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Abstract: Over the years, building appliances have become the major energy consumers to improve
indoor air quality and occupants’ lifestyles. The primary energy usage in building sectors, particularly
lighting, Heating, Ventilation, and Air conditioning (HVAC) equipment, is expected to double in the
upcoming years due to inappropriate control operation activities. Recently, several researchers have
provided an automated solution to turn HVAC and lighting on when the space is being occupied and
off when the space becomes vacant. Previous studies indicate a lack of publicly accessible datasets
for environmental sensing and suggest developing holistic models that detect buildings’ occupancy.
Additionally, the reliability of their solutions tends to decrease as the occupancy grows in a building.
Therefore, this study proposed a machine learning-based framework for smart building occupancy
detection that considered the lighting parameter in addition to the HVAC parameter used in the
existing studies. We employed a parametric classifier to ensure a strong correlation between the
predicting parameters and the occupancy prediction model. This study uses a machine learning
model that combines direct and environmental sensing techniques to obtain high-quality training
data. The analysis of the experimental results shows high accuracy, precision, recall, and F1-score of
the applied RF model (0.86, 0.99, 1.0, and 0.88 respectively) for occupancy prediction and substantial
energy saving.

Keywords: Internet of Things; machine learning; occupancy prediction; energy saving

1. Introduction

Energy is an essential attribute that contributes to the sustainability of building sec-
tors [1]. Currently, buildings account for a high percentage of global energy consumption
with an expectation to double in upcoming years due to the increase in the deployment
of electrical appliances [1]. The bulk of energy used in buildings to produce a healthy
and comfortable environment requires more energy generation, which has a great impact
on the well-being of our environment. Authors in [2] showed a major turning point that
is intimately tied to the Asian region’s continuous population growth as well as the in-
creasing building sector. According to a similar study, attempts made by the government
to enhance the psychological well-being and lifestyle of its people have been somewhat
countered by a significant increase in energy magnitude, which has increased the use of
energy. The efforts to improve the supply that meets energy requirements for more than
1.3 billion individuals and numerous industries have been commended, according to a
recent report [1]. The continuous installation of energy-intensive appliances such as HVAC
(Heating, Ventilation, and Air Conditioning) systems, televisions, ovens, hair dryers, etc.,
has increased abnormally in the last few years. Through the years, several researchers have
improved energy conservation via different methodologies by utilizing historic energy
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usage data. More energy savings are possible due to emerging smart grid approaches,
which help balance energy usage, demand, and production throughout various sectors.
As a result, the overall growth of energy usage in the building and transportation sectors
has slowed to less than half that of the past twenty years. In the same way, the industry’s
growth in energy usage has stalled. The requirement for non-combusted energy has not
decreased despite the current advancements in technologies, especially in the industry as a
source of energy for petrochemicals.

Building occupancy prediction plays a major role in various building applications and
infrastructures such as smart buildings, indoor intrusion detection, evacuation, building
operation, and demand control applications [3]. Currently, different technologies such
as passive infrared, cameras, illumination, Wi-Fi, Bluetooth, and environmental sensing
(such as temperature, relative humidity, and CO2) are utilized in buildings to count the
number of occupants [4]. Studies show that occupancy prediction has the potential to
reduce more than 60% of unnecessary building energy consumption. With the rapid
improvement of machine learning (ML) and the advancement of computer vision, research
on building occupancy prediction via image/video is gaining momentum as reported in
several studies [3,5–9]. The research techniques mainly contain two aspects: cameras at
the room entrance and installed indoor cameras. The study in [3] configured cameras at
the indoor entrance for overhead video recording. The study utilized the ML background
subtraction (BS) technique to remove the noise in the frame or area of interest and estimate
the number of occupants based on headcount. The study in [10] uses surveillance cameras
as boundary sensors alongside the ML histogram of oriented gradient (HOG) classifier
based on the ML support vector machine (SVM) to detect occupants. In addition, the
study utilized the event-based optimization (EBO) theory to refine the estimation results.
This type of method usually uses motion detection and tracking to decide the direction of
entering or leaving rooms.

An occupancy localization study that used Plug-Mate alongside IoT technology for
occupancy-driven plug load management that employed intelligent plug load automation
to lower plug load energy usage and user strain was proposed [11]. The suggested system
infers plug load type data via a sophisticated plug load recognition feature, performs plug
load automation based on the users’ excellent-quality occupancy details gained via a non-
intrusive indoor localization system, and accommodates different patterns and customized
interfaces [11]. A similar approach employed Bluetooth Low Energy (BLE) technology that
is potentially quite helpful to pinpoint an occupant’s location by using data from beacons
placed throughout a facility [12]. The proposed system was implemented using a prototype
system consisting of BLE beacons, a mobile application, and a central server to assess BLE
as the main method of occupancy estimation in an indoor setting.

Different ML methods are widely used in building occupancy detection [13]. However,
the random forest (RF) algorithm’s broad appeal can be attributed to its versatility and
ease of use, which allow it to efficiently address challenges related to both regression and
classification which serve as a useful tool for a variety of machine learning predictions.
Additionally, its proficiency in handling complicated datasets and mitigating overfitting
is reported with solid performance even in a residential building where occupants do
not have a fixed schedule [14]. The research in [2,15] provides a comparative analysis of
building occupancy prediction using different ML methods. The results indicate that the
RF method achieves higher prediction accuracy with minimal false results. The studies
in [16,17] chose RF as a candidate model over another ML model due to its flexibility on
random data to predict room occupancy based on carbon dioxide.

Currently, research on building occupancy prediction has given more emphasis to en-
vironmental sensing using occupancy data and indoor metrological conditions to formulate
a model that triggers an event to control appliance operation [18]. Indoor environmental
quality monitoring is a holistic concept that deals with indoor air quality or thermal comfort
and is further described in [19]. Another study proposed multiplicative manufacturing
methods using a microcontroller to incorporate temperature, CO2, and relative humidity
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sensors as well as some other modules to automatically control an air conditioning system
and lighting in a residential building occupied by four people [20]. A similar study [21]
indicated the impact of energy costs on user comfort, health, and safety. Research has
shown the fast acceptance of smart interior lighting in recent years for improving human
life [16]. Authors in [22] suggested the utilization of dimmable light-emitting diodes, occu-
pancy sensors, and photodetectors that use microcontroller units to control indoor lighting
requirements. These appliances have been primary research areas in recent years [23]. In-
corporating occupancy parameters in the control system can essentially enable appliances
to significantly optimize energy consumption to deal with energy waste [1]. Direct sensing
techniques using technologies such as wearable devices, cameras, or passive infrared have
become popular recently for smart energy optimization [24,25]. However, the majority of
camera-based [3,15,24] and wearable [26,27] solutions require high interaction with occu-
pants. Even though direct sensing practice has proven to be a reliable solution for complex
processing, hardware expenditure, installation feasibility, and occupancy prediction, it still
presents serious challenges, including privacy [3].

