Organochlorine Pesticides in Dairy Cows’ Diet and the Carryover into Milk in NW Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Preparation and Analysis
3. Results and Discussion
3.1. Quality Control and Assurance
3.2. Organochlorine Pesticides in Soil
3.3. Organochlorine Pesticides in Water
3.4. Organochlorine Pesticides in Feed
3.5. Organochlorine Pesticides in Milk
3.6. OCP Carryover Rate and Biotransfer Factor
3.7. Cows’ Dietary Exposure to Soil, Water, and Feed Ingestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saaristo, M.; Brodin, T.; Balshine, S.; Bertram, M.G.; Brooks, B.W.; Ehlman, S.M.; McCallum, E.S.; Sih, A.; Sundin, J.; Wong, B.B.M.; et al. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. Biol. Sci. 2018, 285, 20181297. [Google Scholar] [CrossRef] [PubMed]
- Miclean, M.; Cadar, O.; Levei, E. Human health risk assessment of organochlorine compounds associated with raw milk consumption in a Romanian industrial area. Ital. J. Food Sci. 2018, 30, 1. [Google Scholar]
- Marlat, V.L.; Bayen, S.; Castaneda–Cortes, D.; Delbes, G.; Grigorova, P.; Langlois, V.S.; Martyniuk, C.J.; Metcalfe, C.D.; Parent, L.; Rwigemera, A.; et al. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environ. Res. 2022, 208, 112584. [Google Scholar] [CrossRef] [PubMed]
- Penagos-Tabares, F.; Sulyok, M.; Faas, J.; Krska, R.; Khiaosa-ard, R.; Zebeli, Q. Residues of pesticides and veterinary drugs in diets of dairy cattle from conventional and organic farms in Austria. Environ. Pollut. 2023, 316, 120626. [Google Scholar] [CrossRef]
- Mahmoud, R.; Wainwright, S.R.; Galea, L.A. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front. Neuroendocrinol. 2016, 41, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.C.; Fusco, G.; Monnolo, A.; Saggiomo, F.; Guccione, J.; Mercogliano, R.; Clausi, M.T. Food contamination by PCBs and waste disposal crisis: Evidence from goat milk in Campania (Italy). Chemosphere 2017, 186, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.L.; Dontu, S.I.; Levei, E.A.; Ioja, C.I.; Popa, A.M.; Miclean, M.; Hoaghia, M.A.; Cadar, O.; Carstea, E.M. Spatial variation of organochlorine pesticides and dissolved organic matter in urban closed lakes. J. Environ. Sci. Health B 2020, 55, 329–341. [Google Scholar] [CrossRef]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free–range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef]
- United Nations Environment Programme. UNEP 2009 Annual Report. Available online: http://hdl.handle.net/20.500.11822/7824 (accessed on 22 November 2023).
- UNEP. ‘Chemicals Proposed for Listing under the Convention’, Stockholm Convention. 2018. Available online: http://chm.pops.int/TheConvention/ThePOPs/ChemicalsProposedforListing/tabid/2510/Default.aspx (accessed on 22 November 2023).
- Tzanetou, E.N.; Karasali, H. A Comprehensive review of organochlorine pesticide monitoring in agricultural soils: The silent threat of a conventional agricultural past. Agriculture 2022, 12, 728. [Google Scholar] [CrossRef]
- Esposito, M.; Canzanella, S.; Iaccarino, D.; Pepe, A.; Di Nocera, F.; Bruno, T.; Marigliano, L.; Sansone, D.; Hochscheid, S.; Gallo, P.; et al. Trace Elements and Persistent Organic Pollutants in Unhatched Loggerhead Turtle Eggs from an Emerging Nesting Site along the Southwestern Coasts of Italy, Western Mediterranean Sea. Animals 2023, 13, 1075. [Google Scholar] [CrossRef]
- Mercanti, T.; El Hachmi, M.; Falcinelli, S.; Sebastiani, B. occurrence of persistent organochlorine pollutants in sediments from Lake Piediluco, Italy. Environments 2023, 10, 120. [Google Scholar] [CrossRef]
- Li, Z. Prioritizing agricultural pesticides to protect human health: A multi–level strategy combining life cycle impact and risk assessments. Ecotox. Environ. Saf. 2022, 242, 113869. [Google Scholar] [CrossRef] [PubMed]
- Kalyabina, V.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fantke, P. Framework for defining pesticide maximum residue levels in feed: Applications to cattle and sheep. Pest. Manag. Sci. 2023, 79, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed. Off. J. Eur. Union L 2002, 140, 10–22. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32002L0032 (accessed on 15 September 2023).
