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Abstract: In our modern society, there has been a noticeable increase in pollution due to the trend of
post-use handling of items. This necessitates the adoption of recycling and remanufacturing processes,
advocating for sustainable resource management. This paper aims to address the issue of disassembly
line balancing. Existing disassembly methods largely rely on manual labor, raising concerns regarding
safety and sustainability. This paper proposes a human–machine collaborative disassembly approach
to enhance safety and optimize resource utilization, aligning with sustainable development goals.
A mixed-integer programming model is established, considering various disassembly techniques
for hazardous and delicate parts, with the objective of minimizing the total disassembly time. The
CPLEX solver is employed to enhance model accuracy. An improvement is made to the Q-learning
algorithm in reinforcement learning to tackle the bilateral disassembly line balancing problem in
human–machine collaboration. This approach outperforms CPLEX in both solution efficiency and
quality, especially for large-scale problems. A comparative analysis with the original Q-learning
algorithm and SARSA algorithm validates the superiority of the proposed algorithm in terms of
convergence speed and solution quality.

Keywords: reinforcement learning; improved Q-learning algorithm; two-sided disassembly line
balancing; human–robot collaboration

1. Introduction

As society advances, the frequent disposal of both premium and everyday products
poses a significant environmental threat, highlighting the urgency of incorporating sustain-
able practices into product lifecycle management. The direct disposal of such products not
only contributes significantly to environmental pollution but also depletes finite resources,
exacerbating environmental issues that disrupt people’s daily lives. Dismantling these
products becomes imperative, with a focus on extracting valuable end-of-life (EOL) compo-
nents that contribute to mitigating environmental pollution [1]. However, to truly address
the environmental impact of product disposal, a holistic approach rooted in sustainable
principles is essential.

Embracing sustainable principles in product disassembly involves more than just extract-
ing valuable components. It requires adopting strategies that prioritize resource efficiency,
waste reduction, and environmental conservation throughout the entire product lifecycle. By
optimizing disassembly processes and promoting the reuse of EOL components, not only can
environmental pollution be minimized, but valuable resources can also be conserved [2]. This
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shift toward sustainable disassembly practices aligns with the overarching goal of sustainable
resource management and environmental conservation, reflecting a commitment to preserving
ecosystems and promoting long-term societal well-being.

Incorporating sustainable considerations into the disassembly line balancing prob-
lem is essential for achieving lasting environmental benefits. By optimizing disassembly
processes to maximize resource recovery and minimize waste generation, manufacturers
can contribute to a circular economy model where resources are used more efficiently and
environmental impacts are minimized. Moreover, by extending the lifespan of products
through effective disassembly and component reuse, the need for raw material extraction
and the production of new goods can be reduced, further advancing sustainable practices
and mitigating environmental degradation [3].

In the contemporary era, escalating concerns about pollution have prompted the
adoption of effective measures to alleviate its impact, aligning with the principles of sus-
tainability. One such approach involves the disassembly and reprocessing of recyclable
products, which not only mitigates pollution but also conserves valuable resources and
promotes environmental sustainability. This necessitates addressing the disassembly line
balancing problem, which exhibits variations across diverse real-world scenarios. Various
metrics, including revenue maximization, minimization of the disassembly time, and opti-
mization of the workstation smoothness index, among others, come into play in sustainable
disassembly practices. Formulating a tailored mathematical model based on specific situa-
tions allows for a targeted resolution of the associated disassembly line balancing problem,
integrating sustainability considerations into decision-making processes.

An array of disassembly methods exists, encompassing complete and partial disassem-
bly, along with both destructive and non-destructive approaches [4]. Different disassembly
lines, such as linear, bilateral, parallel, and U-shaped configurations, offer distinct ap-
proaches, each with its own implications for sustainability. Designing specific disassembly
lines for different facilities facilitates the examination of balancing problems while ensuring
that sustainable practices are upheld throughout the process. Currently, there is widespread
exploration of mixed lines across various sectors of society, reflecting the growing recog-
nition of the importance of sustainability in industrial practices. Given the diversity of
recyclable products and the imperative to enhance disassembly and recycling practices,
the implementation of mixed disassembly line methods, integrating linear and U-shaped
configurations, has gained traction. This endeavor aims to better serve society, purify the
environment, and contribute to the establishment of a green ecosystem, aligning with the
overarching goals of sustainable development and promoting a circular economy model.