Many smart buildings today employ environmental sensing as an alternative solution
to deal with the privacy and other challenges of previous occupancy prediction solutions.
Environmental sensing uses environmental parameters such as changes in CO2, tempera-
ture, or humidity to predict building occupancy. A previous study [2] indicated the lack of
a publicly accessible dataset for environmental sensing and suggested a technique in which
a high-quality dataset can be generated to develop a holistic model that performs solid
occupancy prediction, which in turn can be used to reduce HVAC energy consumption.
Furthermore, the previous experimental studies indicated that lighting appliances, among
the major building energy consumers, limited their solution to only HVAC systems. Addi-
tionally, the reliability of their solutions tends to weaken when more than seven occupants
are present. Therefore, this study explored and analyzed current approaches for smart
building occupancy prediction to improve the quality of occupancy-related datasets that
are used for training purposes through the use of a multimodal data fusion approach
within the smart home ecosystem. Previous research employed interactive learning to label
occupant numbers during data collection [2,14,28,29]. However, the proposed data fusion
approach uses a parametric classifier to ensure a strong correlation between the predictor
(room occupancy) and predicting parameters (occupancy-related data in the room), verify
the quality of occupancy-related data, and filter noisy measurements from sensors without
being overly invasive using rule-based decisions. In addition, a lighting control parameter
is incorporated together with HVAC system control, unlike current studies [29,30]. A
random forest was used to handle the occupancy prediction tasks (other ML algorithms
could be integrated) to balance HVAC energy usage with thermal comfort. The occupancy
prediction performance results were measured using different evaluation metrics against
the baseline design [31]. The thermal perception of the occupancy was analyzed based
on on-site interviews with occupants on their experiences of thermal comfort in different
temperature settings based on designed questionnaires for participants of different nation-
alities. The findings demonstrate that a satisfactory comfort level and up to 45% energy
savings can be achieved when the proposed controller is deployed in comparison with the
previous approach.

The major contribution of this study is to predict indoor occupancy to minimize energy
consumption and improve occupant thermal comfort with a minimally intrusive nature.
The sub-contributions of this work are as follows:

• A proposed novel multimodal framework to predict indoor occupancy with
minimal intrusion;

• Feature selection for occupancy prediction based on various occupancy-related
data collected;

• Evaluation of the prediction performance of the proposed approach using a
prototype system;
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• Simulation and evaluation of the proposed smart controller based on the indoor
thermal comfort of the occupants and energy consumption.

This paper is organized as follows: Section 2 discusses the previous research on inte-
rior occupancy recognition and prediction. The materials and methods are presented in
Section 3. Section 4 presents the findings from the occupancy recognition and assessment
models and presents the findings of energy-saving prospective simulations. Section 5 pro-
vides a study discussion and Section 6 concludes the study findings and upcoming research.

2. Related Work

This section examines the literature on smart building occupancy prediction and
smart home energy management systems. It highlights typical occupancy prediction
approaches. Recent advancements in this domain have concentrated on incorporating
features that allow occupants to take part in dataset collection for model training, track
building energy consumption, schedule or modify building energy consumption profiles,
and engage in utility communication with the grid via various allocations such as self-fault
reports and demand responses. Previous studies focused on improving and integrating
smart building technologies to enhance energy efficiency through methods such as the
multimodal strategy or fusion mechanisms. The integration can be accomplished using
various techniques, including monitoring indoor occupancy activities and occupancy
tracking through wearable devices, voice identification, and facial recognition [24]. Table 1
summarizes previous proposals for occupancy prediction approaches. These proposals can
be classified into predictive and dynamic predictive approaches.

Table 1. Summary of the existing literature.

Method Technology Used Result Reported Technological Challenge Research Challenge Opportunity Offered

Camera

[3] Optical and
infrared cameras

65% prediction
accuracy and 40%
energy saving

The object should be within a
range of 5 m in a straight line;
sensitivity; dark/night
scene limitation.

Prone to overlap/being
covered by an obstacle; no
feature extraction
or classification.

- The model can be simply
improved to recognize
human occupancy through
their indoor behavior
or activities.
- Availability of datasets for
research communities.

[32] Camera and
door counter

85% prediction
accuracy and 30%
energy saving

An object should be within
an area of interest (5 m max);
poor quality in
dark/night scenes.

Losing track of an
occupant when exiting in a
different entry; occupants
overlap partly (pixels
features analysis
with GNB).

- Support sensor fusion
mechanism for multimodal
data collection.
- The number of occupants
does not affect the
reliability of the model.

[33] PIR, camera
90% prediction
accuracy and 10%
energy saving

Object should be within the
area of interest; poor quality
in dark/night space even
with light on.

Required −1 min video
every 15 min interval; false
positive if the object
remains idle for both
camera and PIR.

Good choice for human
detection, availability of
the dataset, and support
for different
ML algorithms.

[29]
Camera and
environmental
sensors

Up to 79–99%
prediction accuracy
50% energy saving

- Sensor reading takes up to
15 min on average to stabilize
the room before
correct prediction.
- Privacy and computational
power challenges.

- The approach is effective
when occupancy in the
building is not more
than seven.
- Sensitive to false positive
prediction when door or
window is open.

- The approach was able to
maintain the desire for
healthy comfort when
occupants chose to balance
energy consumption with
thermal comfort.
- Can be simply integrated
with several controls.

[34]
Camera and
environmental
sensors

Up to 95%
prediction accuracy
25% energy saving

- Sensor reading takes up to
15 min on average to stabilize
the room before
correct prediction.
- Privacy and computational
power challenges.

Poor prediction
performance when
deployed in a
chemical laboratory.

The number of occupants
in the building cannot
affect the
prediction performance.

Audio processing
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Table 1. Cont.

Method Technology Used Result Reported Technological Challenge Research Challenge Opportunity Offered

[35] PIR audio sensor
50% prediction
accuracy 26%
energy saving

Affected by external noise;
occupants must be close to
the microphone; false result
in the absence of speech.

High false positive rate
when occupant number
tends to grow; 25 s of
continuous speech is
required; false result from
PIR when idle for a max of
30 min.

- Less computational
resources are required
compared with the
camera approach.
- Suitable for both
residential and
commercial buildings.

[36] PIR audio sensor
Prediction accuracy
improves by 12% and
energy saving by 3.4%

Device background noise
cancelation is not effective;
the occupant must be close to
the microphone, with false
results in the absence
of speech.

High false positive rate is
observed when occupants
increase; 25 s of speech is
required and background
noise is partly addressed.

- Provides more accurate
prediction through
noise cancelation.
- CO2 sensors can be
integrated to easily verify
occupancy number during
data collection.

Passive infrared
sensors
[37]

PIR, IR FPGA,
CO2 sensors

97% prediction
accuracy 30%
energy saving

Partially does not support
human detection; false result
in the absence of motion for a
max of 30 min.

It takes time to populate
room space; 1000–1500
ppm is
maximum concentration.

CO2 partially supports
human detection; lack of
availability of template or
dataset for training, and
supports few algorithms.

CO2 concentration

[17] PIR, CO2, sensors
80% prediction
accuracy 62%
energy saving

Not practical for occupancy
prediction; false result in the
absence of motion for a max
of 30 min.

Error in reporting the
number of occupants.

The study supports the ML
technique and sensor
fusion mechanism to
provide more accurate
occupant data during data
collection to minimize
incorrect readings
from PIR.

[38] CO2 sensor
50% prediction
accuracy 33%
energy saving

Partly supports
human detection.

