. . ., xn,r].
Depending on the quality of the individuals Xi and Xr, the new traits (xj,i

new) of the indi-
vidual Xi

new are determined as follows [29]:
If f (Xi) < f (Xr) Then

xj,i
new = xj,i + r3 (xj,i − xj,r) + r4 (xj

best − xj,i) (24a)

Else
xj,i

new = xj,i + r3 (xj,r − xj,i) + r4 (xj
best − xj,i) (24b)

where, r3 and r4 denote independent arbitrary value in the (0, 1).
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The solutions obtained using the SGO algorithm are iteratively improved using the
updating relations from the improving and acquiring phases, until the maximum number
of iterations tmax is reached. A pseudo-code of the SGO algorithm is presented in detail
in [29].

3.2. Modified SGO (MSGO)

The proposed MSGO algorithm includes the same phases as the original SGO algo-
rithm, but some features of SGO have been modified to increase the efficiency of the MSGO
algorithm. Two of these changes, presented below, aim at inserting two operators (one
chaotic type and the other being highly disruptive polynomial (HDP)) in the structure of
the solutions update relations to improve MSGO’s ability to escape from local minima and
obtain better quality solutions.

Chaotic operator: Chaos, due to its properties (unpredictability, non-periodic, ergod-
icity, non-converging, pseudo-randomness etc. [18]), has been successfully incorporated
into the structure of various optimization algorithms (such as adaptive sparrow search
algorithm [36] and moth–flame optimizer [37]) to cover a number of shortcomings related
to low population diversity, slow convergence of the optimization process, stagnation in
a local area etc. In this paper, chaos is included in the MSGO algorithm using a chaotic
sequence (cxp) generated by Logistic map [37] which can be effective in solving some EcD
problems [18]. The Logistic map is defined by relation [18]:

cxp+1 = 4 cxp (1 − cxp), cxp ∈ (0, 1) (25)

where {cxp}p = 1. . .∞ represents the chaotic sequence generated by the Logistic map, at the
pth iteration. The initial conditions are cx0 ∈ (0, 1) and cx0 ̸= {0.0, 0.25, 0.5, 0.75, 1}.

HDP operator: In case of more complex mathematical functions, SGO cannot provide
an efficient search in the whole solutions space by relying only on randomly generated se-
quences through numbers (r1–r4) or on randomly extracting a solution from the population
(Xr). As a result, in order to increase the exploration and exploitation capacity of the MSGO
algorithm, as well as the chances of exceeding local minima, a perturbation based on the
HDP operator [38] is introduced into MSGO. Mathematically, the HDP operator is defined
by relation [38]:

δ =

 δH =
[
2·ru + (1 − 2·ru)

(
1 − δ1)

η+1 ] 1
η+1−1 If ru ≤ α

δL = 1 −
[
2(1 − ru) + 2(ru − 0.5)

(
1 − δ2)

η+1 ] 1
η+1 otherwise

(26)

where, ru is a random number uniformly generated in the range [0, 1]; LBi and UBi indicate
the lower and upper boundary of the variables xj,i; η is the index for the polynomial
operator; α is a control parameter that is considered to have a value of 0.5 [39] (in this paper,
the values of the parameter α are determined by experimental trials in the range (0, 1));
δH is the equation that alternates moderate values with high values for δ, while δL is the
equation that generates low values for δ; δ1 and δ2 are calculated, based on the LBi and UBi
imposed boundaries for the variable xj,i, with the relations δ1 = (xj,i − LBi)/(UBi − LBi) and
δ2 = (UBi − xj,i)/(UBi − LBi).

In general, the HDP operator is used as a mutation operator that intervenes in altering
some xj,i values of a Xi solution with a certain predetermined probability. In MSGO, the
HDP operator is not used as a mutation operator, but as an operator applied to modify each
variable xj,i of a solution Xi (practically, the mutation probability is considered equal to 1).
Thus, depending on the HDP parameters (η, ru, δ1, α), the δ values generated by (26) may be
high, which could cause some of the xj,i components of some Xi solutions to reach the limits
of the search space relatively quickly (the δ values could generate excessively large search
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steps). To avoid this problem, the δ values generated by (26) will be attenuated/smoothed
according to the current iteration t, if δ exceeds a certain limit value (δmax):

δa =

{
δ ·

(
1− t

tmax

)
If δ ≥ δmax

δ otherwise
(27)

Figure 1 shows the first 10,000 values of δ generated by relation (26), considering the
following settings for the HDP operator parameters: δ1 = rnd(1), δ2 = 1 − δ1; η = 4, α = 0.5,
δmax = 1.5. The δH values generated by (26) under the condition ru ≤ α = 0.5 are marked
in blue, and the δL values in red. Since the δH values are much higher than δL, in order to
have a clearer picture, the δL values have been detailed in a separate graph on the interval
(1, 10,000). It is seen that the δH equation alternates moderate values and high ones, while
the δL equation generates only low values. Figure 2 shows the attenuated δa values obtained
using (27). Initially, the δa values are higher (being able to ensure an efficient search in the
whole solutions space), then with the increase in the number of simulations they attenuate,
the search step is reduced, making the transition from exploration to exploitation, and at
the end of the process the values are equal to or lower than the δmax limit (which facilitates
the exploitation phase).
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The changes implemented in MSGO compared to SGO are presented below:

a. The improving phase of MSGO is similar to that of SGO but the sequences of numbers
r2 randomly generated in SGO by (23) are replaced by sequences of numbers generated
by the attenuated DHP operator δa by relation (27) in the form:

xnew
j,i = xj,i + δa

(
xbest

j − xj,i

)
(28)
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b. The acquiring phase of MSGO is similar to that of SGO, except for the following three
modifications:

b1. The sequences of numbers r3 randomly generated in SGO by (24a) are replaced
by sequences of numbers generated by the attenuated DHP operator δa by rela-
tion (27).

b2. The sequences of numbers r3 randomly generated in SGO by (24b) are replaced
by chaotic sequences (cx) generated by the Logistic map with relation (25).

b3. In SGO, switching between relations (24a) and (24b) is performed by consider-
ing the fitness of the competitive solutions Xi and Xr, based on the condition
f (Xi) < f (Xr). In MSGO, this condition is replaced by a random one, having the
form rnd(1) < β, where rnd(1) is a uniformly generated random number in the
range (0, 1); β is a value determined by experimental trials.

The three changes (b1)–(b3) made in MSGO are embodied in relations (29a) and (29b):
If rnd(1) < β Then

xj,i
new = xj,i + δa (xj,i − xj,r) + r4 (xj

best − xj,i) (29a)

Else
xj,i

new = xj,i + cx (xj,r − xj,i) + r4 (xj
best − xj,i) (29b)

In Algorithm 1, the calculation steps for applying the MSGO algorithm are presented
in detail, with the modifications (b1)–(b3) mentioned above.

Algorithm 1: MSGO algorithm

{Initialization phase}
Initialize the iterations (t = 0), t is counter of iterations;
Initialize the solutions Xi, i = 1, 2,. . ., N using relation (22);
Evaluate the initial solutions and identify the best Xbest solution;
repeat

t = t + 1
For i = 1 To N Do {improving phase}
For j = 1 To n Do
Generate a value δ of the HDP operator using (26);
Determine δa using relation (27);
Update the components xj,i using relation (28), obtaining the new solution Xi

new; End For j
If the new solution Xi

new is better, then it is retained; otherwise, the old solution is maintained;
Find the best Xbest solution from the population; End For i
For i = 1 To N Do {acquiring phase}
Randomly select a solution Xr, rϵ{1, 2,. . ., N}, r ̸= i;
If rnd(1) < β Then
For j = 1 To n Do

Generate a value δ of the HDP operator using (26);
Determine δa using relation (27);
Update xj,i using (29a), obtaining Xi

new; End For j; End If
Else
For j = 1 To n Do

Generate a chaotic value cx using (25);
Update xj,i using (29b), obtaining Xi

new; End For j; End Else
If the new solution Xi

new is better, then it is retained; otherwise, the old solution is maintained;
Find the best Xbest solution from the population; End For i
Until t ≥ tmax {stopping criterion}
The best solution Xbest and the fitness f (Xbest) are retained.

The main steps of the MSGO algorithm are summarized in a flowchart shown in
Figure 3.
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4. Implementing the MSGO for the EcD, EmD, or EED Problems

This section shows how to implement the MSGO algorithm for solving EcD, EmD,
or EED problems. The application of MSGO for solving EcD, EmD, or EED problems
is similar, the difference being given by the type of objective function to be minimized:
cost C(PT, PW) defined by (1) for EcD problems, emission E(PT, PW) defined by (16) for
EmD problems or ϕ(PT, PW) defined by (20) for EED problems. For the implementa-
tion of the MSGO algorithm, a solution i is considered to be represented by the vector
PTWi = [PTW1,i, PTW2,i,. . ., PTWj,i,. . ., PTWNt+Nw,i]|i = 1, 2,. . . N which includes the powers
of thermal units (PTWj,i|j = 1,2,. . . Nt) and wind units (PTWj,i|j = Nt+1, Nt+2,. . ., Nt+Nw). If the
system contains only thermal units, then the vector PTWi consists only of the powers
generated by these units. We also denote PTWbest(t) as the best solution obtained using
MSGO up to iteration t.

4.1. Stages of MSGO Implementation for the EcD, EmD, or EED Problem

The MSGO algorithm applied to solve the EcD, Em, or EED problems formulated in
Section 2 includes the following steps:

Step 1: Specify test system input data for the EcD, EmD, or EED problem: the number
of thermal (Nt) and wind (Nw) units; cost coefficients for the thermal units (a, b, c, e, f );
parameters (c, k) to the Weibull distribution; the characteristic values of the wind speed (vin,
vr, vout); the rated output power of the wind units (PWr); active power limits for thermal
and wind units (PTmin, PTmax; PWmin, PWmax); the cost coefficients (cd, co, cu) and emissions
coefficients (eo, eu) to the wind units; the B-loss coefficients (Bij, B0i, B00); load demand (PD)
and accuracy ε.
Step 2: Set the parameters of the MSGO algorithm: N and tmax;
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Step 3: Random initialization of a population of N solutions, represented by the vectors
PTWi|i = 1,2,. . . N

3.1: t = 0;
3.2: Chaotic sequence cx are initialized using the logistic map;
3.3: Randomly generate an initial population with N solutions (PTWi

(0)|i = 1,2,. . ., N)
using relation (22). Each solution respects the constraints defined by relations (12)–(14);
The constraint (14) is handled by a heuristic procedure CHM presented in Section 4.2;
3.4: Evaluate the initial solutions PTWi

(0)|i = 1,2,. . ., N using relation (1), (16) or (20)
associated with the EcD, EmD, or EED problems;
3.5: Find the best initial solution PTWbest(0) and the objective function associated with
the addressed problem (EcD, EmD, or EED).