In this paper, our focus is directed toward tackling the two-sided disassembly line
balancing problem (DLBP) [5,6]. The conventional layout of a disassembly line is depicted
in Figure 1. The literature addressing two-sided disassembly lines, particularly in the
realm of human–robot collaboration, remains sparse. Furthermore, there is a scarcity of
research applying reinforcement learning to tackle this specific problem. Previous work
by Xie et al. [7] considered the two-sided DLBP with constraints on workstations and
energy consumption, utilizing a differential evolutionary algorithm for solving the multi-
objective two-sided DLBP. However, this method is more suitable for continuous problems,
while DLBP is inherently discrete. As a result, transformation into a discrete algorithm
is necessary for effective problem resolution. Wang et al. [8] explored modeling based
on two-sided disassembly lines and proposed a solution using a genetic algorithm with
variable neighborhood search, enhancing the algorithm’s convergence speed. Another
work by Wang et al. [9] delved into DLBP modeling and solutions, investigating cases
involving uncertain disassembly times, unknown beat times, two-sided pattern layouts,
and the presence of disassembly obstructions between parts. They employed a hybrid
artificial bee colony algorithm along with a variable neighborhood-depth search strategy.
Zhao et al. [10] studied the parallel DLBP considering carbon emission, establishing a
hybrid graph-based disassembly model, and used a genetic algorithm to solve the problem.
However, these studies do not account for human–robot collaboration, primarily focus on
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multi-objectives that cannot be addressed with the CPLEX solver, and employ heuristic
algorithms. Therefore, our model in this paper integrates human and robot collaboration to
formulate a corresponding model, and the algorithm utilizes current popular reinforcement
learning techniques to effectively address the problem.

Figure 1. Serial disassembly line layout.

Many existing articles resort to intelligent algorithms, such as the artificial bee colony
algorithm, elite differential evolution algorithm, and others, to address the disassembly
line balancing problem (DLBP) [11]. Although these algorithms can yield optimal solu-
tions, they frequently require numerous iterations, potentially leading to instability in their
final results. In this paper, we employ a reinforcement learning algorithm from machine
learning to address disassembly line balancing across small, medium, and large scales.
Reinforcement learning, currently recognized as a more efficient artificial intelligence
method [12], emerges as the preferred choice for resolving the DLBP in selective disassem-
bly, ensuring quicker attainment of optimal solutions and thereby enhancing efficiency.
Given the escalating societal attention to the DLBP, a plethora of algorithms is being applied
in this domain, with a growing emphasis on the efficiency of delivering optimal solutions.
Reinforcement learning has become widely utilized in path planning problems [13,14]. Si-
multaneously, the integration of reinforcement learning and disassembly lines has garnered
growing interest from academia and industry alike [15,16]. In this paper, we utilize the
Q-learning algorithm to address the DLBP and validate the algorithmic results by solving
the corresponding mathematical model with CPLEX. The outcomes demonstrate that the
Q-learning algorithm exhibits a rapid solution speed and yields optimal solutions.

The contributions of this paper are primarily encapsulated in the following aspects:
(1) A corresponding mixed-integer programming model is established. Existing

solutions to the disassembly line balancing problem often involve multi-product and
multi-objective formulations, posing challenges for solvers like CPLEX. This paper adopts
a single-objective linear mathematical model, facilitating a solution with CPLEX, thus
ensuring accurate verification and mitigating potential errors.

(2) A reinforcement learning approach is introduced to solve the DLBP, a method less
commonly utilized in current practices. A novel Q-table is defined, enabling the algorithm
to learn the environment based on the objective function.

(3) The model’s accuracy is initially validated with CPLEX, followed by a comparison
of the algorithmic results with those obtained from CPLEX. This two-step validation process
ensures the reliability of the proposed algorithm and guards against the possibility of failing
to identify the optimal solution.

The subsequent sections of this paper are structured to provide a comprehensive
understanding of our research. In Section 2, we offer a detailed description of the problem,
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accompanied by the formulation of the mixed-integer programming model. Furthermore,
we provide relevant illustrations for a detailed explanation of the process. Moving on
to Section 3 we delve into the principles of the Q-learning algorithm and elucidate its
algorithmic procedure. This section particularly emphasizes the application of the Q-
learning algorithm to effectively address the disassembly line balancing problem (DLBP).
In Section 4, we thoroughly analyze the results obtained using our algorithm and compare
them with the outcomes derived using the CPLEX solver. This comparative analysis aims
to showcase the performance of our algorithm. Finally, Section 5 serves as the concluding
segment of this paper, summarizing the key findings and contributions presented in the
preceding sections.

2. Problem Description
2.1. Problem Description

This paper investigates the two-sided disassembly line balancing problem, taking into
account the categorization of parts into fine and hazardous classifications. Specifically,
fine parts are designated for human disassembly, while hazardous parts are reserved for
robot disassembly. With the increasing prevalence of intelligent factories, there is a grow-
ing trend toward leveraging robots for certain tasks to enhance efficiency, achieve better
yields, and reduce disassembly times. Consequently, this paper addresses the challenge
of human–robot collaboration. Figure 2 illustrates a strategically designed layout for dis-
assembly sequences based on the types of disassembly lines discussed in this paper. This
layout ensures compliance with priority relationships and effectively manages conflicting
relationships within the disassembly process.

Figure 2. Two-sided disassembly line layout based on human–robot combination.

From Figure 2, it is evident that robots and human workers are deployed on either
side of the disassembly line. Based on the prioritized sequence for component disassembly
and task assignment, different components are allocated to robots and human workers for
disassembly work. It can be observed that components 1, 7, 12, 21, and 33 are assigned
to robots with varying skills for disassembly, while components 2, 4, 31, 14, and 24 are
assigned to different human workers. Ultimately, the optimal disassembly sequence for
obtaining the hammer drill is determined to be 1–2–4–7–12–21–31–14–24–33.