- Li, Z.; Xiong, J.; Fantke, P. Screening of pesticide distributions in foods of animal origin: A matrix–based approach for biotransfer factor modeling of grazing mammals. Environ. Sci. Process. Impacts 2022, 24, 609–624. [Google Scholar] [CrossRef]
- Rychen, G.; Jurjanz, S.; Fournier, A.; Toussaint, H.; Feidt, C. Exposure of ruminants to persistent organic pollutants and potential of decontamination. Environ. Sci. Pollut. Res. Int. 2014, 21, 6440–6447. [Google Scholar] [CrossRef]
- Feidt, C.; Ounnas, F.; Julien–David, D.; Jurjanz, S.; Toussaint, H.; Jondreville, C.; Rychen, G. Relative bioavailability of soil–bound polychlorinated biphenyls in lactating goats. J. Dairy Sci. 2013, 96, 3916–3923. [Google Scholar] [CrossRef]
- Jia, Q.; Liao, G.; Chen, L.; Qian, Y.; Yan, X.; Qiu, J. Pesticide residues in animal-derived food: Current state and perspectives. Chemosphere 2024, 438, 137974. [Google Scholar] [CrossRef]
- Stiefel, C.; Stintzing, F. Endocrine–active and endocrine–disrupting compounds in food—Occurrence, formation and relevance. NFS J. 2023, 31, 57–92. [Google Scholar] [CrossRef]
- Ramezani, S.; Mahdavi, V.; Gordan, H.; Rezadoost, H.; Oliver Conti, G.; Mousavi Khaneghah, A. Determination of multi–class pesticides residues of cow and human milk samples from Iran using UHPLC–MS/MS and GC–ECD: A probabilistic health risk assessment. Environ. Res. 2022, 208, 112730. [Google Scholar] [CrossRef]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A.; Kuzmin, M.I.; McLachlan, M.S.; Khomutova, M.I. The influence of soil contamination on the concentrations of PCBs in milk in Siberia. Chemosphere 2007, 67, S71–S78. [Google Scholar] [CrossRef] [PubMed]
- Tremolada, P.; Guazzoni, N.; Parolini, M.; Rossaro, B.; Bignazzi, M.M.; Binelli, A. Predicting PCB concentrations in cow milk: Validation of a fugacity model in high–mountain pasture conditions. Sci. Total Environ. 2014, 487, 471–480. [Google Scholar] [CrossRef] [PubMed]
- EU, EIP Brochure. European Union Brochure: Sustainable Livestock Farming. Innovation for farm Resilience and Profitability. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_brochure_sustainable_livestock_2019_en_web.pdf (accessed on 27 November 2023).
- ISO 6468:1996; Water Quality. Determination of Certain Organochlorine Insecticides, Polychlorinated Biphenyls and Chlorobenzenes. Gas Chromatographic Method after Liquid–liquid Extraction. ISO: Geneva, Switzerland, 1996.
- Popa, C.L.; Dontu, S.I.; Carstea, E.M.; Levei, E.A.; Ioja, C.; Popa, A.M.; Miclean, M.; Cadar, O. Organochlorine pesticides and dissolved organic matter within a system of urban exorheic lakes. Environ. Monit. Assess. 2019, 192, 59. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Ultrasonic Extraction, Test Methods for Evaluating Solid Waste; Method 3550C; US Environmental Protection Agency: Washington, DC, USA, 2000.
- De Vries, W.; Römkens, P.F.A.M.; Schütze, G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev. Environ Contam. Toxicol. 2007, 191, 91–130. [Google Scholar] [PubMed]
- Rodrigues, S.M.; Pereira, M.E.; Duarte, A.C.; Römkens, P.F.A.M. Soil–plant–animal transfer models to improve soil protection guidelines: A case study from Portugal. Environ. Int. 2012, 39, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Le Faouder, J.; Bichon, E.; Brunschwig, P.; Landelle, R.; Andre, F.; Le Bizec, B. Transfer assessment of fipronil residues from feed to cow milk. Talanta 2007, 73, 710–717. [Google Scholar] [CrossRef]
- Order 756. Order of the Ministry of Water, Forestry and Environmental Protection for the Approval of the Regulation Regarding the Assessment of Environmental Pollution, No. 756 of 3 November 1997. Published in the Official Gazette of Romania, No. 303 Bis of 6 November 1997. 1997. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/13572 (accessed on 10 September 2023). (In Romanian).