For t = 1 Do tmax

Step 4: Update solutions PTWi
(t)|i = 1,2,. . ., N in the improving phase.

4.1: For i = 1 To N Do
4.2: For j = 1 to n Do
4.3: Generate a value δ of the HDP operator using (26);
4.4: Determine δa using relation (27);
4.5: Updating the components PTWj,i

(t) using relation (28), obtaining the new compo-
nents PTWj,i

new(t), at iteration t;
4.6: Checking the inequality constraints (12) and (13): if the PTWj,i

new(t) power is
outside the limits, then CHM from Section 4.2 is applied; End For j;
4.7: Checking the equality constraint (14): the new solution PTWi

new(t) is adjusted
using the equality constraint handling mechanism from Section 4.2;
4.8: Evaluate the new solution PTWi

new(t) using relation (1), (16) or (20) depending on
the addressed problem (EcD, EmD or EED): If the new solution PTWi

new(t) is better,
then it is retained; otherwise, the old solution is maintained;
4.9: Update the best solution PTWbest(t); End For i;

Step 5: Update solutions PTWi
(t)|i = 1,2,. . ., N in the acquiring phase.

5.1: For i = 1 To N Do
5.2: Randomly select a solution PTWr

(t), rϵ{1, 2,. . ., N }, r ̸= i;
5.3: If rnd(1) < β Then
5.4: For j = 1 to n Do
5.5: Generate a δ value of the HDP operator using (26);
5.6: Determine δa using relation (27);
5.7: Updating PTWj,i

(t) using (29a), getting the new components PTWj,i
new(t) of the

new solutions PTWi
new(t);

5.8: Apply the procedure for handling inequality constraints (12) and (13) from
Section 4.2; End For j; End If
5.9: Else
5.10: For j = 1 to n Do
5.11: Generate a chaotic value cx by (25);
5.12: Updating PTWj,i

(t) by (29b), obtaining PTWj,i
new(t);

5.13: Apply CHM from Section 4.2 for constraints (12) and (13); End For j; End Else
5.14: Checking the equality constraint (14): the new solution PTWi

new(t) is adjusted
using the equality constraint handling mechanism from Section 4.2;
5.15: Evaluate the new solution PTWi

new(t) using relation (1), (16) or (20) depending on
the addressed problem (EcD, EmD, or EED): if the new solution PTWi

new(t) is better,
then it is retained; otherwise the old solution is maintained;
5.16: Update the best solution PTWnew(t); End For i;

Step 6: Stop the process: the calculation process is stopped when the maximum number of
iterations (tmax) is reached. {End For t}
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Step 7: Memorize the best solution: The best solution PTWbest and the objective function
associated with the problem addressed (EcD, EmD, or EED).

4.2. Constraints Handling Mechanism (CHM)

The CHM refers to the adjusting method of the solutions that do not satisfy the
inequality and equality constraints of the EcD, EmD, or EED problems defined by relations
(12)–(14). In the case of inequality constraints, defined by relations (12) and (13), if the
power of a thermal or wind unit is outside the imposed operating limits (PTmin or PTmax,
and PWmin or PWmax, respectively), then the power of this unit is set with the exceeded
limit [40]. To handle the equality constraint, defined by (14), we apply a CHM procedure
presented in [41]. The CHM(PTW) procedure has a single parameter, represented by the
power vector PTW, and finally it returns a feasible solution that respects relation (14) with
the imposed error ε. The CHM(PTW) is called whenever a PTW vector is updated in the
initializing, the improving, or the acquiring phases of the MSGO or SGO algorithms.

5. Case Studies

The efficiency of the MSGO algorithm was tested on medium-sized (10-unit) and large
(40-unit) systems, having different characteristics, such as operating limits of the units,
transmission line losses, valve-point effect, wind power. According to the characteristics of
the systems, four cases were studied, described below.

Case 1 (C1): This case analyses a 10-unit system taking into account the transmission line
losses. The power demand is 2000 MW. The cost coefficients (ai, bi, ci, ei, fi, i = 1, 2,. . ., 10),
B-loss coefficients (Bij), and emission coefficients (αi, βi, γi, ηi, δi) are taken from [42].
Case 2 (C2): The second case is a system having 40 units that considers the valve-point
effects. The system is analyzed without considering transmission line losses. The power de-
mand is 10,500 MW. The cost coefficients are considered from [33] and emission coefficients
are provided by [43].
Case 3 (C3): The case C3 is a system with 40 units similar to case C2 (the cost and emission
coefficients are identical to those in case C2 [33,43]), but transmission losses are considered,
as well. The power demand is 10,500 MW. The B-loss coefficients are taken from [44].
Case 4 (C4): A 40-unit system derived from case C3 by replacing the first two thermal units
(PT1 and PT2) with the two wind units (PW1 and PW2). Each wind unit has a nominal
power of 550 MW, and the minimum and maximum capacities are PWmin,1 = PWmin,2 = 0,
PWmax,1 = PWmax,2 = 550 MW. The power demand is PD = 10,500 MW. We consider that the
wind speed has a Weibull distribution. The shape and scale parameters (k, c) corresponding
to the sites of the two wind units have the values [13]: k1 = 1.5; c1 = 15; k2 = 1.5; c2 = 15.
Other wind-related characteristics have the following values [13]: cut-in wind speed
(vin = 5 m/s), rated wind speed (vr = 15 m/s), cut-out wind speed (vout = 45 m/s), the cost
coefficients associated with underestimation (cu

1 = cu
2 = 5) and overestimation (co

1 = co
2 = 5).

The cost and emission coefficients for the thermal units (P3–P40) and the B-loss coefficients
are identical to those mentioned in C3 case, being taken from [44]. The characteristics of the
thermal units and the B-loss coefficients for the 10-unit and 40-unit systems are presented
in Appendix A, Tables A2–A5.

Each of the cases mentioned in Table 1 (C1–C4) were studied based on the mathemati-
cal optimization models (presented in Section 2) of the problems EcD (cases C1a–C4a), EmD
(cases C1b–C4b), and EED (cases C1c–C4c). The SGO and MSGO algorithms perform 50 inde-
pendent runs for each case study, retaining four statistical indicators: Best cost/emission
(B), Average cost/emission (A), Worst cost/emission (W), and the standard deviation (SD).
Algorithms SGO and MSGO have been implemented in MathCAD and run on a PC with
an Intel i5 processor, 2.2 GHz CPU and 4 GB of RAM.

5.1. Setting the Parameters

Adjusting the parameters of metaheuristic algorithms is an essential task with multiple
positive effects, such as improved performance, adaptation of the algorithms to a specific
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problem, better execution times, and stability, etc. The proposed MSGO algorithm has three
specific parameters (α, β, and δmax). A procedure based on the design of an experimental
plan is used to set the specific parameters. They are successively set (for example, in the
following order α, β, and δmax), starting from a set of initial values [45]. Thus, one parameter
is varied, and the others are fixed either with the initial values or with the already set
values. This procedure allows the evaluation of the MSGO algorithm performance through
testing different combinations of the interest parameter values, followed by the selection
of the best combination based on a predetermined criterion. The test values considered
for setting the specific parameters are α = {0, 0.25, 0.5, 0.75, 1}, β = {0, 0.25, 0.5, 0.75, 1},
and δmax = {1.2, 1.5, 2}. The initial values are α = 0, β = 0, and δmax = 1.2. The parameter
selection criterion is based on Average cost/emission obtained from 25 runs for each case
study. Note that the experimental analysis does not guarantee the best values for the
parameters of MSGO algorithm. However, the results obtained using MSGO following this
selection process show that the algorithm parameters were reasonably set Table 1 shows
the parameters of the MSGO algorithm (N, tmax, α, β, δmax) for all the analyzed cases.

Table 1. Characteristics of the analyzed systems and values set for the SGO and MSGO parameters.

Cases Type of Problem
SGO and MSGO MSGO Parameters

PL VPE Wind
n N tmax NE α β δmax

C1a EcD 10 15 30 900 0.75 0.25 1.2
√ √

-
C1b EmD 10 15 30 900 0.75 0.25 1.2

√ √
-

C1c EED 10 15 30 900 0.75 0.25 1.2 -
√

-
C2a EcD 40 50 350 35,000 0.05 0.5 1.2 -

√
-

C2b EmD 40 50 350 35,000 0.05 0.5 1.2 -
√

-
C2c EED 40 50 350 35,000 0.05 0.5 1.2

√ √
-

C3a EcD 40 50 350 35,000 0.05 0.5 1.5
√ √

-
C3b EmD 40 50 200 20,000 0.05 0.5 1.5

√ √
-

C3c EED 40 50 350 35,000 0.05 0.5 1.5
√ √

-
C4a EcD-Wind 40 50 350 35,000 0.05 0.5 1.5

√ √ √

C4b EmD-Wind 40 50 200 20,000 0.05 0.25 1.5
√ √ √

C4c EED-Wind 40 50 350 35,000 0.05 0.5 1.5
√ √ √

In the case of the SGO algorithm, the values of the common parameters (N and tmax)
are the same as the values set for the MSGO algorithm in each case analyzed (these are
shown in Table 1). The SGO algorithm has only one specific parameter c, the value of which
being set to the one recommended in [29] (c = 0.2). For the fair comparison of the SGO and
MSGO algorithms, the number of evaluations of the objective functions (NE) is considered
equal in all analyzed cases (C1–C4), which is mentioned in Table 1.

5.2. Results for EcD (Cases C1a–C4a) and EmD (Cases C1b–C4b) Problems

The best solutions obtained using SGO and MSGO: The optimal scheduling of the
thermal units for the cases C1a, C1b (10 units), and C2a, C2b (40 units) obtained using the
MSGO and SGO algorithms are presented in Tables 2 and 3, respectively.

In the cases C1a and C1b, the system being of relatively small sizes, the MSGO and SGO
algorithms find approximately the same optimal operating solution, and as a result, the derived
quantities (Cost, Emission, PL) will be approximately the same. However, mathematically, MSGO
performs slightly better than SGO. Thus, in the case of C1a the best costs obtained using MSGO and
SGO are CostC1a(MSGO) = 111,497.6301 $/h and CostC1a(SGO) = 111,497.6302 $/h, respectively. For
the C1b case, the best emissions found by MSGO and SGO are EmissionC1b(MSGO) = 3932.2432 lb/h
and EmissionC1b(SGO) = 3932.2433 lb/h, respectively. Also, in the case of C2b (Table 3), the best
solutions (P1–P40, Cost, Emission) found by MSGO and SGO are very close (both algorithms
have the ability to identify quality solutions): EmissionC2b(MSGO) = 176,682.26363 t/h and
EmissionC2b(SGO) = 176,682.26364 t/h, respectively.
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Table 2. Generation schedule obtained using SGO and MSGO for cases C1a, C1b, and C1c (PD = 2000 MW).