In this paper, we elucidate the interrelationships among individual parts and tasks by
employing the with-or-without diagram of the disassembled product [17,18]. By utilizing
the physical diagram, we create an AND/OR graph that effectively encapsulates the
hierarchical relationships among components. From this AND/OR graph, we derive
both the priority relationship matrix and the conflict relationship matrix. The AND/OR
graph proves to be a valuable representation, providing a visual depiction of various
item relationships. This visual representation serves as a preparatory step for developing
algorithmic code later. Considering the practicality of the problem, our chosen disassembly
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strategy, as studied in this paper, aims to avoid unnecessary disassembly and mitigate
the overall disassembly time, thereby enhancing efficiency. This study focuses on the
single-objective two-sided disassembly line balancing problem, utilizing the Q-learning
algorithm in reinforcement learning. The objective is to minimize the total disassembly
time while ensuring a certain disassembly profit. To illustrate the disassembly process, we
present a small case of an AND/OR graph.

As shown in Figure 3, the parentheses in the small box ⟨⟩ represent the subassembly
number, and the example is from subassemblies 1–15, i.e., 15 subassemblies. The number
after the parentheses represents the part numbers of the subassembly, e.g., subassembly
5 contains parts with serial numbers 2, 3, and 6. With arrows and brackets representing
tasks, the example task’s serial numbers range from 1 to 13, encompassing a total of 13
tasks.

Figure 3. An AND/OR graph of a washing machine.

As depicted in Figure 3, starting from task 1, subassembly ⟨1⟩ can be disassembled into
subassemblies ⟨2⟩ and ⟨3⟩, representing an AND relationship. Subassembly ⟨3⟩ can perform
tasks 2, 3, and 4, which have an OR relationship with each other. That is, subassembly
⟨3⟩ can only choose one of tasks 2, 3, or 4 for disassembly, so tasks 2, 3, and 4 are in
conflict with each other. In the figure, we can see that task 1 is the immediate predecessor
of tasks 2, 3, and 4, i.e., task 1 must be completed before tasks 2, 3, and 4 are performed.
Hence, based on this figure, we can derive the correct disassembly sequence as 1→4→8→12.
The disassembly sequence 1→2→3→6 is incorrect because it does not satisfy the conflict
relationship. The disassembly sequence 1→3→11 is also incorrect because it does not satisfy
the prior order relationship of the tasks.

Based on the AND/OR graph, we can obtain the corresponding priority relationship
matrix, conflict matrix, and relationship matrix. They are described as follows:

(1) To describe the priority relationships between tasks, we define the priority relation-
ship matrix P= [pjk], where

pj,k =

{
1, if task j can be performed before task k.
0, otherwise.

(2) To describe the conflict relationship of each task, we add the conflict matrix
Mp=[mjk ], where

mjk =


1, if task j can be performed before task k.
−1, if task j and k conflict with each other.
0, otherwise.

(3) To describe the relationships between individual tasks and subassemblies, we build
the task–subassembly relationship matrix D = [dij], where
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di,j =


1, if subassembly i is obtained by task j.
−1, if subassembly i is disassembled by task j.
0, otherwise.

Based on the above definition, the following is the conflict matrix Mp for the washing
machine case: 

0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1
0 −1 0 −1 −1 1 1 −1 −1 1 1 1 −1
0 −1 −1 0 −1 −1 −1 1 1 1 −1 1 1
0 0 −1 −1 0 −1 −1 −1 −1 1 1 −1 −1
0 −1 0 −1 −1 0 −1 −1 −1 0 1 −1 −1
0 −1 0 −1 −1 −1 0 −1 −1 0 −1 1 −1
0 −1 −1 0 −1 −1 −1 0 −1 1 −1 1 −1
0 −1 −1 0 −1 −1 −1 −1 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 −1 −1 0 0 −1 −1
0 −1 0 0 −1 −1 0 0 −1 0 −1 0 −1
0 −1 −1 0 −1 −1 −1 −1 0 1 −1 −1 0



.

The following is the relationship matrix D for the washing machine:

−1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 0 −1
0 1 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1



.

Given the complexity of the DLBP addressed in this paper, we make the following
assumptions in the mathematical model:

(1) Human–robot collaboration disassembly (two-sided disassembly line: robot on
one side and human on the other).

(2) Each robot can only disassemble one part at a time, and each worker can only
disassemble one part at a time.

(3) The priority relationship of disassembled parts must be met.
(4) Dangerous parts must be disassembled by a robot; fine parts must be disassembled

manually.
(5) The time of each disassembly task is a known and determined value.
(6) A disassembly task is assigned to only one robot or human.
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2.2. Notations

I Number of tasks.

I Task collection I = {1, 2, . . . , I}.
I I I Number of subassemblies.

K Collection of task locations on the workstation K = {1, 2, . . . , I}.
IC

i Matrix of tasks that conflict with task i.