Error in reporting the
number of occupants.

The technique is suitable in
spaces with less occupancy
turnover such as offices
or labs.

[39] CO2 sensor 21% energy saving
Cannot be used in
multipurpose halls such as
lecture theaters.

Prone to false prediction.

- The proposed approach
can be deployed in both
commercial and residential
building types.

[16] CO2 and camera
97% prediction
accuracy 30% energy
saving

Requires object to be in close
range in a straight line.

Prone to false result; no
background subtraction;
error in reporting the
number of occupants in
the room.

- Approach can support
sensor fusion mechanism
when ML techniques are
used.

[40] CO2 and light sensor
60% prediction
accuracy 30%
energy saving

Does not support
human detection.

Prone to false results as a
light sensor can be covered
by any object.

- Approach is suitable in
both commercial and
residential buildings.
ML technique can be
integrated to improve the
data collection process.

Environmental
sensing

[41] Environmental
sensors

Up to 98%
prediction accuracy
and more than 30%
energy saving

Sensor reading takes an
average of 15 min to stabilize
the room for
accurate prediction.

The prediction accuracy
reduces when room
occupancy grows to larger
than seven.

- Ensures occupancy
prediction throughout the
prediction process.
- Other IoT networks can
be simply integrated for
sensor fusion.

The predictive approach is designed to automate the management of HVAC operations
through the formulation and computation of occupancy information and indoor meteoro-
logical data to estimate the probability of presence in space. The occupancy information
can either be statically generated from fixed-schedule occupancy activities or dynamically
collected in real time by sensors at the point of occupancy prediction [1].

The dynamic predictive approach uses real-time data via installed sensors within
occupancy surroundings to identify occupancy presence or number in the building. In
some cases, the occupant schedule is considered a desirable parameter to generate a model
that detects room occupation [1]. The majority of existing dynamic predictive control faces
difficulty in identifying actual occupancy to reduce false negative results triggered by PET
or stationary objects and estimating the total number of occupants presently in the space to
adjust to a comfortable temperature.
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The study in [40] uses a CO2PIR sensor-based approach to detect occupant presence
in space with the help of an intelligent controller to flag HVAC to adjust the temperature
set point, ensuring the thermal comfort of occupants.

PIR and CO2 sensors are widely used technologies for occupancy prediction in indoor
environments to facilitate HVAC control. The efficacy of these sensors to notice a sudden
change in an occupied environment is very high. However, their major concern is the lack
of additional information to identify human occupancy, which can lead to excess energy
consumption in the presence of PET or other stationary objects in the indoor space.

The occupancy detection method in [35] efficiently detects human presence and deter-
mines the number of occupants using a Gaussian Mixture Model. The suggested approach
managed to attain a reasonable degree of precision despite significant false positives stem-
ming from ambient noise in the vicinity. Similarly, to estimate occupancy for HVAC
ventilation management, the method necessitates simultaneous communication from all in-
door occupancies. A study [36,42] that focused on improving the accuracy of [35] presented
a background cancelation process that ignores the sound frequency level of the chosen
ideal sound frequency threshold to cope with noise inference from undesired sources. The
concept is based on the background cancelation algorithm’s ability to detect the strength of
sound frequencies, which decreases occupancy prediction false positives by 11–12% and
reduces HVAC equipment energy usage by 3.54% when compared to [35]. Despite using
a background cancelation technique, the study’s occupancy forecast is off. A study [3]
suggested using two cameras in tandem to improve the identification of building occupancy.
With the use of open-source human–computer vision libraries, camera-based image and
video processing is frequently utilized for occupancy prediction. Headcount or indoor
object tracking is also frequently employed to estimate total occupancy numbers [43]. Using
a headcount occupancy estimation process, single-camera occupancy detection in [43] was
utilized to regulate indoor ventilation in a lecture hall. The research in [32] predicts the
number of occupants using a naive Bayesian algorithm and an open CV library template.
The examination of the experimental results reveals that there was a high rate of occupancy
detection and estimation, as well as a high false positive rate due to the non-linear line of
sight experienced by students as they walked or raced around the perimeter of interest. A
significant obstacle encountered by this research is inadequate occupancy identification
throughout the overlapped period of entry and exit from the study area. Research in [44–47]
suggested using passive infrared cameras in conjunction with optical cameras to identify
human occupancy in space. The purpose of employing a single camera is to guarantee
detection reliability while lowering the possibility of false alarms. Potential detection
thresholds were generated by extracting and analyzing pixels using a computer vision
human template and a support vector machine method. The purpose of employing a single
camera is to guarantee detection reliability while lowering the possibility of false alarms.
Potential detection thresholds were generated by extracting and analyzing pixels using a
computer vision human template and a support vector machine method.

A Naive Bayesian algorithm classification procedure was applied in both cameras
to determine the type of occupancy detected. In this procedure, occupancy detection is
only acceptable if the cameras report the same occupancy type; otherwise, the detection is
rejected and considered undefined, which makes the approach prone to false results when
one camera’s quality is better than that of its counterpart.

To reduce this challenge in [48], a study in [3] suggested a solution that uses the naive
Bayesian algorithm to extract image pixels for training purposes based on a desirable
threshold that should be used for human occupancy prediction. The idea was that if there is
a contradiction in occupancy detection, the threshold of the camera with a negative forecast
should be reduced by 30% for a potential match. The experimental result analysis shows
human occupancy prediction improvement by 12% and 5% energy saving in comparison
with the previous study.

Similar studies were proposed in [44,46] that combine occupancy information collected
by PIR sensors and cameras to reduce false alarms in conflicting cameras, such as overlap-
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ping and straight lines of sight. These techniques use occupancy tagging through binary
object tracking to track indoor occupancy activities in order to control HVAC ventilation
requirements and maintain occupants’ thermal comfort. Thermal sensors are attached to
chairs to detect the electromagnetic radiation and heat frequency produced by occupants.

Research in [20,38,42] uses a sensor fusion approach to collect real-time occupancy data
from installed CO2, PIR, and motion detection sensors and parse the data for human activity
classification using K-Nearest Neighbor. ML was employed to monitor and classify the
occupancy type in the indoor pre-existing trained test data template of the SVM threshold.
The PIR and motion sensors are used to provide the controller with knowledge of occupancy
movement within the indoor space, and CO2 sensors keep track of occupancy numbers as
concentration levels increase to control HVAC ventilation requirements.

The study in [49] combines a light sensor counter and CO2 sensor as a stream of bytes to
detect the occupants present in an indoor environment and estimate the occupancy number
to manage the ventilation requirement of HVAC equipment to minimize unnecessary
energy consumption. The light sensor was placed on the door entrance to count the
occupants passing through the entry and exit and to keep track of the indoor occupancy
number. The CO2 sensor was placed on the ceiling to track the warm breath of occupants
as an indicator of occupant presence status in the indoor space. The experimental result
analysis in the laboratory showed significant energy-saving potential for HVAC equipment
in comparison with traditional thermostat control.

3. Materials and Methods

IoT sensor data are key players with the full potential to be a significant contributor
to smart building technologies that enable dynamic responsive approaches to optimally
manage building appliances. Consequently, the foundation for more intelligent, effective
appliance control and energy savings is laid by the incorporation of sensors, such as
occupancy sensors, with smart building control systems. Moreover, this study applies an
ML technique to construct an occupancy prediction model using sensor data. Figure 1
represents the research methodology and process for the proposed approach.
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Figure 1. Research methodology.