Outputs
Algorithms

Best Cost (C1a) Best Emission (C1b) BCS (C1c)

SGO MSGO SGO MSGO SGO MSGO

PT1 (MW) 55 55 55 55 55 55
PT2 (MW) 80 80 80 80 79.9919138 80
PT3 (MW) 106.9541594 106.9339816 81.1395049 81.13389758 84.9307435 86.1178873
PT4 (MW) 100.5724243 100.5785797 81.3521442 81.365596459 84.4692580 84.4754324
PT5 (MW) 81.4829314 81.5030072 160 160 132.5861458 132.0947090
PT6 (MW) 83.0293259 83.0232077 240 240 148.8844943 150.1405606
PT7 (MW) 299.9999999 300 294.5013582 294.50918872 298.3856220 300
PT8 (MW) 340 340 297.2767111 297.26088151 317.3109360 318.6699829
PT9 (MW) 470 470 396.7327820 396.76630122 436.6060140 437.5797908
PT10 (MW) 470 470 395.5926758 395.55896593 446.4576771 440.4116407
Cost CT (PT) ($/h) 111,497.6302221 111,497.6301430 116,412.4961603 116,412.5597722 112,884.4848042 112,913.8454551
Emission ET (PT) (lb/h) 4572.2503628 4572.1759096 3932.2432876 3932.2432406 4177.6632977 4173.0883561
PL (MW) 87.0388508 87.03878611 81.59518555 81.594840685 84.62280525 84.49001346
PD (MW) 2000 2000 2000 2000 2000 2000
∆P * (MW) −9.9 × 10−6 −9.8 × 10−6 −9.3 × 10−6 −9.2 × 10−6 −8.3 × 10−7 −9.8 × 10−6

Time (s) 0.17 0.18 0.17 0.18 0.18 0.19

* ∆P represents the accuracy with which the power balance is satisfied: ∆P = ΣPTi − PL − PD.

Table 3. Generation schedule obtained using SGO and MSGO for cases C2a, C2b, and C2c (PD = 10,500 MW).

Outputs
Algorithms

Best Cost (C2a) Best Emission (C2b) BCS (C2c)

SGO MSGO SGO MSGO SGO MSGO

PT1 (MW) 110.922179 111.716634 114.000000 114.000000 113.999966 110.800341
PT2 (MW) 111.243322 110.860214 114.000000 114.000000 113.999796 110.800220
PT3 (MW) 119.999923 97.403591 120.000000 120.000000 120.000000 119.999963
PT4 (MW) 179.733198 179.743937 169.368013 169.367866 179.733101 179.733075
PT5 (MW) 87.968669 87.780202 97.000000 97.000000 97.000000 87.801870
PT6 (MW) 139.999997 139.999967 124.257317 124.257125 140.000000 139.999941
PT7 (MW) 299.999977 259.611600 299.711092 299.711096 299.999999 299.999869
PT8 (MW) 284.599970 284.603778 297.914825 297.914414 284.599650 284.599715
PT9 (MW) 284.600310 284.603707 297.259861 297.260410 284.599652 284.599803
PT10 (MW) 130.000055 130.000000 130.000000 130.000000 204.799826 130.000011
PT11 (MW) 168.799938 94.001033 298.409765 298.409555 243.599650 318.397097
PT12 (MW) 94.000100 168.802785 298.026091 298.026393 318.399211 318.396537
PT13 (MW) 125.000068 214.762696 433.557450 433.557827 394.279369 394.279333
PT14 (MW) 304.519644 394.279917 421.727984 421.729503 394.279373 394.279355
PT15 (MW) 394.279363 304.520136 422.779051 422.780633 394.279370 394.279352
PT16 (MW) 394.279396 394.281435 422.779145 422.779765 394.279371 394.279339
PT17 (MW) 489.279362 489.279715 439.413302 439.412095 489.279356 489.279199
PT18 (MW) 489.279374 489.277936 439.402981 439.402147 489.279365 489.278987
PT19 (MW) 511.279452 511.286046 439.413322 439.413830 472.436489 421.519583
PT20 (MW) 511.279469 511.288520 439.413375 439.412524 421.519581 421.519572
PT21 (MW) 523.279375 523.282365 439.446230 439.446547 433.519581 433.519577
PT22 (MW) 523.279470 523.288232 439.447404 439.446608 433.519581 433.519606
PT23 (MW) 523.279716 523.286753 439.771529 439.772178 433.519581 433.519604
PT24 (MW) 523.279630 523.298896 439.771899 439.771421 433.519585 433.519606
PT25 (MW) 523.279479 523.282145 440.111752 440.112274 433.519584 433.519649
PT26 (MW) 523.279413 523.285836 440.111656 440.111780 433.519583 433.519592
PT27 (MW) 10.000142 10.001290 28.994136 28.993709 10.000009 10.000005
PT28 (MW) 10.000000 10.000158 28.994289 28.993427 10.000000 10.000098
PT29 (MW) 10.000004 10.000029 28.993716 28.994114 10.000000 10.000015
PT30 (MW) 87.979665 96.047579 97.000000 97.000000 97.000000 96.999848
PT31 (MW) 189.999986 189.999914 172.332024 172.331705 190.000000 189.999825
PT32 (MW) 190.000000 190.000000 172.332025 172.331635 189.999867 189.999975
PT33 (MW) 190.000000 189.999740 172.331486 172.331960 189.999915 189.999989
PT34 (MW) 199.999981 164.840604 200.000000 200.000000 200.000000 199.999986
PT35 (MW) 199.999969 199.999540 200.000000 200.000000 200.000000 199.999994
PT36 (MW) 199.999996 199.999900 200.000000 200.000000 200.000000 199.999976
PT37 (MW) 110.000000 109.999989 100.839198 100.838331 109.999999 109.999997
PT38 (MW) 109.999997 109.999981 100.838254 100.838389 110.000000 109.999850
PT39 (MW) 110.000000 109.999727 100.838245 100.838200 110.000000 109.999659
PT40 (MW) 511.279414 511.283472 439.412572 439.412526 421.519580 488.039989
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Table 3. Cont.

Outputs
Algorithms

Best Cost (C2a) Best Emission (C2b) BCS (C2c)

SGO MSGO SGO MSGO SGO MSGO

Cost CT (PT) ($/h) 121,509.82092 121,426.70390 129,995.28508 129,995.30108 125,526.34268 125,434.46554
Emission ET (PT) (t/h) 359,251.81848 356,231.07314 176,682.26364 176,682.26363 201,944.58419 200,613.67971
∆P * (MW) −1.7 × 10−11 1.5 × 10−11 −9.9 × 10−6 −9.9 × 10−6 −8.7 × 10−6 5.1 × 10−7

Time (s) 7.64 8.03 7.34 7.65 9.28 9.97

* ∆P represents the accuracy with which the power balance is satisfied: ∆P = ΣPTi − PL − PD.

On the contrary, in the case of C2a (where the functions that model the cost have
a higher complexity and determine a larger number of local minima), the MSGO algo-
rithm can identify a much better solution than SGO (CostC2a(MSGO) = 121,426.7039 $/h <
CostC2a(SGO) = 121,509.8209 $/h).

Table 4 shows the best solutions in terms of cost and emissions obtained using the
MSGO algorithm for the cases C3a, C3b (without wind), C4a, and C4b (with wind).

Table 4. Generation schedule obtained using MSGO for cases C3a, C3b, and C3c (with loss of power
and without wind) and C4a, C4b, C4c (with loss of power and wind).

Outputs
Cases

Best Cost Best Emission BCS

Case C3a
(Without Wind)

Case C4a
(With Wind)

Case C3b
(Without Wind)

Case C4b
(With Wind)

Case C3c
(Without Wind)

Case C4c
(With Wind)

PT1/PW1 (MW) 114.000000 549.9999977 114.000000 550.000000 114.0000000 549.9997828
PT2/PW2 (MW) 113.999999 549.9999998 114.000000 550.000000 114.0000000 549.9997818
PT3 (MW) 120.000000 97.39994714 120.000000 120.000000 120.0000000 119.9988116
PT4 (MW) 189.999995 179.7331053 190.000000 175.313561 182.8929206 179.7374211
PT5 (MW) 96.999999 87.79995033 97.000000 97.000000 96.99999982 96.99883835
PT6 (MW) 140.000000 68.00000364 132.951212 119.769488 139.9999995 105.4022758
PT7 (MW) 300.000000 259.5996859 300.000000 300.000000 300.0000000 299.9999742
PT8 (MW) 300.000000 284.5996597 300.000000 299.999999 299.9999998 285.7135868
PT9 (MW) 299.999998 284.5997061 300.000000 300.000000 299.9999995 287.9519754
PT10 (MW) 279.599683 204.79983 270.805053 161.263885 279.5996268 204.8086989
PT11 (MW) 168.799860 94.00001916 322.733043 297.366373 318.3994557 243.6012566
PT12 (MW) 94.000003 94.00000226 315.129176 289.219449 318.3993251 243.6003501
PT13 (MW) 484.039161 304.519587 480.860016 441.638969 484.0391469 394.2851366
PT14 (MW) 484.039166 304.5195816 475.905463 431.552565 484.0391695 394.2799802
PT15 (MW) 484.039164 394.2793758 476.271511 433.133288 484.0391541 394.2841752
PT16 (MW) 484.039178 484.039163 480.455232 439.072444 484.0391647 484.0292251
PT17 (MW) 489.279372 489.2793773 471.830727 438.041844 489.2793744 489.2692227
PT18 (MW) 489.279372 489.2793735 461.973780 427.916684 399.5196438 399.5209877
PT19 (MW) 511.279600 511.2793699 483.440794 446.749851 510.840761 506.0067276
PT20 (MW) 511.279490 511.2793799 483.258780 446.772552 510.666052 421.5364187
PT21 (MW) 526.732209 523.2793949 483.252001 447.336714 511.7221827 433.5530376
PT22 (MW) 550.000000 523.2793745 486.947376 452.005128 516.1579618 514.2353651
PT23 (MW) 523.279384 523.2793957 472.040407 438.402949 433.5204637 433.5329212
PT24 (MW) 523.279383 523.2793722 462.227523 428.365213 433.5195802 433.5268561
PT25 (MW) 524.239856 523.2793935 483.754300 447.367210 511.6249809 433.5342317
PT26 (MW) 523.815577 523.2793731 483.575006 447.380310 511.4580636 433.7489257
PT27 (MW) 10.000020 10.00000931 67.543932 33.650576 15.28948883 10.05540017
PT28 (MW) 10.000113 10.00000064 72.653376 36.778266 17.79565013 10.24418652
PT29 (MW) 10.000007 10.00000189 54.008031 28.253062 10.36768925 10.0022597
PT30 (MW) 87.800155 87.79991386 97.000000 97.000000 96.99999662 89.80426078
PT31 (MW) 190.000000 190.0000000 190.000000 175.455547 190.0000000 189.998884
PT32 (MW) 190.000000 189.9999989 190.000000 175.467999 190.0000000 189.9955403
PT33 (MW) 190.000000 189.9999997 190.000000 175.691210 190.0000000 189.9978565
PT34 (MW) 200.000000 195.3472481 200.000000 200.000000 200.0000000 199.9994215
PT35 (MW) 199.999999 164.7998866 200.000000 200.000000 200.0000000 199.9994151
PT36 (MW) 164.799870 164.7998371 200.000000 200.000000 199.9999989 199.998299
PT37 (MW) 110.000000 109.9999997 110.000000 103.209409 110.0000000 110.0000000
PT38 (MW) 109.999999 109.9999992 110.000000 103.216803 110.0000000 109.9997758
PT39 (MW) 110.000000 109.9999985 110.000000 103.385396 110.0000000 109.9962344
PT40 (MW) 550.000000 511.2794082 486.926373 451.971343 511.2792996 509.5675741
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Table 4. Cont.

