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Abstract: Under the Paris Agreement, countries must articulate their most ambitious mitigation
targets in their Nationally Determined Contributions (NDCs) every five years and regularly submit
interconnected information on greenhouse gas (GHG) aspects, including national GHG inventories,
NDC progress tracking, mitigation policies and measures (PAMs), and GHG projections in various
mitigation scenarios. Research highlights significant gaps in the definition of mitigation targets and
the reporting on GHG-related elements, such as inconsistencies between national GHG inventories,
projections, and mitigation targets, a disconnect between PAMs and mitigation scenarios, as well
as varied methodological approaches across sectors. To address these challenges, the Mitigation-
Inventory Tool for Integrated Climate Action (MITICA) provides a methodological framework that
links national GHG inventories, PAMs and GHG projections, applying a hybrid decomposition
approach that integrates machine learning regression techniques with classical forecasting methods
for developing GHG emission projections. MITICA enables mitigation scenario generation until
2050, incorporating over 60 PAMs across Intergovernmental Panel on Climate Change (IPCC) sectors.
It is the first modelling approach that ensures consistency between reporting elements, aligning
NDC progress tracking and target setting with IPCC best practices while linking climate change
with sustainable economic development. MITICA’s results include projections that align with
observed trends, validated through cross-validation against test data, and employ robust methods
for evaluating PAMs, thereby establishing its reliability.

Keywords: Paris Agreement; climate change mitigation; sustainable development; National Determined
Contributions; low carbon strategies; machine learning regression; mitigation scenarios; carbon modelling

1. Introduction

The Paris Agreement [1] established the Enhanced Transparency Framework (ETF)
with the aim to foster trust among Parties. Operationalised through the modalities, proce-
dures, and guidelines (MPGs) [2], the ETF sets extensive reporting requirements, enabling
effective tracking of progress toward the Agreement’s objectives. Under the ETF, countries
are required to submit biennial transparency reports (BTRs) every two years, with the first
due by 31 December 2024. BTR content includes different information pieces related to
greenhouse gases (GHG), including a national GHG inventory, GHG projections, informa-
tion on mitigation policies and measures (PAMs), and information to track progress of the
Nationally Determined Contribution (NDC). Parties are expected to report ‘with measures’
(WM) and may report ‘with additional measures’ (WAM) and ‘without measures’ (WOM)
projections, allowing to assess impact of national PAMs into the future GHG emission
profile [3].

In addition to BTRs, Parties are required to submit successive updated NDCs every
five years, representing progression compared to the previous NDC and reflecting the
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highest possible ambition, especially in the form of mitigation targets. These submissions,
initially due by 2020 and every five years thereafter, require information necessary for
clarity, transparency, and understanding (ICTU), encompassing quantifiable details on
reference points, time frames, scope, methodological approaches, and fairness of NDCs [4].
Despite synergies between reporting elements such as national GHG inventories, PAMs,
projections, NDC updates, and NDC tracking, consistency issues and primary difficulties in
periodically producing and reporting on these elements are anticipated. This is particularly
attributed to data collection, lack of national expertise and weak institutional systems [5].

To further elaborate on the consistency issues and primary difficulties mentioned
earlier, several key aspects need consideration. These include the inconsistency observed
between national GHG inventories and projections, as highlighted by [6]. Additionally,
a critical issue is the disconnection between PAMs and mitigation scenarios, as discussed
by [7]. Furthermore, the utilisation of inconsistent methodological approaches across
different sectors leads to a lack of clarity regarding aggregated emissions and mitigation
targets, resulting in increased uncertainty — a concern emphasised by [8,9].

The literature also identifies a significant challenge related to the insufficient capacity
in developing countries to employ complex modelling approaches for producing GHG pro-
jections in different mitigation scenarios, exacerbated by the absence of common guidelines
to produce GHG emission projections [10–13].

To effectively address these challenges in developing mitigation scenarios for NDC
design and tracking requires careful consideration of specific key elements. Firstly, there
is a necessity for consistency between various GHG elements, namely national GHG in-
ventories, PAMs, mitigation scenarios, and mitigation targets [13,14]. Ensuring alignment
with the Intergovernmental Panel on Climate Change (IPCC) methodologies and nomen-
clatures [15,16] is crucial for maintaining standardised and comparable reporting practices,
while adopting coherent and informed policy decisions.

Moreover, the adopted approaches should have the flexibility to accommodate limited
data availability, recognising the resource constraints often faced by developing country
Parties [17]. This adaptability is essential for enabling a broader spectrum of countries to
effectively participate in both climate action and the ETF reporting process. Additionally,
the utility of these approaches extends beyond mere reporting; they should facilitate the
establishment of mitigation targets and streamline the tracking of mitigation efforts [18].
A robust framework that meets these requirements would not only enhance the trans-
parency and comparability of reporting but also empower developing countries to actively
contribute to the global efforts outlined in the Paris Agreement.

The current landscape of models and tools for developing mitigation scenarios falls
short of meeting these criteria. Consequently, the proposed Mitigation-Inventory Tool
for Integrated Climate Action (MITICA) aims to bridge these gaps by leveraging existing
IPCC methodologies and expertise in developing national GHG inventories. MITICA’s
objective is to align national GHG inventories with GHG projections and PAMs, thereby
facilitating NDC progress tracking, and harmonising mitigation planning. Through its
innovative framework, MITICA endeavours to empower stakeholders with the tools and
insights necessary to navigate the complexities of climate mitigation and contribute mean-
ingfully to the objectives outlined in the Paris Agreement. This paper presents MITICA as a
comprehensive solution to the identified challenges. It outlines the framework’s structure,
emphasising its role in reducing inconsistencies, enhancing transparency, and empowering
countries to align their mitigation targets effectively. By integrating national GHG invento-
ries, projections, and mitigation scenarios, MITICA provides a systematic and harmonised
approach to mitigation planning that not only enhances the accuracy and reliability of
reporting but also fosters a more coordinated and effective approach to climate action on a
global scale.