- Wang, X.; Wang, D.; Qin, X.; Xu, X. Residues of organochlorine pesticides in surface soils from college school yards in Beijing, China. J. Environ. Sci. 2008, 20, 1090–1096. [Google Scholar] [CrossRef]
- Westbom, R.; Hussen, A.; Megersa, N.; Retta, N.; Mathiasson, L.; Björklund, E. Assessment of organochlorine pesticide pollution in Upper Awash Ethiopian state farm soils using selective pressurised liquid extraction. Chemosphere 2008, 72, 1181–1187. [Google Scholar] [CrossRef]
- Yu, H.Y.; Li, F.B.; Yu, W.M.; Li, Y.T.; Yang, G.Y.; Zhou, S.G.; Zhang, T.B.; Gao, Y.X.; Wan, H.F. Assessment of organochlorine pesticide contamination in relation to soil properties in the Pearl River Delta, China. Sci. Total Environ. 2013, 447, 160–168. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, J.; Meng, B.; Cheng, J.; Lin, G.; Chen, J.; Zheng, D.; Yu, Y. Distribution and sources of organochlorine pesticides in agricultural soils from central China. Ecotox. Environ. Saf. 2013, 93, 163–170. [Google Scholar] [CrossRef]
- Gonzalez, M.; Miglioranza, S.B.; Aizpun, J.E.; Isla, F.I.; Pena, A. Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere 2010, 81, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.G.; Ashurova, Z.J.; Kukaniev, M.A.; Avloev, H.K.; Khaidarov, K.K.; Jamshedov, J.N.; Rahmatullova, O.S.; Atolikshoeva, S.S.; Mamadshova, S.S.; Manzenyuk, O. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan. Environ. Pollut. 2017, 224, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Fosu-Mensah, B.Y.; Okoffo, E.D.; Darko, G.; Gordon, C. Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. Springerplus 2016, 24, 869. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Tang, J.; Zhao, Z.; Pan, X.; Chen, Y.; Li, J.; Zhang, G. Organochlorine pesticides in sediments of Laizhou Bay and its adjacent rivers, North China. Mar. Pollut. Bull. 2011, 62, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Order 396. Order of the Minister of Agriculture, Food and Forests, the Minister of Health and Family and the Minister of Water and Environmental Protection No. 396 of 2 September 2002 Regarding the Prohibition of the Use on Romanian Territory of Phytosanitary Products Containing Certain Active Substances. Published in the Official Gazette of Romania, No. 829 of 18 November 2002. 2002. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/39933 (accessed on 15 September 2023). (In Romanian).
- Ordinance 7. The Government of Romania. Ordinance no. 7 of 18 January 2023 Regarding the Quality of Water Intended for Human Consumption. Published in the Official Gazette of Romania, No. 63 of 25 January 2023. Available online: https://legislatie.just.ro/Public/DetaliiDocument/264337 (accessed on 25 September 2023). (In Romanian).
- Polanco Rodríguez, A.G.; Araujo León, J.A.; Cetz, R.L.; Long, D.; Álvarez Cervera, F.J.; Barache, U.; Rosas Sánchez, D.H. Organochlorine pesticides in the drinking water of Merida and its Metropolitan Zone, a Karst Region. Urban Water J. 2022, 19, 40–50. [Google Scholar] [CrossRef]
- Guo, J.; Chen, W.; Wu, M.; Qu, C.; Sun, H.; Guo, J. Distribution, sources, and risk assessment of organochlorine pesticides in water from Beiluo River, Loess Plateau, China. Toxics 2023, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Liu, Y.; Qiao, X.; Guo, R.; Liu, C.; Wang, X.; Zhao, X. Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River. Ecotoxicol. Environ. Saf. 2019, 182, 109390. [Google Scholar] [CrossRef]
- Costera, A.; Feidt, C.; Marchand, P.; Le Bizec, B.; Rychen, G. PCDD/F and PCB transfer to milk in goats exposed to a long–term intake of contaminated hay. Chemosphere 2006, 64, 650–657. [Google Scholar] [CrossRef]
- Mantovani, A.; Frazzoli, C. Risk assessment of toxic contaminants in animal feed. CAB Rev. Perspect. 2010, 5, 1–14. [Google Scholar] [CrossRef]
- Panseri, S.; Biondi, P.A.; Vigo, D.; Communod, R.; Chiesa, L.M. Occurrence of organochlorine pesticides residues in animal feed and fatty bovine tissue. Food Ind. 2013, 13, 261–283. [Google Scholar] [CrossRef]
- Deka, S.C.; Barman, N.; Baruah, A.A.L.H. Monitoring of pesticide residues in feed, fodder and butter in Assam. Pestic. Res. J. 2004, 16, 86–89. [Google Scholar]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Off. J. Eur. Union L 2005, 70, 1–16. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005R0396 (accessed on 30 September 2023).
- Order 23. Order of the President of the National Sanitary Veterinary and Food Safety Authority approving the Sanitary Veterinary and Food Safety Normative on the Establishment of the Maximum Admitted Residue Levels of Pesticides in Content or on Foodstuffs of Animal Origin, No. 23/26.12.2007. Published in the Official Gazette of Romania, No. 138 of 26 December 2007. 2007. Available online: https://www.cdep.ro/pls/legis/legis_pck.htp_act?ida=70288 (accessed on 2 September 2023). (In Romanian).