IP
i Precedence task matrix for task i.

IR Matrix of hazardous tasks that are required to be disassembled by the robot.

IH Matrix of delicate tasks that require manual disassembly.

TR
i Robot disassembly time for task i.

TH
i Manual disassembly time for task i.

CR
i Robot disassembly cost for task i.

CH
i Manual disassembly costs for task i.

Pi Dismantling proceeds for task i.

M The maximum demolition gain of the case.

The decision variables are as follows:

(1) xik =

{
1, if task i is the k-th executed task.
0, otherwise.

(2) ui =

{
1, if task i is the disassembly by the robot.
0, otherwise.

(3) vi =

{
1, if task i is manual disassembly.
0, otherwise.

(4) ti = start time of task i (real number).

(5) tmax = max completion time (real number).

2.3. Mathematical Model

Min f = tmax (1)

∑
iεI

∑
kεI

∑
jεI I I

dij pjxik −∑
iεI

TR
i ui −∑

iεI
TU

i vi ≥ 0.5M (2)

∑
kεI

xik ≤ 1, ∀i ε I (3)

∑
iεI

xik ≤ 1, ∀k ε I (4)

∑
iεI

xik ≥∑
iεI

xik+1, ∀k ε I− {I} (5)

∑
kεI

xik + ∑
i′εIC

i

∑
kεI

xi′k ≤ 1, ∀i ε I (6)

xik ≤ ∑
i′εIP

i

k−1

∑
k′=1

xi′k′ , ∀i ε I, ∀k ε I (7)
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ti′k+1 ≥ tik, ∀i ε I, ∀i′ ε I, ∀k ε I− {I} (8)

ui + vi ≤ 1, ∀i ε I (9)

ui ≥ vi, ∀i ε IR (10)

ui ≤ vi, ∀i ε IH (11)

ti ≥ ti′ + TR
i + M(ui + ui′ + xik + xi′k′ − 4),

∀i ε I, ∀i′ ε I, ∀k ε I, k′ ≤ k
(12)

ti ≥ ti′ + TH
i + M(vi + vi′ + xik + xi′k′ − 4),

∀i ε I, ∀i′ ε I, ∀k ε I, k′ ≤ k
(13)

ti ≥ ti′ + TH
i′ v′ + TR

i′ v
′ + M(ui + ui′ + vi + vi′ − 2),

∀i ε I, ∀i′ ε IP
i , ∀k ε I, k′ ≤ k

(14)

tmax ≥∑
iεI

TR
i ui + TH

i vi, ∀i ε I (15)

xikε{0, 1}, ∀i ε I ∀k ε I ui ≥ 0, ∀i ε I vi ≥ 0, tmax ≥ 0 (16)

The objective function aims to minimize the total disassembly time. This constraint on the
total time is reflected in constraint (14). Constraint (1) ensures that the disassembly profit is
greater than or equal to 0.5 times the maximum profit. Constraint (2) ensures that each task is
performed at most once. Constraint (3) ensures that at most one task is executed per location.
Constraint (4) ensures that the latter position has a task when the former position has a task.
Constraint (5) ensures that conflicting tasks are executed at most once. Constraint (6) ensures
that at least one task in the previous sequence is executed. Constraint (7) addresses the temporal
relationship of the sequential execution of tasks. Constraint (8) specifies that each task is assigned
to manual disassembly or robotic disassembly, but not both. Constraint (9) ensures that tasks
that must be disassembled by a robot are assigned accordingly. Constraint (10) ensures that
tasks that must be disassembled by a human are assigned accordingly. Constraint (11) specifies
the tasks that must be disassembled by a robot. Constraint (12) defines the task sequence
time relationship for human disassembly. Constraint (13) defines the time relationship for the
execution of preceding tasks. Constraint (15) addresses the relationship between the maximum
completion time and the disassembly task. Constraint (16) defines the range of values of the
decision variables.

The model takes the maximum return as M in the above model, and the solution of
the minimization disassembly time model is performed according to M.

3. Q-Learning Algorithm and Application
3.1. Q-Learning Algorithm Description

This subsection introduces the principles and processes of the Q-learning algorithm [19–21].
The Q-learning algorithm is a widely used method in reinforcement learning, with a
common example being its application to maze exploration to locate a treasure [22,23].
In the realm of reinforcement learning, the intelligent agent continuously interacts with
an unknown environment. Two fundamental concepts, namely state and action, are
introduced. The agent takes actions with corresponding values to continuously maximize
rewards. The Q-learning algorithm is employed to store information learned about the
environment using a Q-table. In each iteration, the action with the highest Q-value in the
current state is chosen for state transition. The agent takes action At based on the current
state St. An action value is associated with each corresponding action [24]. Different return
values are obtained based on the state transition and the action taken by the agent. These
return values are stored in the Q-table after comprehensive environment learning, allowing
the agent to select the appropriate action for state transitions.