The paper is organised in the following sections. Section 2 describes the material and
methods of the study, before the results and discussion are presented in Section 3. Finally,
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in Section 4 the conclusions of the paper are discussed, delineating the main insights and
avenues for future work.

2. Matherials and Methods

An extensive literature review in Appendix A discusses challenges in developing miti-
gation scenarios, approaches used by developed and developing countries for elaborating
such scenarios, and relevant studies on GHG forecasting. From the assessment of devel-
oped Parties’ submissions outlined therein, it is observed that most adopt sector-specific
bottom-up models built from national GHG inventory methodologies and use them in
conjunction with macro top-down models incorporating exogenous drivers that charac-
terise their respective national economies. A notable drawback identified in this approach
is the substantial resources, including time, personnel, and budget, required for generating
distinct mitigation scenarios for each IPCC category and sector. This is attributed to the
considerable human interventions necessary in model production. As a result of this obser-
vation, the objective of MITICA is to standardize a framework that enables any country,
with a particular focus on developing nations, to formulate specific bottom-up mitigation
scenarios specified at the IPCC category level by the country, combined with a top-down
specification of their national economy. Additionally, MITICA draws inspiration from the
main modelling alternatives utilised by developing countries, offering an extensive list of
possibilities for PAMs, and developing sector-specific modelling approaches. Considering
various alternatives discussed in the literature [19,20], the most suitable option to meet
the study’s requirements is statistical frameworks with the flexibility to accommodate di-
verse sector-specific models tailored to different circumstances and data availability, while
maintaining overall consistency across sectors, scenarios, and time periods. Under these
considerations, MITICA aims at establishing both a framework and a tool to create con-
sistent mitigation scenarios that can be tracked against historical GHG emission trends
and used as a benchmark to define and implement relevant interventions when needed.
The following subsections describe MITICA’s general framework, its forecasting approach,
the accountability for PAMs, and the software characteristics.

2.1. General Framework

MITICA’s conceptualization and development adhered to specific requirements.
Aligned with its objectives, it followed IPCC nomenclatures, ETF definitions, and UNFCCC
inventories as primary data inputs. The framework is designed to be universally appli-
cable, offering a standardised methodology to overcome identified challenges effectively.
It utilises national GHG inventories at the highest disaggregation level, mirroring their
detailed structure to enhance model specification. MITICA employs a consistent modelling
framework for all IPCC sectors to minimise inconsistencies, while still being emission
source and country specific.

MITICA’s goal is to address GHG emission sources and sinks comprehensively result-
ing from the implementation of various PAMs within user-defined macroeconomic and
sectoral frameworks. The modelling approaches therefore consider the evolution of proxies,
encompassing macroeconomic, demographic, and sectoral drivers across various scopes,
influencing country-level GHG inventory methodologies. While MITICA’s outcomes are
not predictive, they serve to scientifically assess policy alternatives and derive potential
mitigation targets. This aids both developed and developing countries in designing and
tracking NDCs within the ETF of the Paris Agreement, as well as to assist in reporting to
the UNFCCC.

Considering these requirements, MITICA develops mitigation scenarios starting with
the estimation of a WOM scenario. This scenario represents projected national GHG
emissions considering a set of projected proxies ceteris paribus; only the proxies change
in the projected years, being the technology mix, consumer behaviour as well as the
GHG accounting methodologies the same of the latest historical year; these elements will
only change as a result of the implementation of PAMs. Indeed, MITICA uses the WOM
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as a benchmark for developing mitigation scenarios (WM and WAM, in line with ETF
definitions). In these scenarios the only difference concerns the PAMs implemented and
their impact on GHG emissions. Further information on the design of the forecasting
approach selected for projecting WOM emissions in MITICA is provided in Section 2.2.

The input data required by MITICA for estimating the WOM scenario is the national
GHG emission inventory and a set of projected proxies. MITICA’s estimations are made
at the highest disaggregation level available in the national GHG emission inventory.
Inventory estimations can start from year 1990 and are provided on an annual basis.
However, the flexibility provisions of the ETF allow developing Parties to develop and
submit national GHG inventories with starting years other than 1990 [2]. Countries facing
higher capacity constraints may only be able to develop and report limited time series,
as can be observed in the biennial update reports (BURs) submitted until 2023 [21]. Despite
shorter national GHG emission inventory time series, developing countries are required to
develop and submit NDCs including mitigation targets, and also report on the tracking
of progress of the NDC every two years. Furthermore, the completeness and the level of
detail of national GHG emission inventories may vary due to the different methodological
approaches that are allowed by the 2006 IPCC Guidelines. In this context, MITICA develops
mitigation scenarios even with limited inventory time series and sectoral disaggregation.
However, the quality of results is substantially improved with longer time series and higher
sectoral granularity levels.

The proxies needed by MITICA to estimate the WOM scenario GHG emission consist
of two layers: a first layer of national-level proxies needed to develop GHG projections,
and a second layer of sector-specific proxies aimed at refining sectoral model specifications.
Despite the forecasting approach is common for all sectors, different sectoral proxies enable
MITICA to define national-specific sectoral models to project WOM emissions.

These proxies have been selected considering: (i) data availability, prioritising proxies
with generally accessible and comprehensible data; and (ii) the theoretical relationship
between sectoral emissions and the proxy, grounded in relevant research. Table 1 shows the
main proxies considered, describing the theoretical relationship between variables building
from [22,23].

Table 1. Sectoral proxies in MITICA.

Granularity 1 Proxy Theoretical Relationship

All sectors Gross Domestic
Product (GDP)

GDP involves activity levels in the different
inventory emission sources. Increasing
GDP generally involves increasing emissions.

All sectors Population
Increased population levels generally
lead to increasing emissions.

Energy Energy demand
Energy demand is directly related to
increased fossil fuel emissions in the
absence of technological changes.