3.1. Occupancy-Related Raw Data

This study uses a sitting room in a building located in Taman Teratai Johor, Malaysia,
as a case study, with an ambient value of 25 ◦C to 30 ◦C the whole year and the use of
a cassette floor building method and a stick-built timber frame as part of an inventive
lightweight structural strategy. Table 2 displays the thicknesses and thermal characteristics
of the construction materials. These characteristics help evaluate the dynamic and stable
behavior of occupants. The purpose of the sitting room is to host social gatherings for
activities like dining, lounging, and watching TV. The sensors were installed to track
several interior environmental parameters, including temperature, illumination, relative
humidity, and CO2 concentrations. Moreover, the sitting room’s entries and departures
were documented to verify that the values corresponded with the sensor readings. More
details of the experimental setup can be accessed in [2].
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Table 2. Room thermo-physical properties.

Properties Material c (J/Kg·K) (W/m·K) Thickness (cm)

Tuff 650 1.5 10

Wall Brick 1000 0.11 18

Polystyrene 1600 0.028 8

Concrete 650 0.43

Stoneware flooring 650 1.25 1.3

Ground Floor Igloo 650 0.07 8

Gravel 1.1 1

Screed: ordinary concrete 650 1 5

Hollow-core concrete 650 0.7 25

Ceiling XPS polystyrene panel 650 0.4 8

Brick tuff 650 0.5 5

Table 3 provides the descriptions of the used sensors to collect occupancy-related data
in the building using communication with occupants about the context of the problem.
Due to challenges in the labeling of occupancy numbers through interactive learning data
collection [28], our approach employed a camera to address the labeling problem that
emerges in the estimation of the number of occupants in supervised learning methods,
which are widely utilized in many applications [14,44,50–52].

Table 3. Sensors used in this study.

Sensor Description Ambiguity Unit Record

Temperature Measure indoor temperature 1 ◦C Degree Celsius 60 s interval
Relative Humidity Measure indoor relative humidity ±5% Percentage 60 s interval

CO2
Measure indoor CO2
concentration level 300–1000 ppm: ±120 ppm Parts per million (ppm) 60 s interval

Light Measure luminance in the building 10–2000 lux range Lux 60 s interval

3.2. Data Pre-Processing

The quality of the dataset is one of the major factors that contribute to the performance
of the prediction model. Previously, in [28], an interactive technique was applied to provide
occupancy numbers during data collection to deal with practical privacy problems and
incorrect values used in model training. However, in this study, environmental sensing and
camera sensing are deployed to replace the manual method (interactive technique) during
data collection, enabling self-estimation or labeling. This approach only used camera
processing during data collection, thereby minimizing the privacy challenge when the
prediction model is deployed in the building. The following three steps are used during
data pre-processing.

3.2.1. Sensor Fusion

A general description of the proposed framework is presented in Figure 2, which
includes the candidate record, dataset training, and ML model (random forest) that lead to
the fuzzy system. Based on an occupant’s decision or habits, such results are sent to regulate
or create the proper set point temperature using a fuzzy inference engine to control HVAC
operation. Every parameter in the dataset log stream has an occupant-related characteristic.
The total occupancy count is recorded in data logs. However, the content of these dataset
streams can be affected by a particular occurrence, such as a door opening when entering or
departing. When such an occurrence occurs, it takes a while to restore the indoor condition
to the real level that corresponds to the building’s occupants.
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This study adopted [31] for environmental sensing and [3] for the camera. To ensure
the reliability of the dataset record, an interval of 5 min was set between the previously
captured record and the next candidate record.

The dynamic assessment of occupancy data is essential for effective modeling. The
fusion approach uses camera data to complement environmental sensing data. Dataset
collection using this approach has shown good performance for the cross-validation of
various ML algorithms compared to the environmental sensing approach alone. Therefore,
this study proposed a multimodal occupancy prediction framework (see Figure 2) that
incorporates a camera approach with an environmental sensing approach to support dataset
collection and quality assessment using a multi-layer perceptron regression algorithm for
model training.

To ensure the quality and reliability of training data, the data reading from the sensors
has to be verified before storage, which later supports the model prediction when deployed
for testing. Therefore, this problem can be treated as follows.

Occupancy number is one of the major parameters used by smart thermostats to
regulate indoor comfort and energy usage. Previously, in [28], an interactive technique
was applied to provide occupancy numbers during data collection to deal with practical
privacy problems and incorrect values used in model training. However, in this study,
environmental sensing and camera sensing are deployed to replace the manual method
(interactive technique) during data collection, enabling self-estimation or labeling. When
the prediction model is deployed, only environmental sensors are used for accurately
predicting occupancy numbers by reading the indoor environmental values. In addition,
during the data collection, the quality of the data record read by sensors is verified before
storage, which later supports the model prediction. Therefore, this problem can be treated
as follows.

Let dataset records measured by sensors every time be recorded(t), consisting of a
certain feature, f1 . . . fn = record(t). Thus, f1(record(t)) . . . fn(a record) correlates with
the status of occupancy at time t, where fi(t) ∈ (f̌i f̂i). Let the occupancy count represent
labels measured by a thermal camera that tally with the corresponding indoor data recorded
by environmental sensors. Thus, the comprehensive dataset records measured to train the
prediction model are represented as r(t) = (record(t)), l(t)). Any record in the dataset that
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has no corresponding label recorded is considered a candidate record (required validation)
and any record with a corresponding label recorded is considered as a recorded record.

Let recorded records be p. The major challenges in this type of interactive learning
are (1) how to avoid the recording of a candidate record in the dataset since it is collected
automatically by a camera, and (2) how to assess the quality of the label(t) assigned by the
camera in datasets.

This process is performed based on a discrete response from the camera-predicted
occupancy label to provide the ground truth. Each time a record from the environment
tallies with data recorded by cameras, it is considered valid and stored in dataset records;
otherwise, the record is discarded. This process is repeated throughout data collection with
the help of a parametric classifier. The parameterized classifier used in this study employed
decision trees to analyze the candidate record use (if–then) rules. This parameterized
classifier employs a preset classifier structure with parameters that can be changed based
on the data input. This classifier can be modified in the final structure by each new record
set and how much it differs from the previous one to match and address the desired
tuning problem. An objective function is to minimize the difference between the actual
and estimated (coming from the classifier) indoor occupancy. We combine the conclusion
from every modality and execute a mix of biased options and rule-based conclusions in the
last step.

A conclusion is drawn from multimodal approaches combined from each modality
and a mix of weighted possibilities is obtained to verify the quality of data using rule-
based decision making in the final stage. During data collection, the decision tree and
parameterized classifier are applied to assess the quality of data, and the occupant input
value is automated using the occupants’ label predicted by the camera instead of the manual
input provided by the occupants. The effective data were trained and modeled using a
random forest to obtain and analyze the distribution of the error for the proposed approach.