Outputs
Cases

Best Cost Best Emission BCS

Case C3a
(Without Wind)

Case C4a
(With Wind)

Case C3b
(Without Wind)

Case C4b
(With Wind)

Case C3c
(Without Wind)

Case C4c
(With Wind)

Cost C(PT,PW) ($/h) 136,454.33693 123,161.88666 147,526.93169 133,213.62916 139,049.0921 126,645.13420
Emission E(PT,PW) (t/h) 501,366.97888 375,873.82903 347,578.49057 193,311.54070 388,020.2454 239,155.73184
PL (MW) 958.6206217 936.7097306 1040.543121 1009.748098 1000.489155 962.815076
∆P (MW) −9.7 × 10−6 −9.8 × 10−6 −9.9 × 10−6 −9.7 × 10−6 −6.1 × 10−6 −4.1 × 10−6

Time (s) 28.61 30.09 16.34 17.37 30.07 32.96

∆P represents the accuracy with which the power balance is satisfied: ∆P = (ΣPTi + ΣPTi) − PL − PD.

The solutions for C4a and C4b cases indicate that the two wind units (PW1, PW2) are
scheduled to operate at full capacity (550 MW) in both the EcD and EmD problems. Thus,
according to the statement in case C4, the wind units will replace two thermal units PT1, PT2
(that operate at maximum capacity PT1 ≈ PT2 ≈ 114 MW in C3a and C3b cases), and will also
reduce the operating power level of other thermal units (PT3–PT40). Based on the EcD and
EmD models, it can be seen that if the wind units operate at full capacity it results in an Eu

power very close to zero (Eu
1 (PW1 = 550) ≈ Eu

2 (PW2) ≈ 0 MW), so their corresponding costs
and emissions will be close to zero. In contrast, the average powers associated with overesti-
mation will tend towards maximum values

(
Eo

1(PW1 = 550) ≈ Eo
2(PW2) ≈ 230.7635 MW

)
,

while their corresponding costs and emissions are 2 × 1153.817 $/h, and 2 × 1153.817 t/h.
The risks taken by the system operator when planning the wind units to operate at values
close to the maximum capacity are covered by the reduction of costs and emissions from
the thermal units (due to the reduction of the PT3–PT40 powers in C4a(C4b) cases compared
to C3a(C3b)).

Comparing the solutions for the cases with wind and those without wind, it can be seen
that the inclusion of the wind units (PW1 and PW2) results in a substantial reduction in cost
(from CostC3a(MSGO) = 136,454.33693 $/h to CostC4a(MSGO) = 123,161.88666 $/h, representing
9.74%), and emissions (from EmissionC3b(MSGO) = 347,578.49052 t/h to EmissionC4b(MSGO) =
193,311.54070 t/h representing 44.38%). Also, power losses are reduced from 958.62 MW in
the case of C3a to 936.70 MW in the case of C4a (2.28%) and from 1040.54 MW in the case of
C3b to 1009.74 MW in the case of C4b (2.96%), respectively.

Comparison of MSGO algorithm with other algorithms: In Tables 5–12 the values of
the statistical items (B, A, W, and SD) are presented. They are obtained using different
algorithms for EcD problem (cases C1a–C4a) and EmD problem (C1b–C4b), respectively.

Analyzing the values from the mentioned tables, it can be seen that in all studied cases the
MSGO algorithm obtains statistical indicators as good or better than the competing algorithms
mentioned in these tables. The exception is the Worst cost item for the algorithms Jaya-
SML [46] (case C2a—Table 6), ORCCRO [47] (case C3a—Table 7), DE (case C4a—Table 8), and
the SD item for the algorithms CSS [48] (cases C3a—Table 7), DE, and SCA (cases C4a—Table 8).

The MSGO algorithm shows a better performance than well-known algorithms, such
as DE [49], RCCRO [35] (in cases C1a—Table 5 and C1b—Table 9), GA [50], DE [42], ABC [51],
PSO [52], TLBO [53], SCA [54], CSO [55] (cases C2a—Table 6), DE [26], TLBO [26], BSA [56]
(cases C2b—Table 10), ACS [57], BBO [47], ORCCRO [47], CSS [48], IMO [58] (cases
C3a—Table 7), PSO, DE, SCA (cases C3b—Table 11, C4a—Table 8, C4b—Table 12). Also,
the performance of MSGO is superior to other metaheuristic algorithms obtained using
various procedures (such as modification of solution update relations, inclusion of chaos
and/or opposite solutions, hybridizations, etc.): GQPSO [59], CSCA [27], QOPO [19] (in
cases C1a—Table 5), MIMO [58], HSCA [60], CTLBO [53], TLABC [61] (cases C2a—Table 6),
GAAPI [44], SDE [62], HPSO-DE [63], MIMO [58] (cases C3a—Table 7).
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Table 5. Values for the statistical items obtained using different algorithms for the cases C1a—Best
Cost (10 units with losses, 2000 MW).

Algorithm Best Cost ($/h) Average Cost ($/h) Worst Cost ($/h) SD ($/h) Cost Saving * ($/h)

DE [49] 111,500 - - - -
TLBO [26] 111,500 - - - -
QOTLBO [26] 111,498 - - - -
QPSO [59] 119,005.3030 121,621.7556 122,144.8454 372 10,124.12
GQPSO [59] 112,429.7444 113,102.4627 113,327.0680 256 1604.83
RCCRO [35] 111,497.6319 - - - -
BSA [56] 111,497.6308 - - - -
CSCA [27] 111,497.6307 - - - -
QOPO [19] 111,892.4096 - - - -
SGO 111,497.6302 111,497.7362 111,502.7703 7.27 × 10−1 0.10
MSGO 111,497.6301 111,497.6302 111,497.6304 6.25 × 10−5 0

* Indicates the cost saving through MSGO compared to other algorithms using the Average Cost item.

Table 6. Values of the statistical items obtained using different algorithms for the cases C2a—Best Cost
(40 units without losses, 10,500 MW).

Algorithm Best Cost ($/h) Average Cost ($/h) Worst Cost ($/h) SD ($/h) Cost Saving ($/h)

MIMO [58] 122,758.7 124,621.8 126,059.2 866.20 2964.84
FSS-IPSO2 [64] 122,535.56 125,025.86 127,401.23 1134.43 3368.90
GA [50] 121,996.4 122,919.77 123,807.97 320.31 1262.81
HSCA [60] 121,983.5 - - - -
NGWO [65] 121,881.81 122,787.77 - - 1130.81
DE [42] 121,840 - - - -
PSO [52] 122,588.5093 123,544.88 124,733.67 - 1887.92
TLBO [53] 124,517.27 126,581.56 128,207.06 1060 4924.60
CTLBO [53] 121,553.83 121,790.23 122,116.18 150 133.27
SMA [66] 121,658.6656 - - - -
L-SHADE [67] 121,543.43 122,105.39 122,983.68 - 448.43
S-Jaya [68] 121,517.6513 121,948.42 122,283.83 193.57 291.46
SCA [54] 121,506.58 121,857.90 122,056.15 347.26 200.94
ABC [51] 121,479.6467 121,984.24 122,137.42 − 327.28
Jaya-SML [46] 121,476.3977 121,689.07 122,039.87 147.89 32.11
TLABC [61] 121,468.3847 121,739.4406 122,192.3263 160.88 82.48
CSO [55] 121,465.99 121,988.48 122,781.75 275.92 331.52
IJaya [68] 121,454.3785 121,770.32 122,109.01 173.70 113.36
ESCSDO10 [69] 121,626.97 122,351.7 123,128.9 412.2976 694.74
SDO [69] 121,750.2 122,460.1 123,222.7 405.019 803.14
SGO 121,509.8209 122,025.1179 123,527.6187 380 368.16
MSGO 121,426.7039 121,656.9571 122,048.2807 143 0

Table 7. Values of the statistical items obtained using different algorithms for the cases C3a—Best Cost
(40 units with losses and without wind, 10,500 MW).

Algorithm Best Cost ($/h) Average Cost ($/h) Worst Cost ($/h) SD ($/h) Cost Saving ($/h)

GAAPI [44] 139,864.96 - - - -
SDE [62] 138,157.46 - - -
ACS [57] 137,413.73 - - - -
BBO [47] 137,026.82 137,116.58 137,587.8200 - 382.64
ORCCRO [47] 136,855.1900 136,855.1900 136,855.1900 - 121.25
HPSO-DE [63] 136,835.0021 - - - -
CSS [48] 136,679.0228 136,993.6115 137,447.4131 171.26 259.67
MIMO [58] 137,034.2000 138,472.9000 140,124.3000 752.74 1738.96
IMO [58] 138,789.6000 140,486.3000 142,106.7000 765.71 3752.36
SGO 136,510.7626 137,150.7361 138,082.7271 415 416.80
MSGO 136,454.6072 136,733.9409 137,185.4625 174 0
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Table 8. Values of the statistical items obtained using different algorithms for the cases C4a—Best Cost
(40 units with losses and with wind, 10,500 MW).

Algorithm Best Cost ($/h) Average Cost ($/h) Worst Cost ($/h) SD ($/h) Cost Saving ($/h)

PSO 123,607.9479 124,438.1644 125,509.7725 463.89 877.02
DE 123,804.0394 123,962.8486 124,160.1466 78.42 401.70
SCA 125,895.2706 126,196.7393 126,479.6091 132.44 2635.60
SGO 123,289.7874 124,086.1871 125,789.8060 532.90 525.04
MSGO 123,161.8867 123,561.1438 124,239.9876 212.44 0

Table 9. Values of the statistical items obtained using different algorithms for the cases C1b—Best
Emission (10 units with losses, 2000 MW).