Energy Fuel prices
Increase in fuel prices generally
result in a reduction in fuel
consumption in the medium term.

Energy Energy supply

The amount of energy supplied is
directly correlated with sectoral
emissions. An increase in energy
supply contribute to higher emissions.

Transport Fleet

A larger fleet, particularly if
dominated by vehicles with higher
emission profiles, tends to contribute
to increased emissions.
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Table 1. Cont.

Granularity 1 Proxy Theoretical Relationship

Transport Vehicle kilometre
travelled

The total distance travelled by vehicles
is positively associated with sectoral
emissions. Higher vehicle kilometre
travelled result in increased fuel
consumption and emissions.

Fugitive emissions
Solid fuel

production
activity levels

The level of activity in solid fuel
production is directly linked to
emissions from the use of solid fuels.

Fugitive emissions Oil production
levels

Oil production levels have a direct
impact on sectoral emissions.

Fugitive emissions Natural gas
production levels

The levels of natural gas production
are positively associated with sectoral
emissions.

Industrial Processes
and Product Use—IPPU

Industrial activity
index

Industrial activity levels lead to
increased emissions in the absence
of changes in technologies.

Industrial Processes
and Product Use—IPPU

Income indicator
Income levels are correlated with
consumption patterns, particularly
on products use.

Agriculture Crop activity
index

An increase in crop activity levels
lead to increased emissions from
agriculture in the absence of changes
in practices or technologies.

Agriculture Livestock activity
index

Increased livestock population produce
increased emissions from agriculture.

Land Use, Land-Use
Change and Forestry
– LULUCF

Forest land
cover growth

Increased forest land involves increased
CO2 removals, therefore reduced net
GHG emissions.

Land Use, Land-Use
Change and Forestry
– LULUCF

Degree of
conservation

Increased forest trends lead to enhanced
biomass growth and subsequent CO2
removals, therefore reduced net GHG emissions.

Other sectors Service activity
index

Increased service activity may contribute
to higher energy consumption and
emissions associated with the provision
of services.

Other sectors Households
Increasing households’ size leads
to increased household energy
consumption and emissions.

Other sectoral proxies - -

Starting from an initial WOM projection, MITICA develops generic methodologies,
building from [24], to estimate the impact of relevant PAMs on main emission sources
and sinks. The approach and foundations of PAMs estimations are further elaborated in
Section 2.3. WM and WAM scenarios are then constructed by considering the impact of
user selected PAMs. By considering different sets of PAMs, policy makers can visualise
the potential impact of implementing policies of interest into the national emission profile.
This type of mitigation assessment can support in establishing informed mitigation targets
and assessing their potential evolution under specified mitigation scenarios and a given
macroeconomic framework. Figure 1 illustrates the generalised procedural steps of MITICA,
which are subsequently elaborated upon below.
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Figure 1. Generalised steps to obtain mitigation scenarios in MITICA.

A more detailed graphic workflow of MITICA is provided in Appendix C for fur-
ther reference.

2.2. Methodology for Projecting GHG Emissions in the WOM Scenario

The methodology selection for projecting the WOM scenario within MITICA builds
from the revision of the literature of time series forecasting. Table 2 shows the methods
followed by a selection of studies of similar nature for time series forecasting.

Table 2. Selection of similar studies ∗ for time series forecasting.

Study Modelling Approach Application

[25] Autoregressive integrated
moving average (ARIMA)

Energy consumption and GHG
emissions from pig iron manufacturing

in India.

[26]
Seasonal Autoregressive

Integrated Moving average
with Exogenous Factors

(SARIMAX)

Forecast of short-term hourly
electricity generation.

[27] ARIMA & SARIMAX
Forecasting natural gas production

and consumption in United States until
2025 on monthly basis.

[28] Random Forest Regression model. Forecasting CO2 emissions at
city level in China.

[29] Random Forest Regression model. Generation capacity forecasting
of cascade hydropower stations

[30] Random Forest Regression
model with Slime Mould Algorithm.

Forecasting of CO2 emissions
from road transport.

[31]
Long-short Term Memory (LSTM) neural

network compared with Least Squares
Support Vector Machine and recurrent

neural network.

Forecasting of NOx emissions
from thermal power plant.

[32]
Three methods are applied, the ARIMA

model, the SARIMAX model and the
LSTM model.

Forecast of CO2 emissions in India.
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Table 2. Cont.

Study Modelling Approach Application

[33] Least Squares Support Vector Machine Projection of thermal comfort,
CO2 emission and economic growth.

[34]
Empirical mode decomposition and
evolutionary least squares support

vector regression.

Carbon price using EU ETS
for years 2013–2016.

[35] Least Squares Support Vector Machine. CO2 emissions of Hebei using
a time series for years 1990–2016

[36] 6 different machine learning models,
including GBR

Forecasts for solar radiation
in daily and hourly timescales.

[37] GBR tree and principal component
regression models.

Forecast of electricity prices
in Spain.

[38] GBR combined with Random Forest
Regression.

Prediction of net ecosystem carbon
exchange using data from two sites
for years 1997, 2010, 2012 and 2013.

[39] Artificial Neural Network
(ANN)

Forecast of the heating and cooling
energy demands, energy consumptions
and CO2 emissions of office buildings

in Chile using a dataset of 77,000 data points.
[40] Artificial Neural Network Annual forecasts of CO2 emissions

for 17 countries.

[41]
Comparison of several regression

techniques, including Least Absolute
Shrinkage and Selection

Operator (LASSO).

Forecasting of long-route CO2
emission from shipping using

40 data points.

[42] LASSO-Deep Belief Networks
(DBN)-Bootstrap Model.

Long term streamflow forecasting
using monthly data for the period

1956–2015.

[43]
Three different models are used,
including Grey Model GM(1,N),

ANN and LASSO.

Short-term forecasting annual
CO2 emissions in Malaysia.

[44] The LASSO model is compared to several
shallow models.

China 2022–2027 forecasting
of CO2 emissions using a
dataset from 2011 to 2021.

