The Impact of Sugarcane By-Product Exports on Income Inequality: How Sustainable Is This Relationship?
Abstract
:1. Introduction
2. Theoretical Background
2.1. Income Inequality
2.2. International Trade and Inequality
2.3. Income Convergence
3. Data and Methodology
3.1. Methodology
3.2. Data
3.2.1. Descriptive Statistics
3.2.2. Econometric Specification
4. Results
4.1. Robustness Check
4.2. Robustness Check 2
4.3. Time Lag Analyses
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. List of the Analyzed Municipalities of Goiás, Classified According to the Level of GDP per Capita
Municipality | Classification According to the Gdp Per Capita | Municipality | Classification According to the Gdp Per Capita |
---|---|---|---|
Acreuna | High | Abadia De Goias | Low |
Água Fria De Goias | High | Abadiania | Low |
Alexania | High | Águas Lindas De Goias | Low |
Alto Horizonte | High | Alto Paraiso De Goias | Low |
Anapolis | High | Americano Do Brasil | Low |
Anicuns | High | Aparecida De Goiania | Low |
Bela Vista De Goias | High | Aruanã | Low |
Bom Jesus De Goias | High | Barro Alto | Low |
Cachoeira Alta | High | Bonfinopolis | Low |
Caçu | High | Brazabrantes | Low |
Caldas Novas | High | Britania | Low |
Campo Alegre De Goias | High | Campos Verdes | Low |
Carmo Do Rio Verde | High | Cidade Ocidental | Low |
Castelândia | High | Faina | Low |
Catalão | High | Formosa | Low |
Cezarina | High | Goianésia | Low |
Chapadão Do Ceu | High | Goianira | Low |
Corumbaíba | High | Goiás | Low |
Cristalina | High | Guarani De Goias | Low |
Crixás | High | Inhumas | Low |
Edéia | High | Iporá | Low |
Goiania | High | Itaguaru | Low |
Goiatuba | High | Itapirapuã | Low |
Gouvelandia | High | Itapuranga | Low |
Hidrolandia | High | Jaraguá | Low |
Ipameri | High | Luziânia | Low |
Itaberaí | High | Mara Rosa | Low |
Itarumã | High | Montividiu Do Norte | Low |
Jataí | High | Nazário | Low |
Minaçu | High | Nova Roma | Low |
Mineiros | High | Pilar De Goiás | Low |
Montividiu | High | Pirenópolis | Low |
Morrinhos | High | Pires Do Rio | Low |
Mozarlândia | High | Planaltina | Low |
Nerópolis | High | Pontalina | Low |
Niquelândia | High | Porangatu | Low |
Orizona | High | Posse | Low |
Ouvidor | High | Rubiataba | Low |
Palmeiras De Goiás | High | Sanclerlândia | Low |
Quirinópolis | High | Santa Bárbara De Goiás | Low |
Rio Verde | High | Santa Helena De Goiás | Low |
São Luís De Montes Belos | High | Santa Rita Do Novo Destino | Low |
São Simão | High | Santa Terezinha De Goiás | Low |
Silvânia | High | Santo Antonio De Goiás | Low |
Vicentinópolis | High | São Domingos | Low |
Vila Boa | High | São Luiz Do Norte | Low |
Senador Canedo | Low | ||
Taquaral De Goiás | Low | ||
Terezópolis De Goiás | Low | ||
Trindade | Low | ||
Uruaçu | Low | ||
Valparaíso De Goiás | Low |
Appendix B. Scatter Plot of Sugarcane by-Product Export and GDP per Capita
Appendix C
Appendix D. Time Lag Regression—GDP per Capita
Developed | Developing | |
---|---|---|
Variable | GDP per Capita | GDP per Capita |
International Trade L1 | −0.138 *** | 0.232 |
(0.0486) | (0.262) | |
Sugarcane Exports L1 | 0.405 | 0.662 |
(0.571) | (0.582) | |
EAP | −1.229 | −0.188 |
(1.177) | (0.462) | |
Area | 17.76 | 2.644 |
(11.11) | (1.623) | |
Constant | −109.2 | −6.687 |
(81.76) | (11.68) | |
Observations | 413 | 468 |
R2 | 0.560 | 0.752 |