3.2.2. Normality of the Data Distribution

Moreover, checking the normality distribution of data is essential to determine whether
the data are normally distributed. However, the graphical depiction for evaluating nor-
malcy necessitates a high level of knowledge to avoid erroneous readings. X and Y vectors
are commonly used to show data for graphic analysis. According to [53], suppose that Y is
the parameter that relies on the regression of X. If X(x1, x2, x3, . . . xn) are correlated, then Y is
considered to be dependent on X, and µ = f(X) is a scattered vector. Hence, Y and µ can be
presented as

Y |X ∼ N(µ = f(X),σ2) (1)

µ = f(X) = (ß 0 + ß1 ∗ x1 + ß2 ∗ x2 + . . . ßn ∗ xn)

The normality distribution of the recorded dataset is illustrated in a graphical presen-
tation using the Q-Q plot test (see Figures 3 and 4). As can be seen in Figures 3 and 4 blue
line indicate normal distribution of the dataset.

There is some variance in the distribution of datasets. After a physical observation of
the unmatched plots, it was established that the skew was not from sensor malfunction
but rather was created naturally, which was not an issue and could not impact the model
prediction accuracy. All variables have unfitted point distributions, with CO2 and occu-
pancy having the most severe values. One in 340 observations in a normal distribution can
diverge by a minimum average of three standard deviations from the mean [54].
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3.2.3. Data Correlation

Before feature selection, it is essential to identify predictors with a strong correlation
with predicting variables [14]. In this research, the Pearson Product-Moment value (PPMC)
measure is used to determine the correlation value (see Figure 5). PPMC evaluates the
degree of reliance among the variables y and x when provided a collection of associated
(x, y) values ranging from −1 to +1 [6]. Figure 5 depicts the computed PPMC values for
a total of six variables with values ranging from −1 to 1, where 1 indicates a label peak
correlation, then 0.9 with strong correlation, 0.8 with moderate correlation, down to 0.00 and
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−0.00 with a green background, denoting a very weak correlation. Parameters that are not
linked with predictors at all or have a low correlation index are potentially excluded
from the development of the predicting model via variable permutation significance.
Furthermore, if two factors are strongly correlated, it is suggested that only one of them
should be examined to simplify models.
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3.3. Feature Selection

Variable feature identification is critical in the development of machine learning
models because it necessitates the removal of features with a low association before
the model training evaluation. The variable significance measure metric is another im-
portant factor that is essential in machine learning model development that is basically
employed to evaluate and eliminate uncorrelated variable parameters [38]. According
to the theory, predictors X =

(
X1, . . . , Xp

)
should be an array of parameters or vari-

ables for forecasting variable Y [38]. In a regression situation, f̂, the formula for vari-
able predictor Y, is a function measured with numbers in R. The error in the estimation
of f̂ can be calculated with R(f̂) =

[(
f̂(X)− Y2

)]
, and the goal is to measure the expecta-

tion f(x) = E[Y|X = x ]. Moreover, let Dn = {(X1, Y1), . . . (Xn, Yn)} be set data of
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repli-
cations of (X, Y) where Xi =

(
Xi1, .., Xip

)
. Since the positive prediction error of f̂ is not

known in the test dataset (D), D can be represented as

D: R̂
(

f̂,D
)
=

1
D∑i:(Xi,Yi∈D)

Yi−f̂
(

Yi − f̂(Xi)
)2

(2)

Variable permutation significance, proposed in [40], demonstrated competence in
many non-linear predictors similar to the proposed model and was thus used in this
research. The method took into account predictors XiXj as the key predicting Y. If the
connection between the features XiXj and Y is disrupted, the error score in the prediction
may rise. The model’s score number shows the extent to which the predictor relies on
the collated features. This technique offers the advantage of being model-independent,
enabling it to be tested multiple times with different function permutations [40]. Arbitrarily,
we can permute the data of XiXj to illustrate this model.

The statistical permutation can be measured as follows: express the set of samples
of out-of-bag

{
Dt

n = Dn\D
t
n, t = 1, . . . , ntree

}
. Let {, t = 1, . . . , ntree} donate permuted out-

of-bag samples by randomly permuting of the j-th variable’s values for every out-of-bag
subset. The variable X′

js statistical permutation value is defined as
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Î
(
Xj
)
=

1
ntree

∑ntree
t=1

[
R̂
(

f̂t,Dtj
n

)
− R̂

(
f̂t,Dt

n

)]
(3)

This quantity is the statistical equivalent of the permutation importance measure Î
(
Xj
)

re-
cently formalized by Zhu [55]. Let

(
Xj
)

= (X1, . . . , X′
j , . . . , Xp) be the random vector, such

that X′
j is an independent replicate of Xj that is also independent of Y and all other predictors,

which can be measured by

I
(
Xj
)
= E

[(
Y − f

(
X(j)

))2
]
−E

[
(Y − f(X))2

]
(4)

The permutation values of Xj in the expression of Î
(
Xj
)

replicate the exact indepen-
dency of the pattern of distribution of (X)nÎ

(
Xj
)
.

3.4. Model Development

Throughout model development, datasets are frequently divided into training and
testing ratios, while ML techniques are used to produce solid prediction efficacy. The
procedure is simple and efficient for examining the efficacy of various ML methods for
model prediction and choosing the best strategy to address the development of model
prediction. The procedure involves rearranging and splitting the dataset into a 70:30 ratio
(Figure 6). The model is matched using the first ratio, which is also considered as the
training dataset. The second ratio, considered as the test dataset, is fed into the model as
input to supply the variable dataset to test and evaluate the forecast.
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3.5. Proposed Flowchart

The IoT thermostat collects the occupancy number, sets the desired set point, and
instructs the controller to maintain the desired set point to ensure that thermal comfort is
kept within pre-agreed comfort bounds (see Figure 7). Our initial study in [29] proposed a
novel adaptive controller for an HVAC system or IoT thermostat that can predict preferred
temperature boundaries based on known environmental parameters (such as the level
of indoor CO2, temperature, and humidity). Every five minutes, the controller requests
the current indoor temperature and occupancy with the IoT thermostat to compare the
current indoor temperature with the preferred temperature and decide whether to adjust
the HVAC set point temperature or not (see Figure 7).

Usually, smart thermostats enable direct operation to control the on/off state with-
out remote control, which can fairly be achieved by decreasing/increasing set points by
5 degrees from the preferred temperature, forcing it to turn on when the temperature
goes below comfort bounds or off when the temperature goes above comfort bounds.
The controller then notes the HVAC state to maintain comfort and satisfaction with the
desired bound. Similar studies [3,14,56] chose 5 degrees as an adequate margin to deal
with the deadband to keep room conditions until the next control interval. The procedure
continues until the requested response period is over, at which time the controller returns
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the routinely desired comfort on the smart thermostat, enabling it to operate in the usual
deadband-based set point in the following mode.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 27 
 

 

Figure 7. Flowchart of the proposed controller. 

Usually, smart thermostats enable direct operation to control the on/off state without 

remote control, which can fairly be achieved by decreasing/increasing set points by 5 de-

grees from the preferred temperature, forcing it to turn on when the temperature goes 

below comfort bounds or off when the temperature goes above comfort bounds. The con-

troller then notes the HVAC state to maintain comfort and satisfaction with the desired 

bound. Similar studies [3,14,56] chose 5 degrees as an adequate margin to deal with the 

deadband to keep room conditions until the next control interval. The procedure contin-

ues until the requested response period is over, at which time the controller returns the 

routinely desired comfort on the smart thermostat, enabling it to operate in the usual 

deadband-based set point in the following mode. 