- Gebremichael, S.; Birhanu, T.; Tessema, D.A. Analysis of organochlorine pesticide residues in human and cow’s milk in the towns of Asendabo, Serbo and Jimma in South–Western Ethiopia. Chemosphere 2013, 90, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Soares, V.A.; Kus, M.M.; Peixoto, A.L.C.; Carrocci, J.S.; Salazar, R.F.S.; Izário–Filho, H.J. Determination of nutritional and toxic elements in pasteurized bovine milk from Vale do Paraiba region (Brazil). Food Control 2010, 21, 45–49. [Google Scholar] [CrossRef]
- EU Pesticide Database. Search Active Substances. 2022. Available online: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en (accessed on 28 December 2023).
- Kampire, E.; Kiremire, B.T.; Nyanzi, S.A.; Kishimba, M. Organochlorine pesticide in fresh and pasteurized cow’s milk from Kampala markets. Chemosphere 2011, 84, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Deti, H.; Hymete, A.; Bekhit, A.A.; Mohamed, A.M.I.M.; Bekhit, A.E.-D.A. Persistent organochlorine pesticides residues in cow and goat milks collected from different regions of Ethiopia. Chemosphere 2014, 106, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Isaq, Z.; Nawaz, M.A. Analysis of contaminated milk with organochlorine pesticide residues using gas chromatography. Int. J. Food Prop. 2018, 21, 879–891. [Google Scholar] [CrossRef]
- Arif, A.M.; Javed, I.; Ayaz, M.; Abdullah, M.; Imran, M.; Shahbaz, M.; Gondal, T.A.; Ali, M.; Iqbal, Z.; Iqbal, Z.; et al. Organochlorine pesticide residues in raw milk samples collected from dairy farms and urban areas of Lahore district, Pakistan. J. Food Sci. Technol. 2021, 58, 129–137. [Google Scholar] [CrossRef]
- Hasan, G.M.M.A.; Das, A.K.; Satter, M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS J. 2022, 27, 28–35. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; McKone, T.E.; Jolliet, O. CKow—A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk, March 2009. Available online: https://www.osti.gov/servlets/purl/971640 (accessed on 8 November 2023).
- The Environment Agency. Science Report—SC030197/SR4. Verification of Bioaccumulation Models for Use in Environmental Standards. Part C: Human Food Chain Models. p. 5. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291724/scho0507bmpr–e–e.pdf (accessed on 8 November 2023).
- Huuskonen, A.; Tuomisto, L.; Kauppinen, R. Effect of drinking water temperature on water intake and performance of dairy calves. J. Dairy Sci. 2011, 94, 2475–2480. [Google Scholar] [CrossRef]
- Travis, C.C.; Arms, A.D. Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 1988, 22, 271–274. [Google Scholar] [CrossRef]