Algorithm Best Emission (lb/h) Average Emission (lb/h) Worst Emission (lb/h) SD (lb/h) Emission Reduction * (lb/h)

DE [49] 3923.40 ** - - - -
QPSO [59] 4032.3875 4041.9171 4058.3615 8.06 109.6
GQPSO [59] 4011.9244 4032.9320 4042.1878 7.55 100.6
RCCRO [35] 3932.243269 - - - -
BSA [56] 3932.243269 - - - -
NSGA-III [25] 3932.5 - - - -
SGO 3932.243252 3932.2484 3932.2821 9.05 × 10−3 ≈0
MSGO 3932.243240 3932.2432 3932.2433 2.16 × 10−5 0

* Indicates the emisssion reduction through MSGO compared to other algorithms using the Average Cost item;
** in the case of the DE algorithm, the correct value is 3932.41728 lb/h.

Table 10. Values of the statistical items obtained using different algorithms for the cases C2b—Best
Emission (40 units without losses, 10,500 MW).

Algorithm Best Emission (t/h) Average Emission (t/h) Worst Emission (t/h) SD (t/h) Emission Reduction (t/h)

MBFA [43] 176,682.269 - - - -
DE [26] 176,683.3 - - - -
TLBO [26] 176,683.5 - - - -
QOTLBO [26] 176,682.5 - - - -
BSA [56] 176,682.2646 - - - -
SGO 176,682.26364 176,682.26380 176,682.2646 2.04 × 10−4 ≈0
MSGO 176,682.26363 176,682.26376 176,682.2641 9.80 × 10−5 0

Table 11. Values of the statistical items obtained using different algorithms for the cases C3b—Best
Issue (40 units with losses and without wind, 10,500 MW).

Algorithm Best Emission (t/h) Average Emission (t/h) Worst Emission (t/h) SD (t/h) Emission Reduction (t/h)

PSO 347,578.65776 347,581.8140 347,594.6001 3.39 3.3
DE 347,877.89873 348,120.8380 348,591.0764 135 542.3
SCA 364,849.12062 372,931.5027 380,287.1626 3880 25,353.0
SGO 347,578.49061 347,578.4912 347,578.4922 3.57 × 10−4 ≈0
MSGO 347,578.49057 347,578.4910 347,578.4919 2.88 × 10−4 0

Table 12. Values of the statistical items obtained using different algorithms for the cases C4b—Best
Issue (40 units with losses and with wind, 10,500 MW).

Algorithm Best Emission (t/h) Average Emission (t/h) Worst Emission (t/h) SD (t/h) Emission Reduction (t/h)

PSO 193,313.7047 193,331.5342 193,373.1017 13.59 19.9
DE 193,953.9668 194,532.0465 195,040.0923 246.50 1220.5
SCA 210,484.9674 218,736.9094 227,559.3490 3971.80 25,425.3
SGO 193,311.54075 193,311.5414 193,311.5437 4.88 × 10−4 ≈0
MSGO 193,311.54071 193,311.5410 193,311.5415 2.02 × 10−4 0

The stability of the MSGO algorithm is very good (SD item value being below
2.1 × 10−4) for all cases on the EmD problem (C1b–C4b, Tables 9–12) and relatively good for
the EcD problem (C1a–C4a, Tables 5–8).
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We specify that the specific parameters of the PSO, DE, and SCA algorithms were set
by performing several experiments in which the number of evaluations is considered to
be the same as for the SGO and MSGO algorithms (shown in Table 1). Thus, the settings
performed for these algorithms applied in the cases C3b, C4a, and C4b are the following:

• For the PSO algorithm (N = 50, tmax = 400, c1 = c2 = 2, wmin = 0.3, wmax = 0.9 in cases
C3b and C4b, respectively, N = 50, tmax = 700, c1 = c2 = 2, wmin = 0.3, wmax = 0.9 in the
case of C4a; where c1 and c2 are acceleration coefficients, wmin and wmax are the initial
and final inertial weights).

• For the DE algorithm (N = 50, tmax = 400, CR = 0.2, F = 0.4 in cases C3b and C4b,
respectively, N = 50, tmax = 700, CR = 0.1, F = 0.8 in the case of C4a; where, CR is the
crossover rate, and F is the scaling factor).

• For the SCA algorithm (N = 50, tmax = 400, a = 1 in cases C3b and C4b, respectively,
N = 50, tmax = 700, a = 1 in the case of C4a).

The comparison of the MSGO and SGO algorithms: Tables 5–12 present the values of
the statistical items (B, A, W, SD) obtained using the SGO and MSGO algorithms for all
the study cases (C1a–C4a and C1b–C4b, respectively). In all situations, the statistical items
obtained using MSGO are higher than those obtained using SGO (except for the cases
mentioned in the previous paragraph), but there are also cases where the differences be-
tween the SGO and MSGO algorithms are small (in particular, the cases C1b–C4b associated
with EmD problem, to which case C1a can be added). For this reason, the SGO and MSGO
algorithms are compared using the non-parametric Wilcoxon statistical test, considering a
significance-level of 1%. Also, 50 values/algorithm were simulated to compare SGO and
MSGO, resulting in 50 pairs of values that are compared using the Wilcoxon test.

Table 13 shows the statistical item p-value after applying the Wilcoxon test for the
comparison of SGO and MSGO in all cases studied. For the EcD (C1a–C4a) and EmD
(C1b–C4b) problems, the p-value is less than 0.01 (except for cases C2b and C3b), which
indicates that MSGO is statistically significantly better than the SGO algorithm (getting six
wins out of a possible eight).

Table 13. Comparison of SGO and MSGO by the Wilcoxon test.

Cases R− R+ p-Values Winner

C1a 3.00 26.44 0.000 MSGO
C1b 1.00 26.00 0.000 MSGO
C2a 12.50 27.27 0.000 MSGO
C2b 22.11 29.82 0.858 -
C3a 12.67 28.32 0.000 MSGO
C3b 21.95 27.87 0.055 -
C4a 11.67 28.54 0.000 MSGO
C4b 13.54 29.70 0.000 MSGO

R− and R+ represent the mean of the negative and positive ranks, respectively.

In order to investigate the ability of MSGO to identify a better solution compared to
SGO, we will evaluate the cost savings, as well as the emission reduction for cases C1a–C4a
and C1b–C4b. Thus, for C1b–C4b (Tables 9–12) the MSGO and SGO algorithms perform
very well at solving the EmD problem. As a result, the emission reduction achieved by
MSGO compared to SGO is insignificant for this type of problem. The situation is similar
in the EcD problem, case C1a (Table 5), when both algorithms perform very well on the
small 10-unit system. However, the cost savings and emission reduction may be important
when comparing MSGO with other competing algorithms. Thus, for C1a case (Table 5),
analyzing the Average cost item, the average cost reduction is 10,124.12 $/h compared
to QPSO [59]. Also, in the EmD problem (Tables 9–12), based on the Average emission
item, the average hourly emission reduction is 109.6 lb/h (compared to QPSO [59], in
case C1b), 542.3 t/h (relative to DE, in case C3b), and 1220.5 t/h (relative to DE, in C4b).
Following the results in Tables 6–8, the cost savings achieved by MSGO compared to SGO is
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significant: 368.16 $/h (for case C2a), 416.80 $/h (case C3a), and 525.04 $/h (case C4a). These
cost reductions are maintained or increased when comparing MSGO with other algorithms
presented in Tables 6–8.

Convergence process: Figures 4 and 5 show the convergence characteristics in terms of
cost and emissions obtained using the MSGO algorithm for all studied cases C1a–C4a and
C1b–C4b. In all analyzed situations, convergence is fast in the first iterations (approximately
15% of the maximum number of iterations), and in the last iterations the convergence is
slow, the iterative process being stabilized.
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Figure 4. Cost and emission convergence characteristics obtained using MSGO: (a) for cases C1a–C1b;
(b) for cases C2a–C2b.

Sustainability 2024, 16, x FOR PEER REVIEW 23 of 35 
 

  

Figure 5. Cost and emission convergence characteristics obtained using MSGO: (a) for cases C3a–C3b; 
(b) for cases C4a–C4b. 

In the case of emission convergence characteristics (C1b–C4b), the iterative process sta-
bilizes much faster than in the case of cost characteristics (C1a–C4a). Thus, in the case of the 
EmD problem (C1b–C4b), the quasi-stable process starts after about 20–30% of the maximum 
number of iterations, and in the EcD problem after approximately 40–50% of the maxi-
mum number of iterations. We mention that the stable values towards which the conver-
gence characteristics of the MSGO algorithm tend are mentioned for each case in Tables 
5–12. 

The accuracy and computation time: The accuracy (∆P) of the computations refers to  
the inequality and equality constraints of the optimization model presented in Section 2 
and can be seen for the best solutions presented in Tables 2–4. It is observed that the con-
straints are respected, the size of ∆P being less than 10-5 MW for all cases studied. Also, 
for each case (C1a–C4a and C1b–C4b), the average execution time (Time) obtained using the 
MSGO algorithm is indicated in Tables 2–4. In cases C1a and C1b, the execution time is very 
good (under 0.2 s); for cases C2a and C2b it is higher (under 10 s) due to the larger size of 
the analyzed system (40-unit). In the cases C3a–C4a and C3b–C4b, due to the large size of the 
analyzed systems (40-unit) and the need to calculate power losses, the average execution 
time goes up to 33 s. 

5.3. Results for EED Problem (Cases C1c–C4c) 
The EED problem considers the cases C1c–C4c, in which the single-objective function 

Ф defined by relation (20) is minimized. In these cases, it is of interest to determine the 
Pareto front solutions, as well as the best compromise solution (BCS) obtained using the 
SGO and MSGO algorithms.  

To estimate the Pareto front, the weighting factor ω in relation (20) is varied between 
0 and 1 with a step of 0.1 (in the end 11 points are obtained in the Cost–Emission objective 
plan). However, in order to obtain a Pareto front as uniform as possible and to show 
graphically that the solutions obtained using MSGO dominate the solutions obtained us-
ing other algorithms, another 12 points have been added to the 11 points for the case C1c 
(the added points correspond to the values ω = {0.25, 0.35, 0.41, 0.42, 0.43, 0.435, 0.436, 0.44, 
0.441, 0.445, 0.47, 0.55}) and 3 another points in the case of C2c (ω = {0.51, 0.52, 0.55}), re-
spectively. In the case of C3c and C4c, the number of points considered is 11. 

Figures 6–8 show the Pareto fronts obtained using the SGO and MSGO algorithms 
for the cases C1c–C4c. Also, the best compromise solutions obtained using SGO, MSGO, and 
other competing algorithms applied in the literature are indicated. 

Best compromise solution by SGO and MSGO: The BCSs obtained using the SGO and 
MSGO algorithms are identified using a fuzzy-based mechanism presented in Section 2.3. 