Number of Municipalities | 46 | 52 |
Appendix E. Time Lag Regression—Disaggregated Average Income
Developed | Developing | Developed | Developing | Developed | Developing | Developed | Developing | |
---|---|---|---|---|---|---|---|---|
Variable | (1) Industry | (2) Industry | (3) Commerce | (4) Commerce | (5) Service | (6) Service | (7) Agriculture | (8) Agriculture |
International Trade L1 | 0.201 *** | −0.0750 | 0.0984 | −0.0283 | 0.0848 | −0.0845 | −0.000982 | 0.0556 |
(0.0530) | (0.202) | (0.170) | (0.0251) | (0.0627) | (0.103) | (0.0221) | (0.0361) | |
Sugarcane Exports L1 | 0.264 | −0.0914 | 0.265 * | −0.665 ** | −0.220 | −0.151 | −1.512 | |
(0.217) | (0.306) | (0.135) | (0.297) | (0.293) | (0.220) | (3.776) | ||
EAP | 1.211 ** | 0.0488 | 0.133 | −0.0930 | 0.427 | −0.429 * | −0.261 | −0.276 ** |
(0.510) | (0.228) | (0.436) | (0.150) | (0.352) | (0.223) | (0.300) | (0.108) | |
Area | 0.626 | 2.810 | −0.950 | 3.266 ** | −12.02 ** | −0.0258 | −10.85 | 2.022 *** |
(0.880) | (2.992) | (1.774) | (1.544) | (4.796) | (1.483) | (9.836) | (0.594) | |
Constant | −9.376 | −12.90 | 12.33 | −14.88 | 88.18 ** | 11.14 | 92.13 | −4.110 |
(7.481) | (20.34) | (14.56) | (10.23) | (32.79) | (10.12) | (74.22) | (4.008) | |
Observations | 396 | 447 | 359 | 522 | 349 | 532 | 341 | 540 |
R2 | 0.571 | 0.744 | 0.860 | 0.916 | 0.631 | 0.833 | 0.890 | 0.919 |
Number of Municipalities | 46 | 50 | 40 | 58 | 39 | 60 | 38 | 60 |
References
- UNITED NATIONS (UN). Development Issues Nº 1: Concepts of Inequality. 2015. Available online: https://www.un.org/development/desa/dpad/publication/no-1-concepts-of-inequality/ (accessed on 20 February 2024).
- Dabla-Norris, E.; Kochhar, K.; Suphaphiphat, N.; Ricka, F.; Tsounta, E. Causes and Consequences of Income Inequality: A Global Perspective; IMF Staff Discussion Note SDN/15/13; International Monetary Fund: Washington, DC, USA, 2015. [Google Scholar]
- Stiglitz, J.E. The Price of Inequality: How Today’s Divided Society Endangers Our Future; W. W. Norton: New York, NY, USA, 2012. [Google Scholar]
- FAOSTAT Food Balance Sheets. 2020. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 24 April 2020).
- UNICA—Área e Produção. Available online: https://unicadata.com.br/listagem.php?idMn=4 (accessed on 1 February 2024).
- Hsiao, C. Analysis of Panel Data (Econometric Society Monographs), 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Rassekh, F. Is International Trade More Beneficial to Lower Income Economies? An Empirical Inquiry. Rev. Dev. Econ. 2007, 11, 159–169. [Google Scholar] [CrossRef]
- Frankel, J.A.; Romer, D.H. Does Trade Cause Growth? Am. Econ. Rev. 1999, 89, 379–399. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lin, S.-C. Trade and Growth at Different Stages of Economic Development. J. Dev. Stud. 2009, 45, 1211–1224. [Google Scholar] [CrossRef]
- Kim, D.-H. Trade, growth and income. J. Int. Trade Econ. Dev. 2011, 20, 677–709. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J. Does Trade Cause Fear of Appreciation? Int. Rev. Econ. Financ. 2022, 78, 68–80. [Google Scholar] [CrossRef]
- Sulle, E.; Dancer, H. Gender, Politics and Sugarcane Commercialisation in Tanzania. J. Peasant. Stud. 2020, 47, 973–992. [Google Scholar] [CrossRef]
- Piketty, T. Capital in the Twenty-First Century; Harvard University Press: Cambridge, UK, 2014. [Google Scholar]