In reinforcement learning, the fundamental concept is to enable the agent to interact
with the environment to gather information. When the agent reaches a particular state, the
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information within that state is recorded. This facilitates a better selection of states and
actions in the broader environment later on. Essentially, reinforcement learning involves
the continuous process of allowing the intelligent agent to explore and make mistakes. As
the agent accumulates enough experience, denoted as E, in the Q-learning algorithm, this
translates to the constant updating of values in the Q-table [25,26].

The core idea of the learning algorithm is as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, At+1) −Q(St, At)]

The essence of this formula lies in the Bellman equation, which represents the transfor-
mation relationship of the value–action pair. Rt+1 + γ maxa Q(St+1, At+1) is referred to as
the Temporal-Difference (TD) target, where δt = [Rt+1 +γ maxa Q(St+1, At+1)−Q(St, At)]
denotes the TD deviation, commonly known as the TD error. Here, α represents the learning
rate, and γ is the reward decay coefficient. This formula undergoes updates using the TD
method, placing it under the category of TD algorithms.

The aforementioned equation constitutes the Q-learning update formula. It relies
on the next state, where the largest Q-value for the action is selected, multiplied by the
decay γ, and added to the actual return value corresponding to the most realistic Q-
value. The update is based on the Q(s, a) from the previous Q-table, serving as a Q-
value estimation. Through this formula, we continuously extract information from the
environment, updating the Q-values in the corresponding positions of the Q-table based
on the acquired information, whether positive or negative. The Bellman equation involves
the state value function in applying this algorithm, which we denote as follows:

Vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1
∣∣St = s

]

The Bellman equation for this state function is expressed as

V(s) = E[Rt+1 + γv(St+1|St = s)]

The state function represents the value of the current state, taking into account not
only its own state value but also the cumulative sum of values from all states that can be
reached in subsequent steps. At each step, we multiply by a decay factor γ, signifying the
proportion of the later state values. A larger γ implies a greater influence of later state
values on the Q-value in our Q-table, emphasizing their significance. This allows us to
derive the optimal state value function, denoted as V ∗ (s), based on the state function.

Applying this definition of the state function to our disassembly line context involves
subtracting the disassembly time from 100 for each position. This transformation ensures
that smaller time values correspond to larger values inside the Q-table, following the
learning method. Ultimately, the optimal disassembly sequence is obtained based on the
greedy strategy.

The pseudo-code for the Q-learning algorithm is shown in Algorithm 1.

Algorithm 1: Q-learning Algorithm

Input: Q(s, a), for all s ∈ S, a ∈ A, arbitrarily and Q(terminal-state,-) = 0, α, γ
Output: a new Q(s, a)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε− greedy)
Take action A, observe R, S′

Q(S, A)←Q(S, A) + α[R + γmaxaQ(S′, a)−Q(S, A)]
S← S′

Until S is terminal
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The algorithm iterates the model with the goal of selecting the action with the maxi-
mum value for the next state.

The action selection for the next state is executed using the ε-greedy algorithm, placing it
within the category of offline learning algorithms. By choosing the maximum action value as
the target value, the direction of the value update is directed toward the optimal q∗.

This approach relies on the value function, facilitating iteration calculations through
the value function. Following the optimization strategy based on the value function
described above, we obtain the action corresponding to the optimal value.

3.2. Q-Learning Combined with Disassembly Lines

From the aforementioned explanation, it is evident that the algorithm is well suited for
solving discrete problems, and the disassembly line balancing problem (DLBP) is inherently
a discrete problem. Therefore, the algorithm is indeed applicable to solve the DLBP.
This paper specifically aims to minimize the total disassembly time. The mathematical
transformation of small time values into relatively large values allows the algorithm to
effectively select the state with a smaller time at each step, aligning with the objective
function. To integrate the task AND/OR graph into reinforcement learning, we treat the set
of selectable actions as the next set of states that the current state can reach. Subsequently,
the algorithm proceeds to solve the disassembly line problem, and the steps are described
in detail below based on the aforementioned algorithm flowchart.

Step 1:
Initialize the Q-table by constructing a two-dimensional array with n columns and m

rows. The columns represent the number of actions, and the rows represent the number
of states. The value of each position in this two-dimensional array is initially set to 0.
According to the DLBP and AND/OR graph, we set the state to the demolition task and
the action to the next task. So, the Q-table is a square array.

Step 2:
Select an action by choosing an action in state S according to the Q-table. However,

at the very beginning, each Q-value is set to 0. The state values reachable from this state
are set to the corresponding reward values according to the specificities of the DLBP. At
the beginning, the agent explores the environment and randomly chooses actions. This
is because the agent knows nothing about the environment at this time. As the agent
continues to explore the environment, the probability of making a random choice decreases,
i.e., the agent is able to learn about the environment.

Step 3:
Execute an action. In the disassembly line balancing problem, this starts with all

states being reachable, so a random task is chosen to perform. In the process of continuous
exploration, the agent’s estimation of the Q-value becomes more and more accurate, i.e.,
after a certain number of explorations, the algorithm can find the optimal solution.