* In the table, studies of distinct nature are distinguished through the incorporation of ticker lines for easy
reference.

When prioritising the key requirements for MITICA’s methodology design, previous
research was examined to assess the applicability and optimal performance of models.
The primary criterion is the model’s efficacy in projecting GHG emissions over extended
time periods, ensuring its appropriateness for long-term forecasting. A secondary consider-
ation involves the model’s proficiency in managing small datasets, recognising the inherent
limitations associated with restricted time series data. Additionally, the model’s capacity to
integrate external proxies assumes critical importance for capturing external factors that
influence emissions. Lastly, the requirement for flexibility underscores the necessity for the
model to be adaptable and tailored to the specific contexts of different countries.

In light of these criteria, Seasonal Autoregressive Integrated Moving Average with
Exogenous Factors (SARIMAX) distinguishes itself for its ability to incorporate external
regressors and manage limited data, while Least Absolute Shrinkage and Selection Operator
(LASSO), Gradient Boosting Regression (LASSO), Gradient Boosting Regression (GBR) and
Random Forest Regression have also proven advantageous for their aptitude in capturing
intricate patterns and offering flexibility across diverse datasets and geographical contexts.
Furthermore, the comparative performance of these methods has provided good results
in previous studies [27,32,38]. In contrast, deep learning techniques such as the Long
Short-Term Memory (LSTM) models may encounter challenges with small datasets and
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interpretability [44], while ARIMA and Least Squares Support Vector Machine may face
difficulties in accommodating external proxies and adapting to the distinct contexts of
different countries [45].

Based on this assessment, MITICA incorporates projection modelling approaches
better suited for small data sets, long-term forecasting, and considering exogenous drivers.
Consequently, a hybrid approach, named Artificial iNtelligeNce And cLassIcal STatistics
(ANNALIST), is developed for projecting the WOM scenario. This hybrid model integrates
LASSO, SARIMAX, and Random Forest Regression, leveraging the primary advantages of
the forecasting methods investigated in GHG forecasting literature. MITICA also offers
alternative but suitable methods, empowering users to select the preferred option based on
the characteristics of the dataset and enabling the maximisation of available data utilisa-
tion while mitigating potential limitations associated with various modelling approaches.
The model initiates by decomposing the trend and noise, a commonly employed practice in
GBR [38]. The Exponentially Weighted Moving-Average (EWMA) algorithm is applied to
derive the trend, similar to the approach taken by authors in [46]. Subsequently, the noise
is obtained through subtraction. The selection of the trend-noise tuple is based on demon-
strating stationarity noise, assessed using the Augmented Dickey Fuller test, and maximal
standard deviation.

Assuming a time series Yt = Tt + Rt where Yt represents the value at time t, Tt denotes
the trend, and Rt the noise, the variance is formulated as:

VAR(Yt) = VAR(Tt + Rt) (1)

Under the assumption of independent noise and trend, it is posited that:

VAR(Yt) = VAR(Tt) + VAR(Rt) (2)

Further assuming that VAR(Yt) = C due to its constancy, and VAR(Rt) = nVAR(Tt):

C = VAR(Tt)(1 − n) → VAR(Tt) =
C

(1 + n)
(3)

This reveals that as n increases, reflecting a larger VAR(Rt), VAR(Tt) decreases. This
drives the rationale for selecting noise with a higher standard deviation. SARIMAX is
employed to capture intricate patterns, functioning optimally in the presence of station-
ary values. In such cases, SARIMAX predicts the noise seamlessly, and simultaneously,
the trend remains simplified, thus enhancing predictive accuracy. In instances where noise
does not meet these criteria, zero noise is considered, treating the entire dataset as the
trend. Utilising regression techniques on a pool of potential variables for model devel-
opment often results in overfitting, characterised by an excessive inclusion of variables
in the final model and an overestimation of its performance [47]. To tackle this issue in
trend prediction, the LASSO model is employed [48]. LASSO determines the best fit model
specification by IPCC category, considering the proxies inputted by the user. As a default
setting, in order to offer a priori information for various models by sector, ANNALIST
includes a prioritisation weight for the proxies. This weight assigns greater importance to
the parameters of sectoral drivers that have demonstrated better performance within their
respective sectors, as outlined by [23].

For noise treatment and assembling, ANNALIST applies a first difference in the pres-
ence of non-stationarity by applying the Augmented Dickey Fuller test. Once stationarity
is ensured, the following SARIMAX specification is applied: (p, 0, q)(0, 0, 0, 0).

Following the addition of trend and noise predictions, a series of automated cor-
rections employing machine learning is applied throughout the process. The initial step
involves outlier filtering using the Isolation Forest model [49], a machine learning tool
designed for outlier detection. Subsequently, a Random Forest Regressor model [38] is
employed to train on historical data and update predictions. A comprehensive hyperpa-
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rameter optimisation is then conducted using Grid Search CV [50], a machine learning
technique seeking the optimal parameter combination to enhance model accuracy. This op-
timisation is reinforced with time series cross-validation, ensuring the model’s robustness
and generalisability across different temporal datasets. Thus, a reliable model is obtained,
maximising the strengths of SARIMAX while simplifying the trend in the most robust
manner. Subsequently, the model undergoes various machine learning analyses to ensure
the maximum likelihood of the outcome. The graphic workflow of ANNALIST is provided
in Appendix B.

To enable the application of MITICA across various input datasets and time series,
alternative approaches to ANNALIST for projecting the WOM scenario are integrated.
This includes a GBR model without decomposition and the SARIMAX method. GBR has
proven particularly useful for very short time series (from 2 observation years), making
it valuable for countries with limited time series data. SARIMAX yielded results similar
to ANNALIST, except for linear trend functions characterised by the consolidation of all
noise variation predominantly at the upper end of the series. Therefore, it is incorporated
for cross-comparison purposes. MITICA requires users to validate the forecasts produced
for the WOM scenario by IPCC category, incorporating the possibility to modify the model
specified by ANNALIST by changing the type of modelling approach from ANNALIST to
GBR or SARIMAX.