- Garrett, R.D.; Rausch, L.L. Green for gold: Social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant. Stud. 2016, 43, 461–493. [Google Scholar] [CrossRef]
- Aguilar-Rivera, N. Bioindicators for the Sustainability of Sugar Agro-Industry. Sugar Tech. 2022, 24, 651–661. [Google Scholar] [CrossRef]
- Arbache, J.S.; Dickerson, A.; Green, F. Trade Liberalisation and Wages in Developing Countries. Econ. J. 2004, 114, F73–F96. [Google Scholar] [CrossRef]
- Attanasio, O.; Goldberg, P.K.; Pavcnik, N. Trade reforms and wage inequality in Colombia. J. Dev. Econ. 2004, 74, 331–366. [Google Scholar] [CrossRef]
- Goldberg, P.K.; Pavcnik, N. Distributional Effects of Globalization in Developing Countries. J. Econ. Lit. 2007, 45, 39–82. [Google Scholar] [CrossRef]
- Stolper, W.; Samuelson, P.A. Protection and Real Wages. Rev. Econ. Stud. 1941, 9, 58–73. [Google Scholar] [CrossRef]
- Sachs, J.D.; Shatz, H.J.U.S. Trade with Developing Countries and Wage Inequality. Am. Econ. Rev. 1996, 86, 234–239. [Google Scholar]
- Klein, M.W.; Moser, C.; Urban, D.M. Exporting, skills and wage inequality. Labour Econ. 2013, 25, 76–85. [Google Scholar] [CrossRef]
- Borrs, L.; Knauth, F. Trade, technology, and the channels of wage inequality. Eur. Econ. Rev. 2021, 131, 103607. [Google Scholar] [CrossRef]
- Egger, H.; Egger, P.; Kreickemeier, U. Trade, wages, and profits. Eur. Econ. Rev. 2013, 64, 332–350. [Google Scholar] [CrossRef]
- Asteriou, D.; Dimelis, S.; Moudatsou, A. Globalization and income inequality: A panel data econometric approach for the EU27 countries. Econ. Model. 2014, 36, 592–599. [Google Scholar] [CrossRef]
- Zhu, S.C.; Trefler, D. Trade and inequality in developing countries: A general equilibrium analysis. J. Int. Econ. 2005, 65, 21–48. [Google Scholar] [CrossRef]
- Lin, F.; Fu, D. Trade, Institution Quality and Income Inequality. World Dev. 2016, 77, 129–142. [Google Scholar] [CrossRef]
- Green, F.; Dickerson, A.; Arbache, J.S. A Picture of Wage Inequality and the Allocation of Labor Through a Period of Trade Liberalization: The Case of Brazil. World Dev. 2001, 29, 1923–1939. [Google Scholar] [CrossRef]
- Castilho, M.; Menéndez, M.; Sztulman, A. Trade Liberalization, Inequality, and Poverty in Brazilian States. World Dev. 2012, 40, 821–835. [Google Scholar] [CrossRef]
- Robbins, D.; Gindling, T.H. Trade Liberalization and the Relative Wages for More-Skilled Workers in Costa Rica. Rev. Dev. Econ. 1999, 3, 140–154. [Google Scholar] [CrossRef]
- Han, J.; Liu, R.; Zhang, J. Globalization and wage inequality: Evidence from urban China. J. Int. Econ. 2012, 87, 288–297. [Google Scholar] [CrossRef]
- Murakami, Y. Trade liberalization and wage inequality: Evidence from Chile. J. Int. Trade Econ. Dev. 2021, 30, 407–438. [Google Scholar] [CrossRef]
- Martorano, B.; Sanfilippo, M. Structural Change and Wage Inequality in the Manufacturing Sector: Long Run Evidence from East Asia. Oxf. Dev. Stud. 2015, 43, 212–231. [Google Scholar] [CrossRef]
- Pavcnik, N. Trade Liberalization and Industry Wage Structure: Evidence from Brazil. World Bank Econ. Rev. 2004, 18, 319–344. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Agricultural Production Statistics 2020–2021—FAOSTATS Analytical Brief 60. Available online: https://www.fao.org/3/cc3751en/cc3751en.pdf (accessed on 18 April 2024).