- Leeman, W.R.; Van Den Berg, K.J.; Houben, G.F. Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Addit. Contam. A 2007, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Amutova, F.; Delannoy, M.; Baubekova, A.; Konuspayeva, G.; Jurjanz, S. Transfer of persistent organic pollutants in food of animal origin—Meta-analysis of published data. Chemosphere 2021, 262, 128531. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority); Ardizzone, M.; Binaglia, M.; Cottrill, B.; Cugier, J.-P.; Ferreira, L.; Gomez Ruiz, J.A.; Innocenti, M.; Ioannidou, S.L.; Lopez Puente, S.; et al. Scientific report on the animal dietary exposure: Overview of current approaches used at EFSA. EFSA J. 2019, 17, 5896. [Google Scholar]
Compound | Retention Time, min | Monitor Ions, m/z 1 | Linearity (r 2) |
---|---|---|---|
Hexachlorobenzene (HCB) | 30.696 | 284/249, 286 | 0.9998 |
α-HCH | 30.383 | 181/219, 109 | 0.9984 |
β-HCH | 31.805 | 181/219, 109 | 0.9997 |
γ-HCH (lindane) | 32.329 | 181/219, 109 | 0.9994 |
δ-HCH | 32.064 | 181/219, 109 | 0.9992 |
ε-HCH | 33.764 | 181/219, 109 | 0.9997 |
Aldrin | 37.100 | 263/265, 293 | 0.9994 |
Dieldrin | 43.150 | 263/79, 345 | 0.9994 |
Heptachlor | 35.514 | 272/274, 337 | 0.9988 |
Heptachlor epoxide β | 35.514 | 353/81, 263 | 0.9984 |
Heptachlor epoxide α | 39.211 | 353/81, 263 | 0.9994 |
Endosulfan α | 41.779 | 241/195 | 0.9998 |
Endosulfan β | 43.752 | 241/195 | 0.9989 |
2,4′–DDE | 40.481 | 246/316, 318 | 0.9999 |
4,4′–DDE | 41.922 | 246/316, 318 | 0.9999 |
2,4′–DDD | 42.266 | 235/165 | 0.9994 |
4,4′–DDD | 43.865 | 235/165 | 0.9993 |
2,4′–DDT | 44.014 | 235/165, 237 | 0.9976 |
4,4′–DDT | 45.423 | 235/165, 237 | 0.9988 |
Compound | Water 0.002/0.001 µg/L | Soil 20/0.050 µg/kg | Feed 20/0.050 µg/kg | Milk 20/0.050 ng/g Fat | ||||
---|---|---|---|---|---|---|---|---|
Recovery | RSD | Recovery | RSD | Recovery | RSD | Recovery | RSD | |
Hexachlorobenzene | 88/85 | 2.3/2.0 | 97/86 | 6.8/5.2 | 104/95 | 3.5/4.4 | 93/91 | 8.7/9.0 |
α-HCH | 96/91 | 3.1/2.2 | 81/80 | 11.2/6.2 | 86/79 | 9.4/4.3 | 88/86 | 13.0/6.0 |
β-HCH | 101/95 | 4.4/3.6 | 86/85 | 7.9/6.3 | 80/91 | 6.9/5.8 | 82/79 | 5.0/9.0 |
γ-HCH (lindane) | 91/95 | 1.2/2.0 | 88/81 | 5.5/3.2 | 94/88 | 4.9/6.2 | 91/87 | 4.3/8.9 |
δ-HCH | 116/98 | 1.9/0.9 | 93/91 | 4.9/7.2 | 90/87 | 5.1/8.0 | 96/111 | 6.1/6.0 |
ε-HCH | 103/105 | 0.8/1.6 | 96/91 | 3.5/4.0 | 88/81 | 4.4/4.6 | 86/77 | 5.0/8.4 |
Aldrin | 86/90 | 2.2/3.0 | 81/80 | 2.9/2.7 | 90/79 | 3.0/3.6 | 81/77 | 4.4/6.1 |
Dieldrin | 105/112 | 1.6/0.9 | 95/82 | 4.4/6.1 | 79/89 | 11.8/7.9 | 85/80 | 8.2/6.7 |
Heptachlor | 85/105 | 5.1/2.0 | 90/86 | 6.5/4.8 | 118/93 | 4.4/6.3 | 105/86 | 15.5/12.4 |
Heptachlor epoxide β | 89/93 | 0.7/1.8 | 81/75 | 7.0/8.8 | 107/86 | 1.9/5.3 | 83/89 | 10.0/6.7 |
Heptachlorepoxide α | 88/93 | 1.8/1.5 | 85/86 | 3.1/4.0 | 104/91 | 3.3/6.2 | 91/79 | 7.4/5.6 |
Endosulfan β | 109/99 | 2.5/3.0 | 99/85 | 4.7/3.5 | 87/104 | 6.8/7.0 | 93/80 | 5.7/5.5 |
Endosulfan α | 95/92 | 2.0/1.5 | 88/85 | 4.5/5.1 | 91/87 | 2.9/7.2 | 86/77 | 5.9/9.9 |
2,4′–DDE | 82/91 | 3.0/5.2 | 79/83 | 5.0/3.9 | 87/88 | 3.8/2.2 | 74/76 | 6.1/15.1 |
4,4′–DDE | 79/81 | 1.6/4.8 | 72/77 | 6.1/7.1 | 106/82 | 3.1/4.4 | 82/76 | 5.2/12.0 |
2,4′–DDD | 101/105 | 0.9/2.2 | 92/90 | 2.8/3.5 | 97/97 | 6.1/4.6 | 93/88 | 3.8/3.3 |