Regarding the software aspect, MITICA has been deployed in a desktop application
using Phyton as the main programming language. By adopting Python, MITICA ensures
compatibility with various operating systems, including Windows, macOS, and Linux,
making it accessible to a broader user base. This cross-platform compatibility enhances
the usability and accessibility of MITICA, allowing users from different backgrounds to
leverage MITICA’s features for GHG forecasting and mitigation analysis. Furthermore,
MITICA’s deployment as a desktop application offers several practical benefits. For instance,
users can run MITICA locally on their computers, ensuring data privacy and security.
Moreover, being a standalone application, MITICA does not require an internet connection
to function, providing users with uninterrupted access to its features and functionalities,
regardless of their location or internet connectivity.

2.3. Mitigation Impact of PAMs and Definition of WM and WAM Scenarios

The PAMs accounting approach of MITICA extends the methodological framework
described in [24] to encompass all IPCC sectors and main mitigation alternatives, aligning
with the principles and requirements described in Section 2.1. The methodological frame-
work outlined in [24] has already undergone testing and its estimates have been included
in the National Energy and Climate Plan of Greece [51], proving its applicability in the
context of the study. The basic estimation approach is depicted as:

MEti−t f = R · Mti−t f [REFt − MEFt] (4)

where MEti−t f represents the mitigation effect of the PAM for the entire projected period,
Mti−t f is the magnitude of the PAM representing the affected activity levels, R represents
the reduction factor in magnitude from PAM implementation, REFt stands for the reference
emission factor in the absence of the PAM at time t, and MEFt is the mitigation emission
factor post implementation of the PAM at time t. Based on this generalisation, PAM
methodologies are specified case-by-case, inked to the reference national GHG inventory
through the REF, and associated with the WOM scenario through Mti−t f .

Building from this conceptual framework, an extensive list of PAMs (Appendix D) is
available within MITICA, providing default factors and specific methodologies covering all
emission sources and sinks defined by the IPCC Guidelines [15,16]. In the final tool, users
are required to define the magnitude of the desired PAM and adjust, if necessary, any of
the methodological parameters. Once the list of PAMs is defined, MITICA aggregates the
individual impact assessment of PAMs to produce the WM and WAM scenarios, thereby
allowing to define scenarios based on national circumstances and stakeholder agreements.
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Figure 2 shows MITICA´s rationale to account for the impact of PAMs from the estimation
of the WOM scenario.

Figure 2. Illustrative example of scenario design from the WOM scenario.

3. Results and Discussion

The projection of the WOM scenario constitutes a critical step in developing mitigation
scenarios, as it creates the benchmark against which the impact of PAMs is evaluated.
The robustness f the results provided by MITICA for the WOM are analysed by applying
different projection methods on historical datasets to ascertain the modelling approach
providing best results compared to real data. Yearly datasets spanning a typical historical
data length (approximately 30 years since UNFCCC data collection starts in 1990) plus the
maximum prediction range (year 2050) are selected for analysis. Three datasets from the
World Bank database are used: total energy use [52], goods export data [53] and use of
alternative and nuclear energy [54]. The time period from 1960 to 2022 is categorised into
historical (1960–1990) and projection (1991–2022) periods. The forecasting process considers
GDP [55] and population [56] as proxies. These datasets serve as plausible representative
examples of the data that MITICA will process, and the results can be compared to observed
values. The selection of countries for the analysis is driven by data availability, and includes
Australia, Finland, France, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal,
Spain, Sweden, Turkey, the United Kingdom, and the United States. Figure 3 shows an
extract of the results obtained for four countries.

The brown line depicts the actual observed data, juxtaposed with alternative forecast-
ing methodologies within the MITICA framework, namely ANNALIST, GBR, and SARI-
MAX. Additionally, two methods are included for comparative analysis: a linear regression
forecast and a linear extrapolation utilising the annual growth rate of the latest time series
value (AG Forecast). AG Forecast serves as a metric for evaluating the performance of
these methods, observing that the annual growth deviates further from the actual values.
The examination of the figures reveals that, in general, ANNALIST and SARIMAX exhibit
results closest to the real data, effectively capturing observed trends. The deviation of each
model’s results from actual data is quantified in Table 3, serving as a metric for assessing
the performance of each modelling approach.

The average deviation, considering results across all countries, further indicates that
ANNALIST, with its modelling approach, yields outcomes closest to the actual data. This
underscores the proficiency of MITICA in generating scenario projections. The validation
of PAMs has been analysed broadly in several studies [57–59], offering supporting evidence
for the reliability of MITICA’s outcomes in developing WM and WAM scenarios based on
WOM results.

In addition to the earlier evaluations, the beta release of MITICA underwent testing
with a variety of input datasets. These datasets encompassed the Tajikistan national GHG
inventory sourced from [60], confidential information provided by Uruguay regarding
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its inventory, and a set of simulated databases from the IPCC software [61]. The test-
ing primarily focused on assessing the functionality of the software and identifying any
potential bugs.

Figure 3. Robustness of MITICA’s results, exemplified by the analysis of energy use data for Spain,
Turkey, the USA, and Luxembourg.

Table 3. Deviation between the actual mean and the predicted mean of different models in the
tested datasets.

Linear Regression Annual Growth GBR SARIMAX ANNALIST

Goods export data 29% 127% 22% 28% 19%
Total energy use 19% 52% 25% 18% 16%

Use of alternative
and nuclear energy

52% - 56% 57% 44%

Mean 33% - 34% 34% 26%
Average computing

time (s)
0.038 0.013 0.05 52 0.97

4. Conclusions

Previous research has highlighted gaps and challenges in generating mitigation sce-
narios and ensuring consistent reporting under the ETF across various facets of GHG
emissions. This encompasses areas such as national GHG emission inventories, the impact
assessment of PAMs’ impact, GHG emission projections, and NDC design and tracking,
particularly for developing parties within the Paris Agreement.