- Batidzirai, B.; Johnson, F.X. Energy Security, Agroindustrial Development, and International Trade: E Case of Sugarcane in South Africa. In Socioeconomic and Environmental Impacts of Biofuels; Gasparatos, A., Stromberg, P., Eds.; Evidence from Developing Nations: Cambridge, UK, 2012. [Google Scholar]
- Machado, R.L.; da Cruz, T.V. An Empirical Approach Analyzing the Socioeconomic Sustainability of the International Sugarcane Trade. Sustainability 2022, 14, 2198. [Google Scholar] [CrossRef]
- Qin, Z.-L. Effects of market liberalization on income from sugarcane farming in Guangxi, China. Sugar Tech. 2005, 7, 25–31. [Google Scholar] [CrossRef]
- Ben-David, D. Trade and convergence among countries. J. Int. Econ. 1996, 40, 279–298. [Google Scholar] [CrossRef]
- Jayanthakumaran, K.; Verma, R. International Trade and Regional Income Convergence. ASEAN Econ. Bul-Letin 2008, 25, 179–194. [Google Scholar] [CrossRef]
- Taylor, M.S.; Grossman, G.M.; Helpman, E. Innovation and Growth in the Global Economy. Economica 1991, 60, 373. [Google Scholar] [CrossRef]
- Cyrus, T. Does convergence cause trade, or does trade cause convergence? J. Int. Trade Econ. Dev. 2004, 13, 397–418. [Google Scholar] [CrossRef]
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Ben-David, D.; Kimhi, A. Trade and the rate of income convergence. J. Int. Trade Econ. Dev. 2004, 13, 419–441. [Google Scholar] [CrossRef]
- Slaughter, M.J. Per Capita Income Convergence and the Role of International Trade. Am. Econ. Rev. 1997, 87, 194–199. [Google Scholar]
- Harrison, A. Openness and growth: A time-series, cross-country analysis for developing countries. J. Dev. Econ. 1996, 48, 419–447. [Google Scholar] [CrossRef]
- Lee, J. Convergence Success and the Middle-Income Trap. Dev. Econ. 2020, 58, 30–62. [Google Scholar] [CrossRef]
- Lohani, K.K. Trade and Convergence: Empirical Evidence from BRICS Countries. Glob. Bus. Rev. 2021. [Google Scholar] [CrossRef]
- Figini, P.; Görg, H. Does Foreign Direct Investment Affect Wage Inequality? An Empirical Investigation. World Econ. 2011, 34, 1455–1475. [Google Scholar] [CrossRef]
- MAURO BORGES INSTITUTE (IMB) Socioeconomic Profile of The Municipalities of Goianos. Available online: https://www.imb.go.gov.br/index.php?option=com_content&view=article&id=14&Itemid=218 (accessed on 14 September 2021).
- Ministry of Economics. Export and Import Municipalities. Available online: http://comexstat.mdic.gov.br/pt/municipio (accessed on 14 February 2024).
- Brazilian Institute of Geography and Statistics (IBGE). Brazilian Census 2010; IBGE: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Rodriguez, F.; Rodrik, D. Trade Policy and Economic Growth: A Skeptic’s Guide to the Cross-National Evidence. In NBER Macroeconomic Annual 2000; Bernanke, B., Rogoff, K., Eds.; The MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
DEVELOPED MUNICIPALITIES | ||||||
---|---|---|---|---|---|---|
Variable | Unit | Observations | Mean | Standard Deviation | Min | Max |
GDP per capita | US$ | 460 | 20,533.48 | 14,516.16 | 6297.20 | 100,667.24 |
International Trade | Decimal | 459 | 0.1458011 | 0.4328853 | 0 | 4.53525 |
EAP | Number | 414 | 51,185 | 162,991 | 2829 | 1,175,556.00 |
Municipality Area | Km2 | 460 | 2393.661 | 2307.859 | 204.22 | 9843.25 |
Sugarcane Export | Decimal | 460 | 0.012922 | 0.0495834 | 0 | 0.4458368 |
DEVELOPING MUNICIPALITIES | ||||||
Variable | Unit | Observations | Mean | Standard Deviation | Min | Max |