4,4′–DDD | 72/80 | 3.1/2.8 | 77/79 | 4.0/5.1 | 81/84 | 8.4/9.1 | 75/76 | 8.1/11.6 |
2,4′–DDT | 91/89 | 1.0/1.6 | 86/77 | 5.2/4.3 | 88/81 | 7.2/4.7 | 81/76 | 5.6/9.2 |
4,4′–DDT | 86/93 | 2.2/1.1 | 81/75 | 3.6/4.0 | 90/83 | 3.2/5.1 | 83/79 | 4.8/6.1 |
PCB209 (internal standard) | 99/95 | 1.8/0.6 | 102/91 | 11.2/5.8 | 75/77 | 9.8/3.8 | 86/81 | 7.9/2.9 |
Compound | BCR-188 (Milk) | QC1321 (Water) | ||||||
---|---|---|---|---|---|---|---|---|
Certified, µg/kg | Measured, µg/kg, | RSD, % | Recovery, % | Certified, µg/L | Measured, µg/L | RSD, % | Recovery, % | |
Hexachlorobenzene | 37.4 | 36.1 | 6.2 | 97 | - | - | - | - |
β-HCH | 12.0 | 10.1 | 9.3 | 84 | - | - | - | - |
4,4′–DDE | 51.0 | 44.0 | 10.6 | 86 | 5.74 | 5.63 | 9.50 | 98 |
Dieldrin | 36.1 | 38.1 | 5.1 | 105 | 5.91 | 6.32 | 3.90 | 107 |
4,4′–DDT | 69.0 | 62.2 | 9.6 | 90 | 2.18 | 2.35 | 11.8 | 108 |
Aldrin | - | - | - | - | 6.04 | 6.83 | 4.10 | 113 |
4,4′–DDD | - | - | - | - | 7.29 | 6.12 | 10.9 | 84 |
Heptachlor | - | - | - | - | 2.34 | 2.18 | 4.00 | 93 |
Heptachlor epoxide α | - | - | - | - | 4.98 | 5.13 | 6.70 | 103 |
Compound | Min.–Max. (µg/kg) | Average | SD | NV | AL [31] |
---|---|---|---|---|---|
Hexachlorobenzene (HCB) | <0.05–0.21 | 0.08 | 0.06 | – | – |
α-HCH | 0.38–1.9 | 0.89 | 0.49 | <2 | 10 |
β-HCH | <0.05–4.1 | 1.2 | 1.3 | <1 | 50 |
γ-HCH (lindane) | <0.05–1.1 | 0.50 | 0.31 | <1 | 20 |
δ-HCH | 0.25–4.5 | 0.81 | 1.3 | <1 | 50 |
ε-HCH | <0.05–5.0 | 1.25 | 1.69 | – | – |
Σ HCHs | 1.3–15 | 4.6 | 4.1 | <5 | 250 |
Aldrin | <0.05–1.2 | 0.38 | 0.41 | – | – |
Dieldrin | <0.05–1.6 | 0.41 | 0.51 | – | – |
Heptachlor | <0.05–1.3 | 0.65 | 0.44 | – | – |
Heptachlor epoxide β | 0.18–1.2 | 0.53 | 0.38 | – | – |
Heptachlor epoxide α | <0.05–0.40 | 0.21 | 0.10 | – | – |
Endosulfan β | <0.05–0.51 | 0.22 | 0.17 | – | – |
Endosulfan α | <0.05–0.43 | 0.07 | 0.13 | – | – |
2,4′–DDE | 0.08–1.6 | 0.57 | 0.58 | – | – |
4,4′–DDE | 0.18–13 | 3.6 | 4.5 | – | – |
Σ DDEs | 0.31–14 | 4.1 | 4.8 | <50 | 250 |
2,4′–DDD | <0.05–3.6 | 0.77 | 1.13 | – | – |
4,4′–DDD | <0.05–16 | 3.5 | 5.8 | – | – |
Σ DDDs | 0.16–19 | 4.2 | 6.9 | <50 | 250 |
2,4′–DDT | <0.05–2.1 | 0.48 | 0.84 | – | – |
4,4′–DDT | <0.05–40 | 7.7 | 15 | – | – |
Σ DDTs | 0.05–41.8 | 8.1 | 16 | <50 | 250 |
Total DDTs 1 | 0.52–66 | 17 | 25 | <150 | 250 |
Total OCPs | 3.4–76 | 24 | 26 | <200 | 1000 |
Compound | Min.–Max. | Average | SD | MAC [42] |
---|---|---|---|---|
Hexachlorobenzene (HCB) | <0.001–0.002 | 0.001 | 0.001 | 0.1 |
α-HCH | <0.001–0.003 | 0.001 | 0.001 | 0.1 |
β-HCH | <0.001–0.006 | 0.002 | 0.002 | 0.1 |
γ-HCH (lindane) | <0.001–0.002 | 0.001 | 0.000 | 0.1 |
δ-HCH | <0.001–0.006 | 0.003 | 0.003 | 0.1 |
ε-HCH | <0.001–0.008 | 0.002 | 0.002 | 0.1 |
Aldrin | <0.001–0.004 | 0.002 | 0.001 | 0.03 |
Dieldrin | <0.001 | <0.001 | 0.000 | 0.03 |
Heptachlor | <0.001 | <0.001 | 0.000 | 0.1 |
Heptachlor epoxide β | <0.0010 | <0.001 | 0.000 | 0.03 |
Heptachlor epoxide α | <0.001–0.002 | 0.001 | 0.001 | 0.03 |
Endosulfan α | <0.009 | <0.009 | 0.000 | 0.1 |