An evaluation of existing models and approaches revealed several insights: (i) devel-
oped countries commonly employ a combination of sectoral models for each IPCC sector
coupled with a top-down macroeconomic framework; (ii) alternatives used by developing
countries exhibit strengths in assessing individual PAMs and developing sectoral models
but show limitations in integrating all IPCC sectors and assessing PAMs within mitigation
scenarios; (iii) diverse time-series innovative forecasting methods, applied in prior studies,
offer applicability to address the study’s challenges.

Building upon this foundation and introducing an innovative approach utilising ma-
chine learning regression techniques for GHG forecasting, MITICA successfully addresses
identified goals. It establishes an integrated methodological framework for mitigation
scenario production, ensuring consistency between national GHG emission inventories,
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PAMs, and projections. This allows for the transparent generation of mitigation scenarios,
thereby facilitating NDC design and tracking, as well reporting under the ETF.

The MITICA approach has been subjected to comprehensive testing in three distinct
phases. Initially, projections were computed utilising data spanning from 1960 to 1990 as a
baseline, forecasting variables such as total energy use, goods exports, and the utilisation
of alternative and nuclear energy for the period spanning 1991 to 2022. The exogenous
variables GDP and population were incorporated into the analysis, computed for Australia,
Finland, France, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden,
Turkey, the United Kingdom, and the United States. A comparison of the MITICA projec-
tions against observed values from 1991 to 2022 reveals a cumulative deviation throughout
the projected time series below 20 percent for total energy use and goods exports (16 and
19 percent, respectively). This alignment effectively captures the observed trends within
the respective time series data, thereby affirming the robustness of the approach’s results.
Secondly, MITICA’s methodology for evaluating PAMs has been tested in several published
studies, providing additional evidence supporting the reliability of MITICA’s outcomes.
Finally, the beta release of MITICA underwent comprehensive testing using a diverse range
of input datasets. This testing phase was crucial for assessing the functionality of the
software and refining any operational bugs.

Several limitations are discerned in the development of MITICA. Aligned with its
objectives, MITICA formulates projections based on the assumption that GHG emissions
are solely influenced by a set of proxies, holding other factors constant. This assumption
dictates that changes in technology mix and consumer behaviour solely occur due to
the implementation of PAMs. While essential for the study’s objectives, this assumption
presents a significant limitation by overlooking the inherent evolution of emission profiles
even in the absence of public intervention. Technology mixes and resource consumption are
subject to modification based on different consumer preferences, which are not adequately
captured by the current model. Although MITICA incorporates various PAMs allowing
interventions at different levels (industries, consumers, or sectors), it fails to account for
the natural evolution of emission sources and sinks without public intervention. Future
enhancements could address this limitation by incorporating varying levels of change in
further endogenous parameters into the WOM design to capture the evolution of emissions
in the absence of public intervention.

The conducted robustness analysis indicates that the reliability of the forecast di-
minishes significantly in very long time frames. To enhance the reliability of mitigation
scenarios beyond 2035, alternative methodological approaches such as back casting meth-
ods could be considered in conjunction with MITICA’s existing approach. Moreover,
the incorporation of back casting approaches into MITICA’s framework could allow for a
more holistic, long-term analysis without the necessity to define and calculate all PAMs
individually. By adopting a forward-looking perspective, MITICA could provide a more
comprehensive assessment of GHG emission scenarios.

Moreover, MITICA has not undergone empirical testing against alternative modelling
frameworks. The use of sectoral methods instead of integrated sectors and the challenges
in achieving consistency impede the identification of equivalent approaches to MITICA.
Future research could address this limitation by conducting comprehensive empirical
comparisons with alternative modelling frameworks, or sectoral modelling frameworks.

Further work in MITICA is identified in several key areas. Firstly, there is a need for
extensive testing and fine-tuning, a process informed by rigorous testing outcomes. This
iterative phase is crucial to enhance the reliability and precision of MITICA.

Additionally, MITICA should consider the incorporation of costs associated with
PAMs and the generated scenarios. This enhancement would enable the model not only
to estimate GHG emission reductions but also to provide insights into the potential costs
associated with these mitigation measures. Such an inclusive approach would offer a more
nuanced understanding of the economic implications of implementing various PAMs.
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A further dimension for exploration involves assessing the impact of PAMs and GHG
emission reductions on key economic variables such as GDP and population. Integrating
the MITICA framework into a general equilibrium model would facilitate a comprehensive
analysis, shedding light on the interconnected dynamics between environmental and
economic factors.
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Appendix A

Appendix A.1. Challenges to Develop Mitigation Scenarios for NDC Design and Tracking

The identification of a disconnection between historical GHG trends and projections
presents a notable challenge in assessing the evolution of mitigation efforts and global
ambition [6,12,62]. When projecting unaudited or unofficial GHG emissions, the results
become challenging to interpret in comparison to the actual historical GHG profile. This can
result in biased assessments and the formulation of unrealistic NDC targets. Overcoming
this issue could be achieved by using national GHG inventories estimated following IPCC
Guidelines [15,16] as a basis for modelling GHG projections. In this context, authors of [12]
determined that, particularly for economy wide NDCs encompassing GHG emissions and
removals from all IPCC sectors, the consideration of national GHG inventories remains
the most critical element for enabling tracking NDC progress. The study emphasised that
adhering to the same IPCC methodological guidance for national GHG inventories and
mitigation scenarios would significantly enhance the transparency and comparability of
NDC progress tracking across all Parties under the Paris Agreement.

Another significant drawback identified in the literature pertains to the misalignment
between PAMs and mitigation scenarios, which impacts the interpretability of results and
increases uncertainty. Authors in [7] evaluated mitigation scenarios within submitted
NDCs, revealing critical implications arising from the ambiguity of NDC assumptions
for scenario development, lack of clarity on policy incorporation in mitigation scenarios,
and the absence of robust tracking systems of GHG emissions, PAMs and NDC targets.
This issue is also affected by inconsistencies between the PAMs considered in mitigation
scenarios, due to the use of heterogeneous methodologies for PAMs of similar nature even
within the same mitigation scenario, as identified by [63].