GDP per capita | US$ | 520 | 8806.56 | 5535.16 | 609.76 | 49,826.77 |
International Trade | Decimal | 520 | 0.0394716 | 0.1561163 | 0 | 1.947047 |
EAP | Number | 468 | 31,376 | 57,579 | 2111 | 414,504 |
Municipality Area | Km2 | 520 | 1318.473 | 1250.231 | 60.95 | 5813.64 |
Sugarcane Export | Decimal | 520 | 0.0011807 | 0.0090288 | 0 | 0.1080639 |
(1) | (2) | |
---|---|---|
Developed | Developing | |
Variable | GDP per Capita | GDP per Capita |
International Trade | −0.145 ** | 0.369 |
(0.0645) | (0.342) | |
Sugarcane Exports | 0.0778 | 0.993 |
(0.536) | (0.673) | |
EAP | −1.264 | −0.183 |
(1.200) | (0.449) | |
Area | 18.01 | 2.546 |
(11.13) | (1.586) | |
Constant | −110.7 | −6.087 |
(81.76) | (11.36) | |
Observation | 413 | 468 |
R2 | 0.563 | 0.760 |
Number of Municipalities | 46 | 52 |
(1) | (2) | |
---|---|---|
Developed | Developing | |
Variable | Average Income | Average Income |
International Trade | −0.0196 | 0.217 |
(0.0302) | (0.173) | |
Sugarcane Exports | 0.156 | |
(0.246) | ||
EAP | −0.457 | −0.00106 |
(0.375) | (0.199) | |
Area | −0.00117 | 2.909 |
(1.147) | (3.599) | |
Constant | 11.65 | −13.20 |
(7.730) | (24.21) | |
Observation | 484 | 397 |
R2 | 0.893 | 0.886 |
Number of Municipalities | 54 | 44 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variable | Developed Industry | Developing Industry | Developed Commerce | Developing Commerce | Developed Services | Developing Services | Developed Agriculture | Developing Agriculture |
International Trade | 0.198 *** | 0.386 ** | 0.195 | −0.0169 | −0.0361 | −0.0111 | −0.0139 | 0.0591 ** |
(0.0477) | (0.163) | (0.173) | (0.0332) | (0.0313) | (0.0928) | (0.0213) | (0.0228) | |
Sugarcane Exports | 0.539 | 0.0845 | 0.158 | 0.315 | −1.290 | 0.144 | −14.81 *** | |
(0.497) | (0.411) | (0.174) | (0.260) | (0.777) | (0.218) | (3.130) | ||
EAP | 1.212 ** | 0.0872 | 0.137 | −0.0940 | 0.517 | −0.411 ** | −0.245 | −0.274 ** |
(0.515) | (0.225) | (0.430) | (0.146) | (0.433) | (0.201) | (0.308) | (0.105) | |
Area | 0.628 | 2.144 | −0.887 | 3.261 ** | −12.01 ** | −0.0395 | −10.79 | 2.019 *** |
(0.772) | (3.036) | (1.835) | (1.551) | (4.799) | (1.469) | (10.06) | (0.598) | |
Constant | −9.405 | −8.765 | 11.82 | −14.84 | 87.27 ** | 11.05 | 91.52 | −4.110 |
(6.809) | (20.71) | (15.01) | (10.26) | (32.45) | (10.04) | (75.95) | (4.035) | |
Observation | 396 | 447 | 359 | 522 | 349 | 532 | 341 | 540 |
R2 | 0.576 | 0.749 | 0.861 | 0.916 | 0.624 | 0.833 | 0.890 | 0.919 |
Number of Municipalities | 46 | 50 | 40 | 58 | 38 | 60 | 38 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Cruz, T.V.; Machado, R.L. The Impact of Sugarcane By-Product Exports on Income Inequality: How Sustainable Is This Relationship? Sustainability 2024, 16, 3966. https://doi.org/10.3390/su16103966
Da Cruz TV, Machado RL. The Impact of Sugarcane By-Product Exports on Income Inequality: How Sustainable Is This Relationship? Sustainability. 2024; 16(10):3966. https://doi.org/10.3390/su16103966
Chicago/Turabian StyleDa Cruz, Thiago Vizine, and Ricardo Luiz Machado. 2024. "The Impact of Sugarcane By-Product Exports on Income Inequality: How Sustainable Is This Relationship?" Sustainability 16, no. 10: 3966. https://doi.org/10.3390/su16103966
APA StyleDa Cruz, T. V., & Machado, R. L. (2024). The Impact of Sugarcane By-Product Exports on Income Inequality: How Sustainable Is This Relationship? Sustainability, 16(10), 3966. https://doi.org/10.3390/su16103966