Endosulfan β | <0.005–0.010 | 0.004 | 0.003 | 0.1 |
2,4′–DDE | <0.001–0.009 | 0.002 | 0.003 | 0.1 |
4,4′–DDE | <0.005–0.004 | 0.001 | 0.001 | 0.1 |
2,4′–DDD | <0.001–0.003 | 0.002 | 0.001 | 0.1 |
4,4′–DDD | <0.001–0.002 | 0.001 | 0.001 | 0.1 |
2,4′–DDT | <0.001–0.003 | 0.001 | 0.001 | 0.1 |
4,4′–DDT | <0.001–0.006 | 0.002 | 0.002 | 0.1 |
Total OCPs | 0.019–0.046 | 0.032 | 0.008 | 0.5 |
Compound | Min.–Max. | Average | SD | MRL [16] |
---|---|---|---|---|
Hexachlorobenzene (HCB) | <0.05–0.12 | 0.05 | 0.04 | 10 |
α-HCH | <0.05–4.3 | 0.96 | 1.3 | 20 |
β-HCH | <0.05–3.67 | 0.90 | 1.32 | 10 |
γ-HCH (lindane) | <0.05–0.67 | 0.25 | 0.21 | 200 |
δ-HCH | <0.05–5.1 | 0.60 | 1.6 | – |
ε-HCH | <0.05–11 | 2.0 | 3.7 | – |
Aldrin | <0.05–1.7 | 0.41 | 0.52 | 10 |
Dieldrin | <0.05–0.84 | 0.18 | 0.29 | 10 |
Heptachlor | <0.05–1.1 | 0.40 | 0.37 | – |
Heptachlor epoxide β | <0.05–1.5 | 0.59 | 0.48 | – |
Heptachlor epoxide α | <0.05–0.46 | 0.10 | 0.14 | – |
Heptachlor total 1 | <0.17–1.5 | 0.69 | 0.46 | 10 |
Endosulfan α | <0.05–0.18 | 0.07 | 0.06 | – |
Endosulfan β | <0.05–0.37 | 0.12 | 0.15 | – |
Σ Endosulfan 2 | <0.05–0.55 | 0.19 | 0.17 | 100 |
2,4′–DDE | <0.05–0.94 | 0.27 | 0.31 | – |
4,4′–DDE | <0.05–2.9 | 0.42 | 0.86 | – |
2,4′–DDD | <0.05–0.63 | 0.21 | 0.21 | – |
4,4′–DDD | <0.05–0.35 | 0.12 | 0.11 | – |
2,4′–DDT | <0.05–0.88 | 0.19 | 0.29 | – |
4,4′–DDT | <0.05–0.66 | 0.14 | 0.21 | – |
Total DDTs 3 | <0.20–3.6 | 1.4 | 1.2 | 50 |
Total OCPs | 0.97–25 | 7.0 | 7.7 | – |
Compound | Min.–Max. | Average | SD | MRL [51,52,55] (µg/kg/ng/g Fat) |
---|---|---|---|---|
Hexachlorobenzene (HCB) | <0.05–1.4 | 0.62 | 0.40 | 5/125 2 |
α-HCH | <0.05–3.1 | 1.1 | 0.94 | 10/250 |
β-HCH | 0.28–12 | 4.7 | 4.0 | 10/250 |
γ-HCH (lindane) | <0.05–6.9 | 1.9 | 2.0 | 10/250 |
δ-HCH | <0.05–5.1 | 1.4 | 1.5 | – |
ε-HCH | <0.05–1.1 | 0.44 | 0.44 | – |
Aldrin | <0.05–1.5 | 0.60 | 0.53 | – |
Dieldrin | <0.05–3.1 | 1.0 | 1.1 | – |
Aldrin + Dieldrin, expressed as aldrin | 0.11–4.0 | 2.3 | 1.3 | 6/150 |
Heptachlor | <0.05–5.0 | 1.7 | 1.7 | – |
Heptachlor epoxide β | <0.05–1.9 | 0.91 | 0.63 | – |
Heptachlor epoxide α | <0.05–0.45 | 0.18 | 0.15 | – |
Heptachlor (sum of heptachlor and heptachlor epoxide expressed as heptachlor) | 0.07–5.7 | 3.1 | 1.7 | 4/100 |
Endosulfan β | <0.05–1.5 | 0.43 | 0.42 | – |
Endosulfan α | <0.05–1.3 | 0.40 | 0.37 | – |
Σ Endosulfan | <0.05–1.9 | 0.84 | 0.67 | 4/100 2 |
2,4′–DDE | <0.05–0.14 | 0.07 | 0.04 | – |
4,4′–DDE | 0.61–18 | 4.4 | 5.2 | – |
2,4′–DDD | <0.05–0.46 | 0.12 | 0.14 | – |
4,4′–DDD | <0.05–0.47 | 0.13 | 0.13 | – |
2,4′–DDT | <0.05–0.23 | 0.12 | 0.07 | – |
4,4′–DDT | <0.05–3.2 | 0.52 | 0.96 | – |
Total DDTs 1 | 1.2–18.1 | 5.2 | 5.2 | 40/1000 |
Compound | COR, % | BTFfeed–milk | ||||
---|---|---|---|---|---|---|
Min–Max | Average | Std. Dev | Min–Max | Average | Std. Dev | |
Hexachlorobenzene (HCB) | 3.8–120 | 56 | 38 | 0.0080–0.416 | 0.147 | 0.139 |
α–HCH | 0.30–182 | 31 | 57 | 0.0007–0.286 | 0.044 | 0.090 |