300,000

350,000

400,000

450,000

500,000

550,000

135,000

138,000

141,000

144,000

147,000

150,000

0 100 200 300

Em
iss

io
n 

(t/
h)

No. of iterations

Fuel cost (C3a)

Emission (C3b)

Fu
el

co
st

 ($
/h

)

(a)

180,000

230,000

280,000

330,000

380,000

120,000

125,000

130,000

135,000

140,000

0 50 100 150 200 250 300 350
Em

iss
io

n 
(t/

h)
No. of iterations

Fuel cost (C4a)

Emission (C4b)

Fu
el

co
st

 ($
/h

)

( (b)

Figure 5. Cost and emission convergence characteristics obtained using MSGO: (a) for cases C3a–C3b;
(b) for cases C4a–C4b.

In the case of emission convergence characteristics (C1b–C4b), the iterative process
stabilizes much faster than in the case of cost characteristics (C1a–C4a). Thus, in the case
of the EmD problem (C1b–C4b), the quasi-stable process starts after about 20–30% of the
maximum number of iterations, and in the EcD problem after approximately 40–50% of
the maximum number of iterations. We mention that the stable values towards which the
convergence characteristics of the MSGO algorithm tend are mentioned for each case in
Tables 5–12.

The accuracy and computation time: The accuracy (∆P) of the computations refers to
the inequality and equality constraints of the optimization model presented in Section 2 and
can be seen for the best solutions presented in Tables 2–4. It is observed that the constraints
are respected, the size of ∆P being less than 10−5 MW for all cases studied. Also, for each
case (C1a–C4a and C1b–C4b), the average execution time (Time) obtained using the MSGO
algorithm is indicated in Tables 2–4. In cases C1a and C1b, the execution time is very good
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(under 0.2 s); for cases C2a and C2b it is higher (under 10 s) due to the larger size of the
analyzed system (40-unit). In the cases C3a–C4a and C3b–C4b, due to the large size of the
analyzed systems (40-unit) and the need to calculate power losses, the average execution
time goes up to 33 s.

5.3. Results for EED Problem (Cases C1c–C4c)

The EED problem considers the cases C1c–C4c, in which the single-objective function ϕ
defined by relation (20) is minimized. In these cases, it is of interest to determine the Pareto
front solutions, as well as the best compromise solution (BCS) obtained using the SGO and
MSGO algorithms.

To estimate the Pareto front, the weighting factor ω in relation (20) is varied between
0 and 1 with a step of 0.1 (in the end 11 points are obtained in the Cost–Emission objective
plan). However, in order to obtain a Pareto front as uniform as possible and to show
graphically that the solutions obtained using MSGO dominate the solutions obtained using
other algorithms, another 12 points have been added to the 11 points for the case C1c (the
added points correspond to the values ω = {0.25, 0.35, 0.41, 0.42, 0.43, 0.435, 0.436, 0.44,
0.441, 0.445, 0.47, 0.55}) and 3 another points in the case of C2c (ω = {0.51, 0.52, 0.55}),
respectively. In the case of C3c and C4c, the number of points considered is 11.

Figures 6–8 show the Pareto fronts obtained using the SGO and MSGO algorithms for
the cases C1c–C4c. Also, the best compromise solutions obtained using SGO, MSGO, and
other competing algorithms applied in the literature are indicated.
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Figure 6. Pareto fronts and BCSs obtained using SGO, MSGO, and other algorithms for case C1c.

Best compromise solution by SGO and MSGO: The BCSs obtained using the SGO and
MSGO algorithms are identified using a fuzzy-based mechanism presented in Section 2.3.
The results obtained through this mechanism indicate that BCS corresponds to a weighting
factor equal to ω = 0.5, both for SGO and MSGO.

As a result, in Table 14, we present for each case C1c–C4c, the values for Cost, Emission,
and item µmax (determined according to the methodology in Section 2.3) corresponding to
the best compromise solution determined by SGO and MSGO.

Comparison of solutions from the Pareto front of MSGO with BCSs obtained using
other algorithms: In the case of C1c, in order to test the ability of MSGO to identify solutions
from the Pareto front, it was compared with BCSs obtained using a group of algorithms
(denoted G1) presented in the literature G1 = {EMOCA [24], MODE [42], NSGA II [42],
TLBO [26], GSA [70], PDE [42], SMA [71], εv-MOGA [49], SPES-2 [42]}. To highlight
the Pareto front solutions obtained using MSGO and BCSs obtained using competing
algorithms in the G1 group, in Figure 6, a detail of the Cost–Emission plan is shown. In
this detail of Figure 6, it can be visually observed that the Pareto front solutions obtained
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using MSGO (marked with red circles) dominate, in terms of Cost and Emission, all BCSs
obtained using competing algorithms G1 (marked with blue circles). Thus, the points
marked with red circles (obtained using MSGO) will remove from the Pareto front of
MSGO all the points marked by blue circles (obtained using competing G1 algorithms). The
exception is the IKSO algorithm [72], which obtains a non-dominated solution using the
solutions in the Pareto front of the MSGO (a discussion on IKSO [72] will be made below).
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Figure 7. Pareto fronts and BCSs obtained using SGO and MSGO for case C2c.
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Figure 8. Pareto fronts and BCSs obtained using SGO and MSGO: (a) for case C3c; (b) for case C4c.

Table 14. The values corresponding to cost and emission obtained using SGO and MSGO for the
cases C1c–C4c.

Items
Cases

SGO Algorithm (ω = 0.5) MSGO Algorithm (ω = 0.5) Cost/Emission Reduced by MSGO **

Cost ($/h) Emission (t/h) µmax Cost ($/h) Emission (t/h) µmax Cost Saving ($/h) Emission Reduction (t/h)

C1c 112,884.4848 4177.6633 0.04903 112,913.8455 4173.0883 0.04908 −29.36 4.57
C2c* 125,526.3426 201,944.5841 0.08106 125,434.4655 200,613.6797 0.08017 91.88 1330.90
C3c 139,588.2247 380,601.7819 0.10265 139,049.0921 388,020.2454 0.10244 539.13 −7418.46
C4c* 127,033.6502 242,252.893 0.10342 126,645.1342 239,155.7318 0.10661 388.52 3097.16

* MSGO’s BCS dominates SGO’s BCS in terms of Cost and Emission; ** MSGO Cost savings and emission reduction
comparing to SGO, for each case study BSCs.

In case of C2c, in Figure 7, a detail of the Cost–Emission plan is shown highlighting
the Pareto front solutions obtained using MSGO, and BCSs obtained through several
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algorithms presented in the literature, denoted G2, G2 = {LFA [16], MODE [42], SPEA-
2 [42], εv-MOGA [49], PDE [42], NSGA II [22], TLBO [26], CSOA [20], KKO [21], KSO [22]}.
From the image it can be visually observed that the Pareto front solutions obtained using
MSGO (marked with red circles) dominate, in terms of Cost and Emission, the BCSs
obtained using the G2 group algorithms (marked with blue circles).

Comparison of BCSs obtained using MSGO and SGO: To compare BCSs obtained
using the SGO and MSGO algorithms, we will include in the Pareto front of MSGO the
best compromise solution identified for the SGO algorithm. Similarly, in the case of C1c,
the BCS identified using the IKSO algorithm [72] will be included in the Pareto front of
MSGO. Note that BCSs obtained using the SGO algorithm (cases C1c–C4c) or IKSO [72] (in
the case of C1c) must be non-dominated solutions in the MSGO Pareto front. Thus, MSGO
will have a Pareto front increased by one value (in cases C3c, corresponding to the BCS
of SGO), respectively by two values (in cases C1c, corresponding to the BCSs of SGO and
IKSO [72]). In cases C2c and C4c, the BCS of MSGO dominates the BCS of SGO in terms of
Cost and Emission (see Table 14). The values from these extended Pareto fronts (with one
or two other values) are subject to the methodology for establishing the BCS presented in
Section 2.3, and the results of interest are given in Table 15. Table 15 shows the values of the
item µmax obtained using the SGO, MSGO, and IKSO algorithms (we specify that the IKSO
algorithm [72] is used only in the case of C1c). From Table 15, it can be seen that, for the
cases C1c and C3c, the maximum value of the item µ corresponds to the MSGO algorithm
(the weighting factor being for each case ω = 0.5). As a result, in all cases (C1c–C4c), the
MSGO algorithm can identify a better compromise solution than SGO. Figures 5–8 show
the Pareto fronts obtained using SGO and MSGO and indicate the BCSs identified using
these algorithms.

Table 15. Values of item µmax obtained using SGO, MSGO and IKSO for cases C1c–C4c.

Case Case C1c Case C2c Case C3c Case C4c

IKSO [72] 0.044284 – – –

SGO (ω = 0.5) 0.044676
MSGO’s BCS dominates SGO’s BCS,

from Table 14 (MSGO winner)

0.092898
MSGO’s BCS dominates SGO’s BCS,

from Table 14 (MSGO winner)MSGO (ω = 0.5) µmax = 0.044715
(MSGO winner)

µmax = 0.092926
(MSGO winner)

– the IKSO algorithm [72] is not used in the C2c–C4c cases. The bold values correspond to the winning algorithm.

Comparison of SGO and MSGO Pareto fronts: Two metrics are used to evaluate and
compare the quality of the Pareto fronts obtained using the SGO and MSGO algorithms:
C-metric [73] and hyper-volume [74]. The C-metric, denoted C(S1, S2) and applied to the
non-dominated solution sets S1 and S2, indicates the percentage of solutions from the S2
set dominated by the solutions from S1. For example, if C(S1, S2) = 100%, all solutions in
S2 are dominated by those in S1. Currently, C(S1, S2) ̸= C(S2, S1) is required to calculate
both metrics C(S1, S2) and C(S2, S1). The hyper-volume metric measures the volume (area
in the case of two objectives) that is dominated by the Pareto front and is located below a
predetermined reference point. Typically, higher values of the hyper-volume metric are
associated with a better-quality Pareto front.

Table 16 shows, for each case, the values of the C-metric and hyper-volume metrics
corresponding to the solution sets obtained using the SGO and MSGO algorithms. From
Table 16 it can be seen that the C-metric (SGO, MSGO) = 0, which indicates that the solutions
in the Pareto front obtained using SGO do not dominate any solution in the Pareto front
obtained using the MSGO algorithm. Instead, the inverse C-metric (MSGO, SGO) indicates
the percentages of SGO solutions dominated by MSGO solutions. Also, the hyper-volume
metric shows higher values in the case of MSGO compared to SGO. Considering the values
obtained using the two metrics, we estimate that MSGO can obtain a Pareto front of better
quality than SGO.
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Table 16. Values of the metrics for assessing the Pareto fronts of SGO and MSGO.