Step 4:
Evaluate. Now that the action has been taken and the result and reward observed,

the function Q(s, a) now needs to be updated according to the algorithm. Finally, after
our pre-set exploration steps have been completed, the agent is now ready to exploit the
environment. At this point, we obtain the Q-table, which represents the optimal Q-values.
The agent now selects better actions, and at this point, the subscript corresponding to the
largest value in a row of the Q-table is the optimal action for the current state. According to
the model mentioned in this paper, the algorithm stops when the gain criterion is satisfied,
which occurs when the agent completes a state transition.

Figure 4 depicts the evolution of Q-values for reachable states in the Q-table corre-
sponding to state 0, using the copier assembly example solved in this paper. In accordance
with the approach presented in this paper, the constructed task 0 can reach tasks 1, 2, 16,
and 28 through the AND/OR graph. The iterative graph of Q-values reflects this connectiv-
ity. By observing the iterative graph, it becomes apparent that stability is almost reached
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around 2500 training steps, and the final state 1 attains the highest Q-value. Consequently,
we opt to begin the disassembly process with task 1.

Figure 4. Q-value convergence diagram for optional actions from state 0.

The following describes how to improve the Q-learning algorithm to solve the DLBP,
using the example of the washing machine AND/OR diagram from the previously men-
tioned paper.

In the original Q-learning algorithm, the Q-table is initialized to guide the algorithm
on how to reach the destination. The initial values are set to 1 for reachable states, −1
for unreachable states, and 100 for reaching the destination. We construct an initial table
based on this logical relationship and set the total number of learning steps according to
the value iteration principle, ultimately obtaining the Q-table after learning. However,
this approach assumes a clear destination, and for our problem, it is not suitable since the
algorithm should not terminate only when a specific task is reached. Instead, we should
use a constraint as a termination criterion. Given that Q-learning selects the action with the
maximum value in each state, we can modify the approach for our problem as follows:

(1) Each state selects the action with the smallest value in the corresponding row of
the Q-table, meaning the action with the smallest time consumed. The initial table stores
the time consumed by each task, ensuring that the state transition selects an action with
minimal time.

(2) According to the original Q-learning algorithm, each time in the Q-table corre-
sponds to the maximum value in a row for an action. In this case, the initial table stores 100
minus the time consumed by that task. However, this corresponds to selecting the action
with the largest value, which, in our model, represents the task that actually takes less time.
This completes the state transition. In this paper, we adopt the second approach.

3.3. Definition of Reward Matrix R

According to the previously mentioned washing machine AND/OR diagram, the case
involves 13 tasks [27], corresponding to a total of 13 states in the algorithm. Each state
can have 13 actions, meaning that each task can choose from 13 tasks for state transition.
Therefore, we construct a 13 × 13 two-dimensional matrix. If a state cannot be reached, we
set the value of the corresponding position to −1, and if it is the same as itself, we set it to 0.
For states that can be reached, we set the value to 100 minus the disassembly time spent on
the corresponding task. From the figure, it is apparent that task 1 can reach tasks 2, 3, and 4.
Since the array’s memory starts with a subscript of 0, we set the values of [0,1], [0,2], and
[0,3] in the array to values of 100 minus the disassembly times spent on tasks 2, 3, and 4,
respectively. This ensures that the agent can learn effectively. In the end, at each step, the
position with the largest value in the Q-table is selected, and the corresponding state is the
task number to be performed next. This completes the learning of the example, representing
the environment. From this arithmetic example, we can summarize the method of defining
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the matrix R = [rij] to be learned using the following approach:

ri,j =


100− time spent on task j, if task i can reach task j.
0, if i = j.
−1, otherwise.

Based on this definition, the R matrix of the washing machine is as follows:

0 96 93 94 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 0 −1 −1 94 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 0 −1 −1 93 92 −1 −1 90 −1 −1 −1
−1 −1 −1 0 −1 −1 −1 88 91 −1 −1 −1 −1
−1 −1 −1 −1 0 −1 −1 −1 −1 90 94 −1 −1
−1 −1 −1 −1 −1 0 −1 −1 −1 −1 94 −1 −1
−1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 87 −1
−1 −1 −1 −1 −1 −1 −1 0 −1 90 −1 87 −1
−1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 91
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 90 −1 −1 0



.

Based on the matrix obtained from the AND/OR graph, the agent interacts with the
environment multiple times, and the environment provides feedback values to the agent.
This process results in a Q-table, which stores the Q-values for the actions that can be
selected in each state. Using the greedy algorithm, we select the action corresponding to
the largest Q-value from the starting state to reach the next state, which represents the next
task. This completes the state transition. The algorithm terminates when the gain constraint
is satisfied. The optimal solution is then output based on the achieved results.

The algorithm’s learning process based on the initial table is as follows: assuming 2000
learning steps, a learning rate of α = 0.5, and a future return decay value of γ = 0.9. After
training, the following matrix is obtained:

231.1 256.7 252.8 249.6 0 0 0 0 0 0 0 0 0
0 160.7 0 0 178.6 0 0 0 0 0 0 0 0
0 0 159.8 0 0 177.6 170.3 0 0 90 0 0 0
0 0 0 155.6 0 0 0 169.0 172.9 0 0 0 0
0 0 0 0 84.6 0 0 0 0 90 94 0 0
0 0 0 0 0 84.6 0 0 0 0 94 0 0
0 0 0 0 0 0 0 81.0 0 90 0 87 0
0 0 0 0 0 0 0 0 81.9 0 0 0 91.0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



.