Exploring sectoral modelling approaches and their integration into mitigation sce-
narios reveals insights from several studies [8,9] suggesting that inconsistent sectoral
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methodological approaches result in unclear and uncertain aggregated emissions and tar-
gets. Such inconsistencies significantly affect the transparency of both national and global
efforts, generating uncertainty when translating scenario results into specific policy actions.
These varied sectoral modelling approaches adopted by Parties also considerably increase
the challenge to assess and compare progress made towards achieving their NDCs as they
often deviate from IPCC guidance or national GHG inventory standards.

The lack of consistency between GHG-related components is further emphasised
by [13], stressing the need for an internally consistent package of information to effec-
tively track NDC progress. Addressing linkages between different GHG-related elements
becomes crucial for enhancing transparency, ensuring consistency across methodologies
and data used in different communication and reporting tools, and facilitating timely
communication or reporting.

The challenges enumerated could result in NDC targets that are unrealistic, detached
from GHG emissions of each country, and fail to consider actual and future policy alterna-
tives to reduce or avoid emissions [64,65]. Beyond technical aspects related to mitigation
scenario development, the literature identifies significant drawbacks related to institutional
and technical capacity in developing countries as overarching issues. Refs. [5,66] assert
that developing countries urgently need to establish robust reporting systems and enhance
national capacity to facilitate their transition to the ETF. In line with this, authors of [11]
highlight the need for technical capacity on mitigation scenarios to alleviate reporting
pressure on developing parties under the Paris Agreement. These considerations contribute
to the design criteria for MITICA, emphasising the importance of a framework that does
not introduce markedly different concepts compared to the existing baseline knowledge on
GHG emissions and the latest IPCC Guidelines, currently [15,16].

Appendix A.2. Existent Models and Approaches to Produce Mitigation Scenarios

A diverse array of models and approaches for developing mitigation scenarios have been
identified [19], offering potential solutions to the challenges described in the Appendix A.1
of the literature review. To evaluate the current state of the art, an initial analysis is
conducted focusing on developed Parties’ submissions on GHG emission projections and
GHG emission targets to the United Nations Framework Convention on Climate Change
(UNFCCC). These Parties have been engaged in generating estimates and national reports
since the 1990s, in line with the requirements of the UNFCCC and the Kyoto Protocol,
particularly for monitoring progress towards national mitigation targets [67].

Detailed insights into the models and approaches employed by the analysed devel-
oped countries are presented in Table A1, drawing on information reported in their last
submissions to the UNFCCC available, namely the eighth National Communication (NC)
and Fifth Biennial Report (BR) under the UNFCCC. The utilisation of sectoral models for
each IPCC sector, in line with national GHG inventory methodologies, combined with a
top-down macroeconomic framework is a common practice. Notably, national modelling
systems often prioritise two IPCC sectors: the Energy sector, including transportation,
and the Land Use, Land-Use Change, and Forestry (LULUCF) sector. Energy planning
optimisation models, such as TIMES-Markal [68], are observed in 10 out of 32 developed
countries analysed. Similarly, various countries employ national-specific carbon models
for LULUCF, as documented in [69–72]. The energy and LULUCF sectors often encompass
areas with higher mitigation potential, either for the reduction of emissions or the enhance-
ment of sinks. Therefore, this is identified as the main reason for prioritising improvements
in the modelling approach for these two sectors. Conversely, the Waste and Industrial
Process and Product Use (IPPU) sectors are frequently approached as an extension of
the national GHG inventory methodology, estimating projections using ad hoc nationally
customised models.
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Table A1. Assessment of models and tools used by Annex I Parties to the Kyoto Protocol to create
GHG emission scenarios. Eight National Communication and Fifth Biennial Reports submitted to
the UNFCCC.

Country Models and Tools Used Assessment of Consistency Source

Australia

“Purpose-built, bottom-up models estimating emissions
by sector” for the Stationary energy, transport, fugitive

emissions, IPPU, LULUCF, Agriculture and Waste
sectors. For electricity, Australia uses the model

PLEXOS [73], a linear programming optimisation model.

The Department of Climate Change, Energy,
the Environment and Water applies consistent

assumptions across all sectors of these
projections. Data used: Inventory data and
Emission factors and Commodity forecasts

from different public agencies.

[74]

Austria

An economic top-down model (DYNK model; [75])
combined with sectoral specific models, as follows.

Energy sector. Domestic heating and domestic hot water
supply model (INVERT/EE-Lab model; [76]), Public
electrical power and district heating supply (TIMES

Austria model; [77]) and Energy demand and emissions
of transport (NEMO & GEORG model; [78]). IPPU and

Waste sectors. Expert judgement based on national
reports. Agriculture sector. Austrian agricultural model

(PASMA model; [70]). LULUCF models. For forest
growth two models were used, one on individual-tree

based forest growth model (CALDIS model; [69]),
and one for organic soil carbon YASSO 07 (YASSO 07

model, [79]). For cropland and grassland, PASMA
model [70]. For harvested wood products, a forest sector

simulation model (FOHOW2 model, [80]).

The same methodologies as for the national
GHG inventory are applied, as reported in

Austria’s National Inventory Reports.
The projections are consistent with the
historical emission data of the Austrian

Emission Inventory.

[81]

Belgium

Belgium uses different models by region and sector,
as follows: The Flemish energy and greenhouse gas
simulation model, a bottom-up model for all sectors

except LULUCF (no reference available).
FASTRACE [82], a traffic emission model that uses a

detailed break-down of the vehicle fleet to simulate the
flow of traffic. TIMES Wallonia [83] for the energy sector

emissions and customised excel tools for the
remaining sectors.