Item
Cases

Hyper Volume C-Metric (%)

SGO MSGO C(SGO, MSGO) C(MSGO, SGO)

Case C1c 0.9710 0.9712 0 4.55
Case C2c 0.9775 0.9836 0 42.86
Case C3c 1.0887 1.0942 0 27.27
Case C4c 1.0007 1.0172 0 54.54

When analyzing Table 4 from the EED problem point of view—case C4c—it shows that the
BCS is obtained when the wind units operate at maximum capacity (PW1 ≈ PW2 ≈ 550 MW).
When comparing the BCS-including wind (case C4c) with the BCS-without wind (case C3c),
it results in lower costs (by 8.9%) and emissions (by 38.3%) for case C4c. Table 14 shows
Cost savings and Emission reduction by MSGO compared to SGO for BCSs obtained in
cases C1c–C4c. Positive values indicate that MSGO achieves better cost or lower emissions
than SGO, and negative values indicate the opposite situation.

Average execution time: Tables 2–4 show the values of the average execution time
(Time) obtained using the MSGO algorithm for each case (C1c–C4c) of the EED problem. It
can be seen that the values obtained for the EED problem are slightly higher than for the
EcD or EmD problems.

6. Conclusions

In this article, a modified SGO is proposed in which several terms in the solution
update relations are disturbed by including chaotic sequences generated by the Logistic
map and sequences generated by the HDP operator. Also, switching between solution
update relations (in the acquiring phase) is achieved by introducing a random condition
instead of a condition based on the value of the fitness function of the competing solutions.
MSGO has been successfully tested for solving EcD, EmD, and EED problems for medium
and large power systems.

The effectiveness of MSGO was tested on four cases for each type of problem (EcD,
EmD, and EED). For all case studies targeting EcD, and EmD problems, MSGO obtained
solutions of better or equal quality than well-known algorithms (such as: DE, ABC, PSO,
SCA, etc.) or improved varieties (except for the cases mentioned in Section 5.2). Also, the
convergence process was fast and the stability of the MSGO algorithm evaluated by the
SD item was very good in cases C1b–C4b and relatively good in the cases C1a–C4a. The
statistical items (B, A, W and SD) and the results of the Wilcoxon test show that MSGO
is more efficient than SGO in six cases (out of a possible eight) and equally good in two
cases (C2b and C3b in Table 13), indicating that the changes made in MSGO had a positive
effect. In the case of the EED problem, MSGO was able to extract a better compromise
solution than SGO or other algorithms for all studied cases C1c–C4c. Moreover, the values
of the hyper-volume and C-metric indicate that MSGO can obtain a Pareto front of superior
quality compared to SGO. It should be mentioned that the inclusion of wind sources (in the
case of C4a/C4b compared to C3a/C3b) brings benefits both in terms of cost reduction (about
10%) and polluting emissions (about 45%). The average computation time of MSGO and
SGO algorithms is similar, and the efficiency of both algorithms is good in all case studies.
By applying economic and/or emissions dispatching using MSGO, electricity producers
can make informed decisions to operate a sustainable energy system.
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Nomenclature

ai, bi, ci, ei, and fi Fuel cost coefficients of thermal unit i;
Bij, B0i, B00 Loss coefficients;
c Self-introspection parameter from SGO;
cd

j , co
j , cu

j Direct, reserve, and penalty cost coefficient for unit j;
C(PT,PW) Total fuel cost;
eo

j , eu
j Reserve, and penalty emission coefficient for unit j;

Eo
j

(
PWj

)
, Eu

j

(
PWj

)
Mean powers associated with over and underestimation Wj for unit j;

E(PT,PW) Total emission;
f (Xbest) Objective function associated to Xbest;
fi = f (Xi), f (Xr) Objective function associated to Xi and Xr solutions;
k, c Shape, and scale parameters of Weibull distribution;
n Problem dimension;
N Population size;
Nt, Nw The number of thermal and wind units;

o, u
Superscript symbols attached to some quantities reflecting overestimation,
and underestimation of the available wind power;

PD The total power demand;
PL Transmission line losses;
PT, PW The output power vectors of the thermal and wind units;
PTi Power of the thermal unit i;
PTmin,i, PTmax,i Real minimum and maximum power of the thermal unit i;
PWj Scheduled wind power of the wind unit j;
PWr Rated power of the wind unit;
ru, δ Parameters specific to the HDP operator;
t Current iteration;
tmax Maximum number of iterations
vin, vr, vout Cut-in, rated, and cut-out wind speeds of the wind unit;
Wj Random variable that represents available wind power for unit j;
Xi, Xr n-dimensional vectors associated with solutions i and r;
Xnew

i New solution vector Xi;
Xbest The vector of the best solution;
xj,i jth component of solution Xi;
xnew

j,i jth component of solution Xnew
i

xbest
j jth component of solution Xbest

α, β, δmax Specific parameters of the MSGO algorithm;
αj, βj, γj, δj, and λj Emission coefficients of the thermal unit i;
ω Weighting factor;
{cxp} Chaotic sequence;
exp(•) exponential function;
fW(•) Probability density function (pdf) of random variable W;
Prob(•) The probability of the event;
min, max Indicate the minimum and maximum limits of some variables/functions;

Min, Max
Mathematical functions that determine the minimum and maximum value
in a set.
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Abbreviations

ABC: Artificial bee colony algorithm; ACS: Artificial cooperative search; BBO: Biogeography-
based optimization; BCS: Best compromise solution; BSA: Backtracking search optimization; CA:
Cultural algorithm; CSCA: Chaotic SCA; CSO: Cuckoo search optimization; CSOA: Criminal search
optimization algorithm; CSS: Charged system search; CTLBO: Chaotic TLBO; CTO: Class topper
optimization; DE: Differential evolution; EcD: Economic dispatch; EED: Economic emission dispatch;
EmD: Emission dispatch; EMA: Exchange market algorithm; EMOCA: Enhanced multi-objective cul-
tural algorithm; εv-MOGA: Epsilon-multi-objective GA; ESCSDO10: Eagle-strategy supply–demand
based optimization algorithm with chaotic map ten; FSS-IPSO2: Floating search space with improved
PSO; GA: Genetic algorithm; GAAPI: GA with ant colony optimization; GQPSO: Gaussian quantum-
behaved PSO; GSA: Gravitational search algorithm; GWO: Grey wolf optimization; HDP: Highly
disruptive polynomial; HPSO-DE: Hybrid PSO with DE; HSCA: Hybrid SCA; IJaya: Improved
Jaya algorithm; IKSO: Improve kernel search optimization; IMO: Ion motion optimization; ISA:
Interior search algorithm; Jaya-SML: Jaya algorithm with SAMP and Lévy flights; KKO: Kho-Kho
optimization algorithm; KSO: Kernel search optimization; LFA: Lightning flash algorithm; LPSR:
Linear population size reduction; L-SHADE: LPSR with success-history based adaptive DE; MBFA:
Modified bacterial foraging algorithm; MIMO: Modified IMO; MODE: Multi-objective DE; MSGO:
Modified SGO; NGWO: Novel grey wolf optimization; NSGA II/III: Non-dominated sorting genetic
algorithm-version II/III; ORCCRO: Oppositional real coded chemical reaction optimization; PDE:
Pareto differential evolution; pdf: Probability density function; PSO: Particle swarm optimization;
QOPO: Quasi-oppositional-based political optimizer; QOTLBO: Quasi-oppositional TLBO; QPSO:
Quantum PSO; RCCRO: Real coded chemical reaction optimization; SAMP: Self-adaptive multi-
population; SCA: Sine–cosine algorithm; SDE: Shuffled differential evolution; SDO: Supply–demand
optimization; SGO: Social group optimization; S-Jaya: Jaya with self-adaptive po-pulation mechanism;
SMA: Slime mould algorithm; SPES-2: Strength pareto evolutionary algorithm 2; SSA: Squirrel search
algorithm; TLABC: Teaching-learning-based ABC; TLBO: Teaching learning-based-optimization; VPE:
Valve-point effects; Wind: Indicates the inclusion of wind power in EcD, EmD, or EED problems.

Appendix A

Table A1. Assessment of the cost related to wind power: steps and numerical example.

Step
Description and Exemplification

To Evaluate the Cost Related to the Wind Power, the Main Steps That Have to Be Done Are Presented, as Well as How Each of
Them Is Applied for a Specific Case of a Wind Unit:

1

Set the input data for a wind unit: the shape (k = 1.5) and scale (c = 15) parameters; rated output power of the wind unit
(PWr = 550 MW); cut-in wind speed (vin = 5 m/s), rated wind speed (vr = 15 m/s), cut-out wind speed (vout = 45 m/s); direct cost
coefficient (cd = 0), reserve cost coefficient (co = 5), penalty cost coefficient (cu = 5). Because during the MSGO optimization process, the
variable “scheduled wind power” (PW) vary between the limits (PWmin = 0, PWmax = 550) MW, the calculation is performed for an
arbitrarily chosen value, for example PW = 400 MW

2

Set the expression of the pdf fW(w) related to the wind power (W) using relation (7):

fW(w) = 1.5·5·2
15·550

( 5
15 ·

(
1 + w·2

550

))1.5−1exp
[
−
( 5

15 ·
(
1 + w·2

550

))1.5
]
= 1

550

(
1
3 ·

(
1 + w

275

))0.5
exp

[
−
(

1
3 ·

(
1 + w

275

))1.5
]

,

where, R = (15 − 5)/5 = 2

3
Calculate the discrete probabilities Prob(W = 0), and Prob(W = PWr), using relations (8) and (9):
Prob(W = 0) = 1 − exp[−(vin/c)k] + exp[−(vout/c)k] = 1 − exp[(−(5/15)1.5] + exp[−(45/15)1.5] = 0.180602
Prob(W = PWr) = Prob(W = 550) = exp[−(vr/c)k] − exp[−(vout/c)k] = exp[−(15/15)1.5] − exp[−(45/15)1.5] = 0.362342

4

Calculate the average power Eo(PW = 400) and Eu(PW = 400) according to (10) and (11):
Eo(PW = 400) =

∫ 400
0 (400 − w) fW(w)dw + (400 − 0) · 0.180602 = 143.087MW

Eu(PW = 400) =
∫ 550

400 (w − 550) fW(w)dw + (550 − 400) · 0.362342 = 45.944MW
where fW(w) is presented in Step 2 and the integrals may by directly calculated in mathcad.

5
Calculate the cost CW(PW) related to the wind power PW, using (3):

CW(PW) =
Nw=1

∑
j=1

CW
j
(

PWj
)
= cd · PW + co · Eo(PW = 400) + cu · Eu(PW = 400) = 0 · 400 + 5 · 143.087 + 5 · 45.944 = 945.153 $/h
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Table A2. Thermal units’ characteristics for the 10-unit test system.