3.6. Hardware and Software Layout 

The adaptive controller proposed in this study is composed of three components, as 

shown in Figure 8. The first component is made up of sensors for collecting occupancy 

and surrounding data installed within the perimeter of interest, transmi�ed via a serial 

connection with an Arduino microcontroller, sending parse collected data to the IoT cloud 

ThingSpeak via the internet using the Wi-Fi-based microcontroller ESP/011 (Version 1.0). 

The second component is ThingSpeak integrated with Matlab [57] where the fuzzy rule 

controllers were designed for occupancy detection and estimation mechanisms. The third 

component is an intelligent controller that receives signal information on recommenda-

tions from ThingSpeak and decides whether to approve or reject the demand to switch 

lights and HVAC appliances on/off. 

Figure 7. Flowchart of the proposed controller.

3.6. Hardware and Software Layout

The adaptive controller proposed in this study is composed of three components, as
shown in Figure 8. The first component is made up of sensors for collecting occupancy
and surrounding data installed within the perimeter of interest, transmitted via a serial
connection with an Arduino microcontroller, sending parse collected data to the IoT cloud
ThingSpeak via the internet using the Wi-Fi-based microcontroller ESP/011 (Version 1.0).
The second component is ThingSpeak integrated with Matlab [57] where the fuzzy rule
controllers were designed for occupancy detection and estimation mechanisms. The third
component is an intelligent controller that receives signal information on recommendations
from ThingSpeak and decides whether to approve or reject the demand to switch lights
and HVAC appliances on/off.

As presented in Figure 8, sensors such as ultrasonic sensors were installed at occupancy
entry perpendicular to the area of interest to perform occupant body dimension analysis,
such as occupant height prediction. Temperature and humidity sensors monitor indoor
climate change in addition to CO2 concentrations to implement the control logic of the
system. A lamp was connected with a photoresistor positioned about 1.5 m from the floor
and equipped with a 10 W dimmer light bulb for energy consumption.
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Figure 8. Proposed smart controller.

Candidate Model

Random Forest (RF) is considered to be the optimum candidate for the proposed
model due to the nature of our data for both regression prediction and classification. The
current implementation of this concept and recent advancements have demonstrated strong
performance in many domains despite its simplicity. A powerful Python library called
scikit-learn was used during model implementation. The summarized details of the library
documentation can be found in [58].

To forecast the behavior defined by training data, the RF consists of a list of various
decision nodes that are used progressively from a bottom (parent) to a terminal (child)
node [58]. This method offers various conditional rules that may be used simply as
matching data samples based on shared characteristics by comparing sensor readings to a
threshold. Bagging is performed for each decision tree [31], implementing more than half
of the dataset samples for training and the rest of the dataset for assessing the efficiency of
the prediction model. This suggests that while each RF tree learns from different subsets of
the training data, they all work toward the same aim.

3.7. Evaluation Metrics

Usually, more than one metric is used to measure the performance of the model to
confirm its performance across a range of new data. As a result, other measures are taken
into account, such as the AUC; the area under the ROC curve refers to a metric used to
measure aggregate performance across the entire categorization criteria. It can be used
to interpret the probability that the rates of a random positive sample may be larger than
those of a random negative sample.

Precision is an unbalanced classification measure and contains two classes: correct
detection, known as true positive (TP) divided by the total correct detection, and incorrect
detection, known as false positive (FP). The equation can be represented as
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Precision
TP

TP + FP
(5)

Recall is an unbalanced classification measure containing two classes and can be
determined by dividing the total correct detection by the total correct detection plus
unpredicted detection (false negatives). The equation can be represented as

Recall
TP

TP + FN
(6)

F1-Score is the metric used to harmonize the value of precision and recall. The equation
can be represented as

F1-Score = 2 ×
(

Precision × Recall
Precision + Recall

)
(7)

3.8. Results of the RF Model

To obtain the results, the outputs from each tree are joined together. The models’
handling of bias and uncertainty in their predictions is influenced using these guidelines.
To determine whether a room is inhabited or unoccupied, the binary classifier employs
CO2 as a predictive variable.

The efficiency of the RF classifier for occupancy room occupancy detection is shown in
Table 4. The score bin represents recursive splitting analysis from the dataset sample that
provides the set decision strategies that prediction used to fit the data, as shown in Table 4.

Table 4. RF model prediction using binary classification using CO2 data.

Score Bin Cumulative AUC F1 Score Precision Recall Negative Precision Negative Recall Accuracy

(0.900, 1.000) 0.001 0.813 0.983 0.719 0.792 0.999 0.837
(0.800, 0.900) 0.013 0.867 0.999 0.741 0.721 0.982 0.849
(0.700, 0.800) 0.027 0.821 0.965 0.756 0.732 0.964 0.855
(0.600, 0.700) 0.030 0.823 0.976 0.773 0.753 0.960 0.865
(0.500, 0.600) 0.047 0.881 0.932 0.784 0.704 0.940 0.867
(0.400, 0.500) 0.073 0.861 0.926 0.788 0.778 0.908 0.860
(0.300, 0.400) 0.169 0.845 0.865 0.804 0.837 0.793 0.833
(0.200, 0.300) 0.364 0.877 0.763 0.936 0.912 0.579 0.808
(0.100, 0.200) 0.644 0.789 0.665 1.000 1.000 0.297 0.706
(0.000, 0.100) 0.941 0.754 0.583 1.000 1.000 0.000 0.583

The assessment was carried out to validate the efficacy of the suggested technique
on fresh data, which is essential, particularly for systems that implement on/off control,
where the model’s efficacy can vary depending on previous historical and new data. As a
result, the dataset record in Table 4 is divided into two bin ratios consisting of the training
and testing datasets. The performance of the classifier prediction varies from 75% to 88%
for the FI score, the accuracy ranges from 74% to 86%, the precision ranges from 70% to
99.6%, and the recall ranges from 29% to 99%.

3.9. Comparative Analysis

The focus of this section is on the selection of benchmark datasets in the area of building
occupancy prediction, as well as its evolution. In this section, we present the analysis of four
widely used and published datasets of occupancy prediction alongside machine learning.
These datasets were collected based on the performance metrics published by the authors.
These datasets are easily accessible by researchers. These datasets vary in terms of the
number of variables and the size of records. We have identified that several research works
have used them to empirically evaluate the proposed approaches (see Table 5), selection,
composition, and ranking. Before proposing the performance of our framework for building
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occupancy prediction, we need to perform a performance analysis of the four published
web service datasets. Therefore, selecting the most appropriate dataset can enhance the
efficiency of the proposed framework. Person correlation coefficient analysis is aimed at
determining the relationship between predicting variables and predictors. Similarly, a
normality test using a Q-Q plot was used to extract dataset features to reduce the parity in
datasets. This chapter also contributes to the identification of candidate machine learning
that can perform a solid prediction of building occupancy using random data.

Table 5. Benchmark databases extracted from the literature.