β–HCH | 7.3–115 | 55 | 37 | 0.0013–1.016 | 0.312 | 0.425 |
γ–HCH (Lindane) | 0.18–121 | 46 | 43 | 0.0007–0.816 | 0.115 | 0.250 |
δ–HCH | 2.3–88 | 41 | 33 | 0.0003–0.294 | 0.081 | 0.093 |
ε–HCH | 0.20–46 | 7.3 | 14 | 0.0001–0.133 | 0.028 | 0.053 |
Aldrin | 0.15–210 | 45 | 83 | 0.0001–0.180 | 0.034 | 0.063 |
Dieldrin | 2.0–123 | 52 | 46 | 0.0022–0.204 | 0.087 | 0.084 |
Heptachlor | 2.0–88 | 24 | 27 | 0.0019–0.302 | 0.051 | 0.097 |
Heptachlor epoxide β | 0.69–30 | 10 | 10 | 0.0015–0.041 | 0.008 | 0.012 |
Heptachlor epoxide α | 0.21–63 | 20 | 22 | 0.0001–0.034 | 0.006 | 0.010 |
Endosulfan α | 0.68–133 | 42 | 42 | 0.0003–0.072 | 0.021 | 0.029 |
Endosulfan β | 0.27–162 | 38 | 53 | 0.0001–0.059 | 0.016 | 0.021 |
2,4′–DDE | 0.10–19 | 4.4 | 7.2 | 0.0002–0.020 | 0.005 | 0.007 |
4,4′–DDE | 22–75 | 49 | 21 | 0.0109–1.408 | 0.334 | 0.453 |
2,4′–DDD | 0.14–31 | 7.9 | 11 | 0.0001–0.024 | 0.004 | 0.008 |
4,4′–DDD | 0.15–71 | 11 | 22 | 0.0001–0.020 | 0.003 | 0.006 |
2,4′–DDT | 0.22–32 | 12 | 11 | 0.0004–0.016 | 0.007 | 0.006 |
4,4′–DDT | 0.12–250 | 43 | 81 | 0.0002–0.294 | 0.039 | 0.091 |
Compound | Min.–Max. | Average | Std. Dev. |
---|---|---|---|
Hexachlorobenzene (HCB) | 0.0008–0.0039 | 0.0017 | 0.0012 |
α–HCH | 0.0011–0.1336 | 0.0302 | 0.0392 |
β–HCH | 0.0008–0.1160 | 0.0284 | 0.0413 |
γ–HCH (Lindane) | 0.0008–0.0212 | 0.0081 | 0.0066 |
δ–HCH | 0.0010–0.1603 | 0.0190 | 0.0497 |
ε–HCH | 0.0008–0.3509 | 0.0611 | 0.1151 |
Aldrin | 0.0009–0.0519 | 0.0129 | 0.0164 |
Dieldrin | 0.0008–0.0265 | 0.0059 | 0.0093 |
Heptachlor | 0.0008–0.0340 | 0.0127 | 0.0114 |
Heptachlor epoxide β | 0.0009–0.0463 | 0.0185 | 0.0149 |
Heptachlor epoxide α | 0.0009–0.0144 | 0.0033 | 0.0045 |
Endosulfan α | 0.0009–0.0119 | 0.0039 | 0.0048 |
Endosulfan β | 0.0009–0.0058 | 0.0023 | 0.0018 |
2,4′–DDE | 0.0009–0.0299 | 0.0088 | 0.0097 |
4,4′–DDE | 0.0011–0.0903 | 0.0154 | 0.0267 |
2,4′–DDD | 0.0008–0.0217 | 0.0069 | 0.0071 |
4,4′–DDD | 0.0008–0.0206 | 0.0060 | 0.0067 |
2,4′–DDT | 0.0008–0.0286 | 0.0062 | 0.0095 |
4,4′–DDT | 0.0008–0.0414 | 0.0093 | 0.0157 |
Total DDT | 0.0066–0.1529 | 0.0527 | 0.0482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miclean, M.; Levei, E.A.; Cadar, O. Organochlorine Pesticides in Dairy Cows’ Diet and the Carryover into Milk in NW Romania. Sustainability 2024, 16, 434. https://doi.org/10.3390/su16010434
Miclean M, Levei EA, Cadar O. Organochlorine Pesticides in Dairy Cows’ Diet and the Carryover into Milk in NW Romania. Sustainability. 2024; 16(1):434. https://doi.org/10.3390/su16010434
Chicago/Turabian StyleMiclean, Mirela, Erika Andrea Levei, and Oana Cadar. 2024. "Organochlorine Pesticides in Dairy Cows’ Diet and the Carryover into Milk in NW Romania" Sustainability 16, no. 1: 434. https://doi.org/10.3390/su16010434
APA StyleMiclean, M., Levei, E. A., & Cadar, O. (2024). Organochlorine Pesticides in Dairy Cows’ Diet and the Carryover into Milk in NW Romania. Sustainability, 16(1), 434. https://doi.org/10.3390/su16010434