Unit

Power Limits Fuel Cost Coefficients Emission Coefficients

Pmin ,i Pmax ,i ai bi ci ei fi αi βi γi δi λi

MW MW $/MW2h $/MWh $/h $/h rad/MW lb/MW2h lb/MWh lb/h lb/h 1/MW

1 10 55 0.12951 40.5407 1000.403 33 0.0174 0.04702 −3.9864 360.0012 0.25475 0.01234
2 20 80 0.10908 39.5804 950.606 25 0.0178 0.04652 −3.9524 350.0056 0.25475 0.01234
3 47 120 0.12511 36.5104 900.705 32 0.0162 0.04652 −3.9023 330.0056 0.25163 0.01215
4 20 130 0.12111 39.5104 800.705 30 0.0168 0.04652 −3.9023 330.0056 0.25163 0.01215
5 50 160 0.15247 38.5390 756.799 30 0.0148 0.00420 0.3277 13.8593 0.24970 0.01200
6 70 240 0.10587 46.1592 451.325 20 0.0163 0.00420 0.3277 13.8593 0.24970 0.01200
7 60 300 0.03546 38.3055 1243.531 20 0.0152 0.00680 −0.5455 40.2669 0.24800 0.01290
8 70 340 0.02803 40.3965 1049.998 30 0.0128 0.00680 −0.5455 40.2669 0.24990 0.01203
9 135 470 0.02111 36.3278 1658.569 60 0.0136 0.00460 −0.5112 42.8955 0.25470 0.01234

10 150 470 0.01799 38.2704 1356.659 40 0.0141 0.00460 −0.5112 42.8955 0.25470 0.01234

Table A3. The B-loss coefficients ([Bij], [B0i], and B00) for 10-unit system.

1 2 3 4 5 6 7 8 9 10

1 4.9 × 10−5 1.4 × 10−5 1.5 × 10−5 1.5 × 10−5 1.6 × 10−5 1.7 × 10−5 1.7 × 10−5 1.8 × 10−5 1.9 × 10−5 2.0 × 10−5

2 1.4 × 10−5 4.5 × 10−5 1.6 × 10−5 1.6 × 10−5 1.7 × 10−5 1.5 × 10−5 1.5 × 10−5 1.6 × 10−5 1.8 × 10−5 1.8 × 10−5

3 1.5 × 10−5 1.6 × 10−5 3.9 × 10−5 1.0 × 10−5 1.2 × 10−5 1.2 × 10−5 1.4 × 10−5 1.4 × 10−5 1.6 × 10−5 1.6 × 10−5

4 1.5 × 10−5 1.6 × 10−5 1.0 × 10−5 4.0 × 10−5 1.4 × 10−5 1.0 × 10−5 1.1 × 10−5 1.2 × 10−5 1.4 × 10−5 1.5 × 10−5

[Bij]10×10= 5 1.6 × 10−5 1.7 × 10−5 1.2 × 10−5 1.4 × 10−5 3.5 × 10−5 1.1 × 10−5 1.3 × 10−5 1.3 × 10−5 1.5 × 10−5 1.6 × 10−5

6 1.7 × 10−5 1.5 × 10−5 1.2 × 10−5 1.0 × 10−5 1.1 × 10−5 3.6 × 10−5 1.2 × 10−5 1.2 × 10−5 1.4 × 10−5 1.5 × 10−5

7 1.7 × 10−5 1.5 × 10−5 1.4 × 10−5 1.1 × 10−5 1.3 × 10−5 1.2 × 10−5 3.8 × 10−5 1.6 × 10−5 1.6 × 10−5 1.8 × 10−5

8 1.8 × 10−5 1.6 × 10−5 1.4 × 10−5 1.2 × 10−5 1.3 × 10−5 1.2 × 10−5 1.6 × 10−5 4.0 × 10−5 1.5 × 10−5 1.6 × 10−5

9 1.9 × 10−5 1.8 × 10−5 1.6 × 10−5 1.4 × 10−5 1.5 × 10−5 1.4 × 10−5 1.6 × 10−5 1.5 × 10−5 4.2 × 10−5 1.9 × 10−5

10 2.0 × 10−5 1.8 × 10−5 1.6 × 10−5 1.5 × 10−5 1.6 × 10−5 1.5 × 10−5 1.8 × 10−5 1.6 × 10−5 1.9 × 10−5 4.4 × 10−5

[B0i]1×10= 0 0 0 0 0 0 0 0 0 0

B00= 0

Table A4. Thermal units’ characteristics for the 40-unit test system.

Unit

Power Limits Fuel Cost Coefficients Emission Coefficients

Pmin ,i Pmax ,i ai bi ci ei fi αi βi γi δi λi

MW MW $/MW2h $/MWh $/h $/h rad/MW t/MW2h t/MWh t/h t/h 1/MW

1 36 114 0.0069 6.73 94.705 100 0.084 0.048 −2.22 60 1.31 0.0569
2 36 114 0.0069 6.73 94.705 100 0.084 0.048 −2.22 60 1.31 0.0569
3 60 120 0.02028 7.07 309.54 100 0.084 0.0762 −2.36 100 1.31 0.0569
4 80 190 0.00942 8.18 369.03 150 0.063 0.054 −3.14 120 0.9142 0.0454
5 47 97 0.0114 5.35 148.89 120 0.077 0.085 −1.89 50 0.9936 0.0406
6 68 140 0.01142 8.05 222.33 100 0.084 0.0854 −3.08 80 1.31 0.0569
7 110 300 0.00357 8.03 287.71 200 0.042 0.0242 −3.06 100 0.6550 0.02846
8 135 300 0.00492 6.99 391.98 200 0.042 0.031 −2.32 130 0.6550 0.02846
9 135 300 0.00573 6.6 455.76 200 0.042 0.0335 −2.11 150 0.6550 0.02846

10 130 300 0.00605 12.9 722.82 200 0.042 0.425 −4.34 280 0.6550 0.02846
11 94 375 0.00515 12.9 635.2 200 0.042 0.0322 −4.34 220 0.6550 0.02846
12 94 375 0.00569 12.8 654.69 200 0.042 0.0338 −4.28 225 0.6550 0.02846
13 125 500 0.00421 12.5 913.4 300 0.035 0.0296 −4.18 300 0.5035 0.02075
14 125 500 0.00752 8.84 1760.4 300 0.035 0.0512 −3.34 520 0.5035 0.02075
15 125 500 0.00708 9.15 1728.3 300 0.035 0.0496 −3.55 510 0.5035 0.02075
16 125 500 0.00708 9.15 1728.3 300 0.035 0.0496 −3.55 510 0.5035 0.02075
17 220 500 0.00313 7.97 647.85 300 0.035 0.0151 −2.68 220 0.5035 0.02075
18 220 500 0.00313 7.95 649.69 300 0.035 0.0151 −2.66 222 0.5035 0.02075
19 242 550 0.00313 7.97 647.83 300 0.035 0.0151 −2.68 220 0.5035 0.02075
20 242 550 0.00313 7.97 647.81 300 0.035 0.0151 −2.68 220 0.5035 0.02075
21 254 550 0.00298 6.63 785.96 300 0.035 0.0145 −2.22 290 0.5035 0.02075
22 254 550 0.00298 6.63 785.96 300 0.035 0.0145 −2.22 285 0.5035 0.02075
23 254 550 0.00284 6.66 794.53 300 0.035 0.0138 −2.26 295 0.5035 0.02075
24 254 550 0.00284 6.66 794.53 300 0.035 0.0138 −2.26 295 0.5035 0.02075
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Table A4. Cont.

Unit

Power Limits Fuel Cost Coefficients Emission Coefficients

Pmin ,i Pmax ,i ai bi ci ei fi αi βi γi δi λi

MW MW $/MW2h $/MWh $/h $/h rad/MW t/MW2h t/MWh t/h t/h 1/MW

25 254 550 0.00277 7.1 801.32 300 0.035 0.0132 −2.42 310 0.5035 0.02075
26 254 550 0.00277 7.1 801.32 300 0.035 0.0132 −2.42 310 0.5035 0.02075
27 10 150 0.52124 3.33 1055.1 120 0.077 1.842 −1.11 360 0.9936 0.0406
28 10 150 0.52124 3.33 1055.1 120 0.077 1.842 −1.11 360 0.9936 0.0406
29 10 150 0.52124 3.33 1055.1 120 0.077 1.842 −1.11 360 0.9936 0.0406
30 47 97 0.0114 5.35 148.89 120 0.077 0.085 −1.89 50 0.9936 0.0406
31 60 190 0.0016 6.43 222.92 150 0.063 0.0121 −2.08 80 0.9142 0.0454
32 60 190 0.0016 6.43 222.92 150 0.063 0.0121 −2.08 80 0.9142 0.0454
33 60 190 0.0016 6.43 222.92 150 0.063 0.0121 −2.08 80 0.9142 0.0454
34 90 200 0.0001 8.95 107.87 200 0.042 0.0012 −3.48 65 0.6550 0.02846
35 90 200 0.0001 8.62 116.58 200 0.042 0.0012 −3.24 70 0.6550 0.02846
36 90 200 0.0001 8.62 116.58 200 0.042 0.0012 −3.24 70 0.6550 0.02846
37 25 110 0.0161 5.88 307.45 80 0.098 0.095 −1.98 100 1.42 0.0677
38 25 110 0.0161 5.88 307.45 80 0.098 0.095 −1.98 100 1.42 0.0677
39 25 110 0.0161 5.88 307.45 80 0.098 0.095 −1.98 100 1.42 0.0677
40 242 550 0.00313 7.97 647.83 300 0.035 0.0151 −2.68 220 0.5035 0.02075
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Table A5. The B-loss coefficients ([Bij], [B0i], and B00) for 40-unit system.

([
B ij

] 4
0×

40
)×

10
−

6
=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
2 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
3 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
4 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
5 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
6 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
7 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
8 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
9 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0

10 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
11 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
12 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
13 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
14 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
15 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
16 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
17 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
18 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
19 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
20 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
21 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
22 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
23 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
24 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
25 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
26 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
27 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
28 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
29 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
30 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
31 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
32 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
33 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
34 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24
35 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6 129 −2 −5 −6 −10 −6
36 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8 −2 150 −2 −1 −6 −8
37 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1 −5 −2 17 12 7 −1
38 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1 −6 −1 12 14 9 1
39 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0 −10 −6 7 9 31 0
40 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24 −6 −8 −1 1 0 24

(B
0i

)×
10
−

4
= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−3.908 −1.297 7.047 0.591 2.161 −6.635 −3.908 −1.297 7.047 0.591 2.161 −6.635 −3.908 −1.297 7.047 0.591 2.161 −6.635 −3.908 −1.297

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

7.047 0.591 2.161 −6.635 −3.908 −1.297 7.047 0.591 2.161 −6.635 −3.908 −1.297 7.047 0.591 2.161 −6.635 −3.908 −1.297 7.047 0.591

B00 = 0.56
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