Approach Technologies Technique Accuracy (%)

[2] Camera and sensors Machine Learning 89–99
[29] Sensors Machine Learning 79–85
[14] Camera and sensors Machine Learning 76–99
Proposed approach Camera and sensors Machine Learning 89–99.6

A camera-based occupancy prediction model is proposed that employs passive in-
frared to predict indoor occupancy once all parameters have been measured [2]. Similarly,
a renewed camera sensing approach is proposed to be used in inverse occupancy mod-
eling [14]. These techniques employed background subtraction focusing on the area of
interest (entry or exit door) to estimate indoor occupancy once the object pixel analysis
is precisely determined. However, these techniques failed to check or validate the accu-
racy of captured or predicted occupancy, which might affect the quality of the training
dataset, particularly when incorrect predictions are recorded in the training dataset. To
accommodate for these flaws, the multimodal framework is proposed, which ensures that
predicted occupancy is validated through a parametric classifier alongside the machine
learning method.

As can be seen in Table 5, both studies [14] implement a similar approach, with
the proposed study achieving a prediction accuracy of 89–99% and 76–99%, respectively.
After applying the necessary steps to clean up the datasets provided by the authors, we
achieved higher accuracy (99.6%) with our model. Furthermore, [29] proposed a similar
approach (only sensors without camera), which achieved a prediction of 79–85%. Due to
the inconsistency (outlier) in the dataset provided by the authors, our prediction model
achieved the same result reported by the author. In addition, the accuracy of [29] is reduced
when the occupancy number is higher than seven. In summary, our finding reveals that the
recent literature is now giving more emphasis to the multimodal data fusion approach to
improve the quality of the dataset, which is essential to verify the efficacy of the prediction
model. The proposed approach also offers useful data related to occupancy profiles,
which can be further explored to perform occupancy prediction via occupancy schedules
regardless of building type (residential or commercial building).

4. Building Occupation and HVAC System Analysis

The primary goal of binary thermostats is to switch the HVAC system off when
there is no one in the room. During our observation, when the space was empty, the air
conditioner was turned off and the temperature was elevated. The study recorded the
indoor temperature (see Figure 9) from 8:00 AM to 5:00 PM. It was observed that from
11:00 AM to 2:00 AM, the temperature increased significantly, causing the discomfort to be
higher than any other period.

The existing controller uses a fixed schedule to control HVAC operation, which makes
it prone to false alarms, especially when occupants’ schedules or plans conflict with the
control policy, which can result in unnecessary energy use. Our strategy uses occupancy
prediction in the space to control HVAC operation, meaning that the HVAC system operates
only in the event of room occupation. This indicates that the overall energy consumption is
influenced by the room temperature and the rate at which the air conditioner operates to
keep the room at a satisfactory comfort level.
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Figure 9. Room temperature with air conditioning off.

4.1. Room Temperature Control

As can be seen in Figure 9, from 8:00 AM to 9:00 AM and 4:00 PM to 8:00 PM, the
temperature is “Hot”. From 9:00 PM to 11:00 AM and 3:00 PM to 4:00 PM, it is considered
to be “Very Hot”. From 11:00 PM to 3:00 PM, the temperature is “Extremely Hot” when the
air conditioner is not operating.

The goal of the proposed controller at any given moment is to bring the temperature
down as much as possible to ensure that the occupants’ comfort is within a satisfactory level.
The proposed controller indicates remarkable operation by bringing the indoor temperature
to the desired comfort level. Figure 10 represents the state of indoor temperature when
the air conditioner is operating. As can be seen in Figure 10, the controller was able to
maintain the room temperature between 20.5 ◦C and 16.5 ◦C for the entire operation of
the air conditioning. This shows that proposed controllers adequately bring the indoor
temperature to the desired comfort level except during very hot and extreme temperatures.
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4.2. Thermal Comfort Analysis

This study uses a procedure for the temperature measurement of the indoor building
using the approach used in [2]. To prevent radiation or emissions from objects or surfaces,
the logger is positioned in the middle of the room and left hanging freely. Data loggers
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were also placed on posts and walls so that the devices were stacked on top of each other.
The data logger was fixed at 2 m high on a pillar or wall with double-sided tape to prevent
it from falling. The data logger is installed at a sufficient distance from the sun, roofs, and
windows to avoid sources of heat, radiation, and cold (see Figure 11). When installed in
the building, the loggers are set to record temperatures in 30 s intervals.
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This configuration will enable our research design to include on-site interviews with
occupants on their experiences of thermal comfort in different temperature settings based
on the designed questionnaire for occupants of different nationalities (Malaysian, Saudi
Arabian, Indonesian, and Nigerian) using ISO 7730, ISO 10551, and ISO 8996 [59,60]
as guidelines. The occupants are adults aged between 24 and 60 years. The designed
questionnaire captured subjective variables and the perception of thermal sensation [61].
The seven-point scale ISO 77300 [29] (very hot, hot, warm, neutral, cool, cold, and very
cold) was adopted after the question “How are you feeling now?” and Rayman software
(Version 1.2) was utilized to compute PET based on the occupants’ gathered feedback.

For the duration of the study, 184 questionnaires were deemed legitimate. Table 6
shows the average PET values for the Malaysian, Saudi Arabian, Indonesian, and
Nigerian participants.

Table 6. PET values for all participants.

Nationality PET, (◦C)

Maximum Medium Minimum Amplitude

Malaysian 41 25 12 29
Saudi Arabian 56 30 12 44
Indonesian 40 26 12 28
Nigerian 52 28 12 24

Figure 12 demonstrates that a higher percentage (55%) of the Malaysian and Indone-
sian participants believe the weather is neutral in the PET within the range of 16 ◦C,
while most of the participants (50%) of Saudi Arabian and Nigerian nationality believe the
weather is cold at the same temperature level (see Figure 13). This indicates that Malaysians
and Indonesians appear to have a higher tolerance for cold and lower PET readings. The
majority of the nationalities report feeling neutral at temperatures between 16 ◦C and 24 ◦C
(see Figures 12 and 13). Furthermore, thermal perceptions of the temperature are quite
comparable in the 20 ◦C–24 ◦C PET range for all nationalities, indicating that weather is
hot when PET levels are above 24 ◦C.
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Figure 13. Thermal perception of Saudi Arabian and Nigerian participants.

In addition, the PET index was calibrated based on the conclusions of the logistic ordi-
nal regression, which demonstrated the range correlation of the various thermal sensations
of the participants. This conclusion tells us that once the temperature levels fall very low,
the PET values become “Very Cold”, a range could not be assigned to any nationalities.
The “Cold” range’s top bound is the same for all nationalities. However, the Nigerians had
a narrower “Cool” range than Saudi Arabians, while the Malaysians and Indonesians had
a broader “Neutral” range. It was difficult to pinpoint the “Warm” range for Malaysians or
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Indonesians; however, all the participants experienced the same phenomenon, suggesting
feeling “Hot “and “Very hot” as the temperature rose.

4.3. Energy Consumption

The cost of electricity does not have much impact on energy usage in this setting;
therefore, the room temperature is the major factor considered for the controller setting
which is required to keep the thermostat operating to keep the area comfortable, or at least
closer to the acceptable comfort level. This also applied to peak energy demand hours;
the compressor stayed active until the area’s temperature stabilized to the desired level as
specified on the thermostat. After reaching the appropriate temperature, the compressor
becomes inactive. This process will continue in a loop as long as the room is occupied. This
process determines the cycle of the air conditioner.