In the table, we can observe that the maximum value in the first row is 256.7, corre-
sponding to action 2. Therefore, the next step is to select task 2 for disassembly. Moving
to the second row, the maximum value is 178.6, so we select action 5 for state transition,
corresponding to disassembly task 5. Moving to the fifth row, the maximum value is 94, so
we select action 11 for state transition, corresponding to task 11. When we disassemble to
task 5 and satisfy the disassembly profit, we meet the algorithm’s stopping criterion and
thus output the optimal solution. At this point, the corresponding disassembly sequence is
1 → 2 → 5.
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4. Case Introduction and Results Analysis

This section introduces six different cases of AND/OR graphs and describes how they
are incorporated into the Q-learning algorithm. The goal is to address cases of varying
sizes to cater to the specificity of the problem and account for different scenarios. The
results of the respective runs are analyzed based on the varying case sizes, and conclu-
sions are drawn [28]. The model was solved using both the Q-learning algorithm and
IBM ILOG CPLEX. The Q-learning algorithm was coded in Python and implemented on
a computer with the configuration: Intel(R) Core(TM) i7-10870H @ 2.30 and Windows
10 operation system.

For the initial case, a small example featuring 13 tasks related to ballpoint pens is
utilized for testing [29]. The AND/OR graph for this small ballpoint pen case is illustrated
in the Figure 5 below, denoted as Case 1. Figure 6 shows the part diagram of the hammer
drill, from which its main components can be seen.

Figure 5. An AND/OR graph of a small ballpoint.

Figure 6. Hammer drill part diagram.

In the second case, a ballpoint pen with 20 tasks is considered. Since subassembly 1 can
perform both task 1 and task 2, an additional task 0 is introduced into the algorithm. Task 0
can reach tasks 1 and 2. Consequently, there are 21 tasks and 24 subassemblies, leading to
the construction of a 21× 21 two-dimensional matrix. This case is denoted as Case 2 [30,31].
For the third case, a slightly larger copier with 32 tasks is used. According to the AND/OR
graph, subassembly 1 can handle tasks 1, 2, 16, or 28. Therefore, task 0 is constructed in
the algorithm, allowing it to reach tasks 1, 2, 16, and 28. This results in the construction
of a 33 × 33 matrix for the algorithm to learn. This case is referred to as Case 3 [32,33]. In
the fourth case, a rotor is considered, featuring 15 tasks and 17 subassemblies. A 15 × 15
two-dimensional matrix is constructed based on the AND/OR graph for the algorithm
to learn. This case is referred to as Case 4 [34,35]. The fifth case involves a slightly larger
radio with 30 tasks and 29 subassemblies. To enable task 0 to reach tasks 1 and 2, a 31 × 31
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two-dimensional matrix is constructed for the algorithm to learn. This case is denoted
as Case 5 [36,37]. Finally, a large example of a hammer drill with a partial structure is
utilized for the sixth case. This case comprises 46 tasks and 63 subassemblies [38,39]. A
46 × 46 matrix is constructed for the algorithm to learn. This case is referred to as Case 6.

Table 1 presents a detailed description of all the cases, including the various parameters
for small, medium, and large products, respectively. Table 2 describes the algorithm
parameter settings for each product. Table 3 shows the results of the algorithm for each
case and the results obtained with the CPLEX solver. Table 4 presents a comparison of the
results of the Q-learning algorithm and the SARSA algorithm for six cases. The latter part
of Table 4 presents the comparison results between the improved Q-learning algorithm and
the original Q-learning algorithm for six cases.

Table 1. Descriptions of the six products.

Case Disassembled Product Number of Disassembly Tasks Number of Subassemblies

Case 1 Ballpoint pen I 13 15

Case 2 Ballpoint pen II 20 24

Case 3 Copier 32 29

Case 4 Rotor 15 17

Case 5 Radio 30 29

Case 6 Hammer drill 46 63

Table 2. Parameters for each case in Q-learning.

Case Training Steps Future Return Decay Value Learning Rate Action Space Size Number of Rounds

Case 1 2000 0.9 0.5 13 4

Case 2 2000 0.9 0.5 21 4

Case 3 20,000 0.6 0.5 33 4

Case 4 2000 0.9 0.5 15 4

Case 5 10,000 0.7 0.5 31 4

Case 6 20,000 0.7 0.5 46 4

Table 3. Running times and CPLEX results for Q-learning algorithm for different examples.

