A Cross-Citation-Based Model for Technological Advancement Assessment: Methodology and Application
Abstract
:1. Introduction
2. Literature Review
2.1. Emerging Technologies Identification
2.2. Technology Assessment
3. Data and Models
3.1. Data Collection and Pre-Processing
3.2. Cross-Citation Calculation and Model Formulation
4. Results
5. Comparative Analysis
5.1. Method Introduction
5.2. Results Comparison
6. Conclusions and Prospect
6.1. Conclusions
6.2. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Wang, Q.; Qiu, M. Review of Studies Identifying Disruptive Technologies. Data Anal. Knowl. Discov. 2022, 6, 12–31. [Google Scholar] [CrossRef]
- Ronzhyn, A.; Wimmer, M.A.; Spitzer, V.; Pereira, G.V.; Alexopoulos, C. Using Disruptive Technologies in Government: Identification of Research and Training Needs. In Proceedings of the 18th IFIP WG 8.5 International Conference on Electronic Government (EGOV), San Benedetto Del Tronto, Italy, 2–4 September 2019; University of Camerino: San Benedetto Del Tronto, Italy, 2019; pp. 276–287. [Google Scholar]
- Stoiciu, A.; Szabo, E.; Totev, M.; Wittmann, K.; Hampl, N. Assessing the Disruptiveness of New Energy Technologies—An Ex-Ante Perspective; WU Vienna University of Economics and Business: Wien, Vienna, 2014. [Google Scholar]
- Keller, A.; Hüsig, S. Ex ante identification of disruptive innovations in the software industry applied to web applications: The case of Microsoft’s vs. Google’s office applications. Technol. Forecast. Soc. Chang. 2009, 76, 1044–1054. [Google Scholar] [CrossRef]
- Guo, J.; Pan, J.; Guo, J.; Gu, F.; Kuusisto, J. Measurement framework for assessing disruptive innovations. Technol. Forecast. Soc. Chang. 2019, 139, 250–265. [Google Scholar] [CrossRef]
- Sun, J.; Gao, J.; Yang, B.; Tan, R. Achieving disruptive innovation-forecasting potential technologies based upon technical system evolution by TRIZ. In Proceedings of the 2008 4th IEEE International Conference on Management of Innovation and Technology, Bangkok, Thailand, 21–24 September 2008; pp. 18–22. [Google Scholar]
- Anderson, T.R.; Daim, T.U.; Kim, J. Technology forecasting for wireless communication. Technovation 2008, 28, 602–614. [Google Scholar] [CrossRef]
- Jia, W.; Xie, Y.; Zhao, Y.; Yao, K.; Shi, H.; Chong, D. Research on disruptive technology recognition of China’s electronic information and communication industry based on patent influence. J. Glob. Inf. Manag. 2021, 29, 148–165. [Google Scholar] [CrossRef]
- Dotsika, F.; Watkins, A. Identifying potentially disruptive trends by means of keyword network analysis. Technol. Forecast. Soc. Chang. 2017, 119, 114–127. [Google Scholar] [CrossRef]
- Breiner, S.; Cuhls, K.; Grupp, H. Technology foresight using a Delphi approach: A Japanese-German co-operation. RD Manag. 1994, 24, 141–153. [Google Scholar] [CrossRef]
- Dawood, K.A.; Sharif, K.Y.; Ghani, A.A.; Zulzalil, H.; Zaidan, A.A.; Zaidan, B.B. Towards a unified criteria model for usability evaluation in the context of open source software based on a fuzzy Delphi method. Inf. Softw. Technol. 2021, 130, 15. [Google Scholar] [CrossRef]
- Alharbi, M.G.; Khalifa, H.A. Enhanced Fuzzy Delphi Method in Forecasting and Decision-Making. Adv. Fuzzy Syst. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Salais-Fierro, T.E.; Saucedo-Martinez, J.A.; Rodriguez-Aguilar, R.; Vela-Haro, J.M. Demand Prediction Using a Soft-Computing Approach: A Case Study of Automotive Industry. Appl. Sci. 2020, 10, 829. [Google Scholar] [CrossRef]
- Stilic, A.; Puska, E.; Puska, A.; Bozanic, D. An Expert-Opinion-Based Evaluation Framework for Sustainable Technology-Enhanced Learning Using Z-Numbers and Fuzzy Logarithm Methodology of Additive Weights. Sustainability 2023, 15, 12253. [Google Scholar] [CrossRef]