The cycle time of an air conditioner is the amount of time it takes to run it in order to
maintain an area at the intended temperature. As shown in Figure 14, the compressor works
for considerably extended amounts of time to reduce the area’s temperature, increasing the
cycle time.
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The energy usage of the proposed system is 38.708 kW, compared to 39.159 kW for
the existing approach. The energy consumption of the HVAC systems of the proposed
controller under similar temperature settings in [30] is lower than in the existing study.
Because the energy usage of the systems could not be postponed for extended periods to
allow consumers to use them during peak hours, the proposed approach optimally adjusts
the set point temperature through a feedback loop. Therefore, subtracting the energy
consumed by the proposed controller (38.708 kW) from the energy consumed by the existing
controller (39.159 kW), the difference is 0.451 kW, as indicated in Figure 14. Therefore, the
proposed approach saves more than 45% of energy consumption in comparison to the
previous approach.

5. Discussion

In a smart building, occupancy prediction can help with demand control ventilation
strategies to trade-off between energy use and thermal comfort. Because of the impor-
tance of occupancy privacy, particularly in residential buildings, many of the suggested
occupancy prediction techniques that make use of intrusive technology like wearable de-
vices, cameras, and Wi-Fi are not realistically appropriate to deploy in residential settings
due to privacy concerns. The recent environmental sensing technique attracted a lot of
attention as a result. Unfortunately, as shown in the literature, environmental sensing
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performs relatively poorly because of the subpar training dataset, weak feature correlation
between predictors and predicting variables, and improper ML approach selection in the
prediction model.

Occupancy prediction: This study suggested an approach for predicting indoor occu-
pancy by using data from several sensor streams that have a significant correlation with
building occupancy. The proposed approach was trained and tested with a prototype
system for performance assessment. Even though the proposed prototype can perform
well in predictions using a variety of ML methods, the random forest method was selected
due to its flexibility and efficiency in handling challenges related to both regression and
classification approaches. The result of the assessment indicates that the proposed ap-
proach yields solid performance in comparison with the overall performance of previous
approaches. Furthermore, the results show that adding more variable parameters with a
high correlation with predicting variables can make a significant improvement in reliable
occupancy prediction in contrast to employing a single-variable parameter or directly using
sensor data. User interaction during data collection to ensure that data from environmental
sensors matches with the corresponding data recorded by the camera is one of the major
challenges of the proposed approach, which, if not carefully handled, can affect the quality
of the dataset and the overall performance of the prediction. This challenge can be fur-
ther tackled in many ways, such as camera fusion (to make sure that occupancy numbers
captured by multiple cameras are equal to each other; otherwise, the record is discarded).
It can also be enhanced through a validation classifier that employs machine learning or
deep learning to ensure that only matched and valid corresponding records are captured
in the training dataset instead of the parametric classifier (if–else classifier) proposed in
this study.

Feature selection: Feature selection is one of the critical aspects of the proposed predic-
tion approach to identify the best set of features that allows us to build an optimized model
of our occupancy prediction. Because the data collection was conducted in a residential
building, the time (occupancy departing and arrival) became irrelevant to be included in
occupancy prediction. At this stage of feature selection, this study identified a variable
(time) with a weak correlation and eliminated it before the dataset sample was added
to the model for assessment. Therefore, the proposed approach cannot predict building
occupancy based on schedule. Providing precise occupancy schedules for building energy
modeling is crucial for energy conservation. A deep learning approach can be explored to
include reference occupancy schedules (including sets that deviate greatly from the real
occupancy changes) in establishment occupancy variation patterns, which would help to
make reliable indoor occupancy predictions even when occupancy schedules are changed.

Generalize thermal comfort bounds: To manage building energy usage and provide a
suitable indoor atmosphere, suitable thermal comfort is an important aspect to consider. Yet
since it depends on individual traits and indoor settings, it is quite challenging to determine
suitable thermal comfort effectively. Furthermore, gathering datasets of individual and
indoor environmental variables might be impractical at times and difficult in terms of
resources and effort. For this reason, this study design focused on configurations that
enable on-site interviews with occupants based on their experiences of thermal comfort in
different temperature settings using the designed questionnaire for occupants of different
nationalities. The findings reveal comfort margins or ranges that are suitable to maintain
acceptable comfort depending on nationality. To provide a more general approach to
ensure that HVAC controllers always maintain an acceptable comfort level with respect
to nationality, it is essential to design a prediction model for personal thermal comfort via
transfer learning to transfer information from datasets of individuals in various indoor
and thermal conditions, even in situations when the target subject’s physiological and
environmental data are insufficient. This can be achieved through wearable wristbands
and sensors to gather each subject’s physiological data as well as information about the
indoor environment. Then, the datasets can be used to create a pre-trained model by fusing
machine learning and deep learning methods. The transfer learning approach may be used
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to address the poor generalization performance that resulted from inadequate datasets for
each targeted subject based on the pre-trained model.

6. Conclusions

Building occupancy modeling and prediction have been primary areas of building
energy efficiency research for the past decade. Even though camera-based occupancy
and other intrusive technologies have shown solid performance in predicting building
occupancy, their adoption in residential buildings has declined recently due to privacy
concerns. Occupancy overlapping is one of the critical research obstacles presently faced
by most of the previous approaches, which affects the accuracy of the prediction model
and, in turn, affects the performance of HVAC operation, thereby creating discomfort. For
this reason, this research focused on an environmental sensing (non-intrusive) approach
for predicting room occupancy. The output of the prediction is used as one of the input
parameters to the smart controller to handle HVAC operation under three different settings
depending on the occupants’ thermal comfort requirements. To test the efficiency of the
proposed model, a prototype was designed and coupled to collect occupancy-related data in
the building for model training. A random forest regressor was used to predict the building
occupancy. To test and validate the proposed HVAC controller against energy consumption
and overall occupant thermal satisfaction, a questionnaire was designed that would help to
determine the ideal thermal perception of participants from different countries.

Even though the response to thermal perception can be influenced by psychologi-
cal and sociocultural factors, which may vary or fluctuate based on thermal adaptation,
variations in the PET calibration across participants from different countries demonstrate
how sociocultural traits affect the thermal perception of the individual. For Malaysian
and Indonesian nationals, the PET neutral comfort value range starts from 16 ◦C, which is
considered cold for Nigerians and Saudi Arabians. This demonstrates a variation in the
comfort zone of around 4 ◦C when comparing thermal perception. This reveals that an
ideal PET calibration is not practical and that the calibration must be tailored to the specific
climatic zone. Therefore, it is crucial to comprehend the social and psychological elements
that impact how people perceive their surroundings when designing HVAC controllers,
assessing comfort levels, and making decisions related to urban development to lessen the
effects of discomfort.

Finally, the experimental results show that the proposed controller can operate HVAC
systems to maintain satisfactory comfort and save up to 45% energy in comparison with the
previous approach. Future works can investigate the integration of several deep learning
methods with the proposed framework for enhancing the detection of building occupancy.
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