Case
Improved Q-Learning CPLEX

Time Ratio
Disassembly Sequence f Running Time Disassembly Sequence f Running Time

1 1→3 6 0.05 s 1→3 6 0.32 s 14.33%

2 1→4→7→11 14 0.06 s 1→4→7→11 14 5.94 s 1.03%

3 1→17→12→5 16 0.56 s 1→17→12→5 16 6.88 s 8.18%

4 1→2→3→4 11 0.05 s 1→2→3→4 11 0.55 s 8.55%

5 1→3→4→15 16 0.28 s 1→3→4→15 16 6.13 s 4.58%

6 1→2→4→8→15→25→34→11 45 0.61 s – – – –
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Table 4. Running time results of improved Q-learning and SARSA algorithms for different cases.

Case
Improved Q-Learning SARSA

Gap
Original Q-Learning

Gap
f Running Time f Running Time f Running Time

1 6 0.05 s 6 0.04 s 0% 6 0.04 s 0%

2 14 0.06 s 29 0.05 s 107.14% 14 1.28 s 0%

3 16 0.56 s fail – – fail – –

4 11 0.05 s 11 0.04 s 0% 11 0.04 s 0%

5 16 0.28 s fail – – fail – –

6 45 0.61 s 56 0.80 s 24.44% fail – –

Figure 7 depicts the convergence of the objective function for Q-learning and Sarsa
algorithms in Case 6. As the objective function of this chapter aims to minimize the maxi-
mum disassembly time while ensuring a certain disassembly profit, smaller values of the
objective function are preferable. From the graph, it can be observed that after stabilization,
the objective function value of the Q-learning algorithm is smaller, indicating that it obtains
better feasible solutions. Additionally, the stability of the Q-learning algorithm is superior
to that of the Sarsa algorithm.

Figure 7. Change diagram of objective function value of Q-learning and SARSA algorithms for
Case 6.

Figure 8 shows the convergence of TD error for the Q-learning and Sarsa algorithms.
It can be observed that the Q-learning algorithm reaches convergence after approximately
1250 training steps, whereas Sarsa remains unstable even after 2000 steps.

From the above tables, it is evident that the improved Q-learning algorithm can
indeed find the optimal solution, and its running time is much faster than that of CPLEX
across various case scales. Additionally, we can see in the table that the running time
of CPLEX grows linearly with the case scale, while the running time of the Q-learning
algorithm increases with the case scale. The running time of the Q-learning algorithm
does not change significantly as the case size increases, and the differences are negligible,
ranging from 0.04 s to 0.61 s. Moreover, according to the results for the first five cases,
the maximum running time of the algorithm is only 14% of the running time of CPLEX,
which is a small percentage of time. Even in the second case, it is only 1%, showing that
the algorithm can more efficiently find the optimal solution compared to CPLEX, which is
crucial for companies or factories. Importantly, it can be seen from the experimental results
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that in small- and medium-scale cases, CPLEX provides the optimal solution similar to
the algorithm.

Figure 8. TD error variation diagram for Q-learning and SARSA algorithms.

However, when the last large-scale case with 46 tasks is carried out, CPLEX encoun-
ters a memory overflow issue.It can be seen that CPLEX has eliminated many rows and
improved the boundary many times. However, because the scale of the calculation example
is too large and the RAM in the running environment is insufficient, there is not enough
memory to continue constructing the corresponding data in the future. The solution scale
is too large for the case, and there are too many possible solutions, making it impossible
to find a better solution, whereas the Q-learning algorithm can provide a better solution.
This shows that the improved Q-learning algorithm can indeed solve the DLBP, and the
solution it provides is optimal. In the future, the scale of our recycled products may become
larger and may involve large products that need to be disassembled such as engines and
used motorcycles. In this case, CPLEX may struggle to find a better solution, but the
proposed algorithm can find a feasible solution in a very short time. This proves that it
can address not only the recycling problem of small disassembled products but also the
recycling problem of large used products. The proposed algorithm is not bounded by the
size of the arithmetic case when solving the DLBP and can provide an optimal solution in a
shorter time.

5. Conclusions

In this paper, reinforcement learning is applied to solve the DLBP, with the Q-learning
algorithm used to solve the problem’s discrete nature. A new Q-table is defined, and the
algorithm learns to obtain the optimal solution. The Q-table for the corresponding arithmetic
cases is built based on the relationship with the OR graph. Experimental demonstrations show
that the size of the arithmetic case does not significantly impact the algorithm’s execution
time. Consequently, it is substantiated that the algorithm efficiently solves the disassembly
line balancing problem.

When faced with more complex models or more complex disassembly line balancing
problems, the complexity of solving the problem may increase. For three-dimensional
and above problems, the performance of the Q-learning algorithm may be slightly worse.
In such cases, we need to use deep reinforcement learning techniques, such as the A3C
and DDQN algorithms. With such algorithms, we can handle more complex models and
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consider more factors. Such algorithms are not limited by the complexity of the disassembly
problem. They use neural networks to solve the problem, and the running time of these
algorithms is mainly spent on building the neural network [40]. Furthermore, the dimen-
sionality of the information being learned does not significantly impact the performance
of these algorithms. Therefore, we can use these algorithms to solve disassembly line
balancing problems for complex models more effectively in the future.
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