- Wang, K.; Ying, Z.; Goswami, S.S.; Yin, Y.; Zhao, Y. Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment. Sustainability 2023, 15, 11848. [Google Scholar] [CrossRef]
- Suominen, A.; Hajikhani, A.; Ahola, A.; Kurogi, Y.; Urashima, K. A quantitative and qualitative approach on the evaluation of technological pathways: A comparative national-scale Delphi study. Futures 2022, 140, 102967. [Google Scholar] [CrossRef]
- Winebrake, J.J.; Creswick, B.P. The future of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process. Technol. Forecast. Soc. Chang. 2003, 70, 359–384. [Google Scholar] [CrossRef]
- Banuls, V.A.; Salmeron, J.L. A Scenario-Based Assessment Model—SBAM. Technol. Forecast. Soc. Chang. 2007, 74, 750–762. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.D.; Ren, H.T.; Xu, L. Scenario-based DEA assessment of energy-saving technological combinations in aluminum industry. J. Clean. Prod. 2020, 260, 11. [Google Scholar] [CrossRef]
- Hussain, A.; Perwez, U.; Ullah, K.; Kim, C.H.; Asghar, N. Long-term scenario pathways to assess the potential of best available technologies and cost reduction of avoided carbon emissions in an existing 100% renewable regional power system: A case study of Gilgit-Baltistan (GB), Pakistan. Energy 2021, 221, 14. [Google Scholar] [CrossRef]
- Gómez-Sanabria, A.; Zusman, E.; Höglund-Isaksson, L.; Klimont, Z.; Lee, S.Y.; Akahoshi, K.; Farzaneh, H.; Chairunnisa. Sustainable wastewater management in Indonesia’s fish processing industry: Bringing governance into scenario analysis. J. Environ. Manag. 2020, 275, 9. [Google Scholar] [CrossRef]
- de Gelder, E.; Hof, J.; Cator, E.; Paardekooper, J.P.; Op den Camp, O.; Ploeg, J.; de Schutter, B. Scenario Parameter Generation Method and Scenario Representativeness Metric for Scenario-Based Assessment of Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18794–18807. [Google Scholar] [CrossRef]
- Ghazinoory, S.; Saghafi, F.; Kousari, S. Ex-post evaluation of scenarios: The case of nanotechnology societal impacts. Qual. Quant. 2016, 50, 1349–1365. [Google Scholar] [CrossRef]
- Kanama, D. A Japanese experience of a mission-oriented multi-methodology technology foresight process: An empirical trial of a new technology foresight process by integration of the Delphi method and scenario writing. Int. J. Technol. Intell. Plan. 2010, 6, 253–267. [Google Scholar] [CrossRef]
- Lough, W.T.; White, K.P., Jr. A technology assessment methodology for electric utility planning in the United States. Technol. Forecast. Soc. Chang. 1988, 34, 53–67. [Google Scholar] [CrossRef]
- Nguyen, N.T.; LobetMaris, C.; Berleur, J.; Kusters, B. Methodological issues in information technology assessment. Int. J. Technol. Manag. 1996, 11, 566–580. [Google Scholar]
- Berg, M.; Chen, K.; Zissis, G. A value-oriented policy generation methodology for technology assessment. Technol. Forecast. Soc. Chang. 1976, 8, 401–420. [Google Scholar] [CrossRef]
- McDonald, A.; Schrattenholzer, L. Learning curves and technology assessment. Int. J. Technol. Manag. 2002, 23, 718–745. [Google Scholar] [CrossRef]
- Liang, H.; Ren, J.; Lin, R.; Liu, Y. Alternative-fuel based vehicles for sustainable transportation: A fuzzy group decision supporting framework for sustainability prioritization. Technol. Forecast. Soc. Chang. 2019, 140, 33–43. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Qorbani, A.R.; Daim, T. Providing a framework for selecting the appropriate method of technology acquisition considering uncertainty in hierarchical group decision-making: Case Study: Interactive television technology. Technol. Forecast. Soc. Chang. 2021, 168, 20. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Zhang, N.; Zhang, C.H.; Su, W.H.; Carlos, L.A. Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment. Technol. Forecast. Soc. Chang. 2022, 175, 19. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Raafat, R.; Qorbani, A.R.; Daim, T. An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technol. Forecast. Soc. Chang. 2021, 173, 15. [Google Scholar] [CrossRef]
- Lizarralde, R.; Ganzarain, J. A Multicriteria Decision Model for the Evaluation and Selection of Technologies in a R&D Centre. Int. J. Prod. Manag. Eng. 2019, 7, 101–106. [Google Scholar] [CrossRef]
- Huang, X.; Zhan, J.; Sun, B. A three-way decision method with pre-order relations. Inf. Sci. 2022, 595, 231–256. [Google Scholar] [CrossRef]
- Du, Y.-W.; Zhong, J.-J. Dynamic multicriteria group decision-making method with automatic reliability and weight calculation. Inf. Sci. 2023, 634, 400–422. [Google Scholar] [CrossRef]
- Kamble, S.J.; Singh, A.; Kharat, M.G. Life cycle analysis and sustainability assessment of advanced wastewater treatment technologies. World J. Sci. Technol. Sustain. Dev. 2018, 15, 169–185. [Google Scholar] [CrossRef]
- Gill, A.Q.; Bunker, D. Towards the development of a cloud-based communication technologies assessment tool: An analysis of practitioners’ perspectives. Vine 2013, 43, 57–77. [Google Scholar] [CrossRef]
- Melchiorsen, P.M. Bibliometric differences—A case study in bibliometric evaluation across SSH and STEM. J. Doc. 2019, 75, 366–378. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Chen, Y.; Wang, Z.Q.; Wang, K.; Song, K. A Novel Metric for Assessing National Strength in Scientific Research: Understanding China’s Research Output in Quantum Technology through Collaboration. J. Data Inf. Sci. 2022, 7, 39–60. [Google Scholar] [CrossRef]
- Almufarreh, A.; Arshad, M. Promising Emerging Technologies for Teaching and Learning: Recent Developments and Future Challenges. Sustainability 2023, 15, 6917. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.T.; Liang, H.G. A Bibliometric Analysis of Enterprise Social Media in Digital Economy: Research Hotspots and Trends. Sustainability 2023, 15, 12545. [Google Scholar] [CrossRef]
- Park, I.; Yoon, B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network. J. Informetr. 2018, 12, 1199–1222. [Google Scholar] [CrossRef]
- Carpenter, M.P.; Narin, F.; Woolf, P. Citation rates to technologically important patents. World Pat. Inf. 1981, 3, 160–163. [Google Scholar] [CrossRef]
- Carpenter, M.P.; Cooper, M.; Narin, F. Linkage between basic research literature and patents. Res. Manag. 1980, 23, 30–35. [Google Scholar] [CrossRef]
- Narin, F.; Noma, E. Is technology becoming science? Scientometrics 1985, 7, 369–381. [Google Scholar] [CrossRef]
- Narin, F.; Hamilton, K.S.; Olivastro, D. The increasing linkage between US technology and public science. In Proceedings of the 22nd AAAS Science and Technology Policy Colloquium, Washington, DC, USA, 23–25 April 1997; American Association for the Advancement of Science: Washington, DC, USA, 1997; pp. 101–121. [Google Scholar]
- Chen, L.X. Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations. J. Informetr. 2017, 11, 63–79. [Google Scholar] [CrossRef]
- Zogala-Siudem, B.; Cena, A.; Siudem, G.; Gagolewski, M. Interpretable reparameterisations of citation models. J. Informetr. 2023, 17, 11. [Google Scholar] [CrossRef]
- van Raan Anthony, F.J. Patent Citations Analysis and Its Value in Research Evaluation: A Review and a New Approach to Map Technology-relevant Research. J. Data Inf. Sci. 2017, 2, 13–50. [Google Scholar] [CrossRef]
- Hammarfelt, B. Linking science to technology: The “patent paper citation” and the rise of patentometrics in the 1980s. J. Doc. 2021, 77, 1413–1429. [Google Scholar] [CrossRef]
- Venugopalan, S.; Rai, V. Topic based classification and pattern identification in patents. Technol. Forecast. Soc. Chang. 2015, 94, 236–250. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Chang, S.B.; Lai, K.K.; Chang, S.M. Exploring technology diffusion and classification of business methods: Using the patent citation network. Technol. Forecast. Soc. Chang. 2009, 76, 107–117. [Google Scholar] [CrossRef]
- Lee, P.C.; Su, H.N.; Wu, F.S. Quantitative mapping of patented technology—The case of electrical conducting polymer nanocomposite. Technol. Forecast. Soc. Chang. 2010, 77, 466–478. [Google Scholar] [CrossRef]
- Gutiérrez-Salcedo, M.; Martínez, M.A.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some bibliometric procedures for analyzing and evaluating research fields. Appl. Intell. 2018, 48, 1275–1287. [Google Scholar] [CrossRef]
- Acosta, M.; Coronado, D. Science-technology flows in Spanish regions—An analysis of scientific citations in patents. Res. Policy 2003, 32, 1783–1803. [Google Scholar] [CrossRef]
- Hall, B.H.; Jaffe, A.; Trajtenberg, M. Market value and patent citations. Rand J. Econ. 2005, 36, 16–38. [Google Scholar]
- Stuart, T.E.; Podolny, J.M. Local search and the evolution of technological capabilities. Strateg. Manag. J. 1996, 17, 21–38. [Google Scholar] [CrossRef]
- Brass, D.J.; Burkhardt, M.E. Centrality and Power in Organizations. In Proceedings of the Conference on Networks and Organizations: Structure, Form and Action, Boston, MA, USA, 1990; Harvard Business School Press: Boston, MA, USA, 1992; pp. 198–213. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:A1992BX72H00008 (accessed on 9 November 2023).
- Brooks, B.A. The Strength of Weak Ties. Nurse Lead. 2019, 17, 90–92. [Google Scholar] [CrossRef]
- Xiang, M.; Fu, D.; Lv, K. Identifying and Predicting Trends of Disruptive Technologies: An Empirical Study Based on Text Mining and Time Series Forecasting. Sustainability 2023, 15, 5412. [Google Scholar] [CrossRef]
… | … | |||||
- | … | … | ||||
- | … | … | ||||
… | … | … | - | … | … | … |
… | - | … | ||||
… | … | … | … | … | - | … |
… | … | - |
Technology | 2G | 3G | 4G | 5G | 6G |
Volume of Papers | 5152 | 7967 | 7866 | 33,050 | 5281 |
Technology | 2G | 3G | 4G | 5G | 6G |
Accuracy | 0.9867 | 0.9367 | 0.9960 | 0.9767 | 0.9965 |
2G | 3G | 4G | 5G | 6G | |
2G | - | 417 | 231 | 259 | 6 |
3G | 451 | - | 742 | 730 | 24 |
4G | 403 | 1427 | - | 4132 | 110 |
5G | 739 | 2271 | 13,729 | - | 2159 |
6G | 17 | 54 | 525 | 5819 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Cai, M.; Xiao, Y. A Cross-Citation-Based Model for Technological Advancement Assessment: Methodology and Application. Sustainability 2024, 16, 435. https://doi.org/10.3390/su16010435
Tang S, Cai M, Xiao Y. A Cross-Citation-Based Model for Technological Advancement Assessment: Methodology and Application. Sustainability. 2024; 16(1):435. https://doi.org/10.3390/su16010435
Chicago/Turabian StyleTang, Shengxuan, Ming Cai, and Yao Xiao. 2024. "A Cross-Citation-Based Model for Technological Advancement Assessment: Methodology and Application" Sustainability 16, no. 1: 435. https://doi.org/10.3390/su16010435
APA StyleTang, S., Cai, M., & Xiao, Y. (2024). A Cross-Citation-Based Model for Technological Advancement Assessment: Methodology and Application. Sustainability, 16(1), 435. https://doi.org/10.3390/su16010435