The lack of documentation available impedes
the assessment of consistency. For Wallonia,

the study mentions that “Wallonia is in a
transition period. Ultimately, the idea is to
perform all the scenarios using the same
tool(s), while linking the different models
used in the most effective possible way”,

pointing out to potential consistency issues
resulting from the use of different models.

[84]

Bulgaria

Bulgaria uses only one tool, focused on the energy sector:
the (B)EST Energy System Tool, which projects the
energy demand, supply and energy prices using

macroeconomic and demographic proxies provided by
different Ministries. (B)EST Energy System Tool is an
optimisation tool developed in the General Algebraic
Modelling System (GAMS; [85]), aimed at minimising

the cost by finding the equilibrium with the price-elastic
behaviours of demanders for energy. Projections for
IPPU, Agriculture, LULUCF and Waste sectors are

projected ad hoc based on the inventory methodology
and the outputs from the energy modelling.

The same macroeconomic and demographic
framework is used for projecting all sectors.

Inventory data is used as a reference for
projecting all sectors.

[86]

Canada

Canada applies the Environment Canada’s Energy,
Emissions and Economy Model for Canada (E3MC
model), which incorporates a Keynesian economic
model that provides long-term economic forecasts,

with an optimisation energy model that balances energy
supply and demand.

Canadas approach considers the interaction
between policies. However, no information is

provided in the study on how non-energy
sector emissions are modelled, pointing out to

a potential source of non-consistency.

[87]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Cyprus

Cyprus makes use of two models for the energy sector,
an optimisation model for energy planning

(OSeMOSYS; [88]) and Final energy demand projection
model (no further information available). Waste sector

projections were developed through the 2006 IPCC
waste model, while the projections of Agriculture and

LULUCF are based on trends in the activity data used in
the emission inventory calculation. No information is

provided on the projections developed for IPPU.

The report described that three elements
ensure the alignment of projections with the
national inventory: data sources (the same

sources for inventory and projections),
methodology (the latest methodology from

the national inventory), and experts (the
experts involved in the preparation of the

inventory are the same as the experts involved
in the preparation of the projections).

[89]

Czechia

Czechia reported the use of models for the energy (a
data-driven model structure applying expert

judgement), LULUCF (a carbon budget model of the
Canadian forest sector; [71]) and IPPU sector (a

bottom-up model for F-gases; [90]), while projections for
agriculture and waste are described to be linked to

inventory calculations.

Czechia reported issues in the model
previously used for energy, the MESSAGE

model, due to due to laborious data entry and
incompatibility with models from

neighbouring countries. Information reported
suggest consistency between approaches

followed in the GHG inventory and
projections.

[91]

Denmark

The methodologies followed for projections are linked
to [92], that provides an overview of the models and

tools used. Models are based on a list of assumptions by
sector which pass a public consultation process. Sectoral
models used include a simulation model for electricity

(RAMSES model; [93]), a model that integrates a general
equilibrium model with an energy system model

(IntERACT model; [94]) and a transport model (FREM
model, no reference available).

The authors in [95] describe that projections
are a collection of a number of different

projections from the Danish Energy Agency
and the Danish Centre for Environment and

Energy, which the Danish Energy Agency
combined with statistical data to produce an

overall projection for Denmark.

[95]

Estonia

Estonia used different models by sector and subsector
consistent with 2006 Guidelines and EMEP/EEA

manuals. For electricity generation, Estonia used a cost
optimisation model (The Balmorel model; [96]). A tool

for estimating the stock of vehicles was used for the
GHG projections in the road transport sector (Sybil
baseline model; [97]). The model is compatible with

COPERT, the approach used in the national GHG
inventory. In the IPPU sector, Estonia uses activity level

projections from companies and expert judgement.
In the Agriculture sector, Estonia uses a dynamic
econometric model based on proxies (Agriculture

Projections Model; no external references), developed in
2021 by Agricultural Research Centre. For LULUCF,

projections are developed based on expert judgment and
assumption by category level. For Waste, projections are

estimated with the 2006 IPCC Waste Model.

Estonia uses activity data from the inventory
in all cases. No further information is

provided on the consistency of the different
GHG components.

[98]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Finland

Finland describes a common projection framework with
common assumptions and a common economic model
(FINAGE model; [99]), which is connected to sectoral

sectors as follows. An optimisation energy system model
(TIMES-VTT energy system; [100]). A model exercise for

the energy consumption of the building stock (VTT
model; no further reference available). A model to

estimate future vehicle fleet, energy and fuel
consumption and GHG emissions (the LIPASTO

model; [101]). A model on off road vehicles, which is
used for the inventory calculations, and also for

projections (TYKO machinery; no further reference
available). A dynamic regional sector model of Finnish
agriculture (Dremfia model; [102]), together a nitrogen

application model, and a computation approach in excel
file. A carbon accounting model for soil carbon (MELA

model, based on the YASSO model—[72,79]) for the
LULUCF sector.

Finland applies sector-specific modelling that
is coordinated and manually interlinked

across sectors.
[103]

France

France describes the use of a large variety of sectoral
techno-economic models, whose energy consumptions
and GHG emissions are aggregated in accordance with

GHG inventory methodologies. This modelling
approach allows for a fine description of sectoral

transformations associated with the scenarios. Some of
the models used include a model for energy (GEStime
tool; no further reference available), transport (Modev
model; no further reference), for the buildings sector
(Menfis model on energy efficiency; [104]), and one

bottom-up model for the agriculture and forestry sector.

On the consistency between models,
the report stated that “Its main weakness,
compared to the use of a single top-down

model, is that extra attention needs to be given
to the potential interactions between sectors,
and that it takes a long time to proceed to all
the modelling (one full run may take up to 6

months).”

[105]

Germany

Germany employs sector-specific models integrated
through the EnUSEM integration model, ensuring a
cohesive amalgamation of approaches (no further
reference found in English language). The sectoral

models encompass the transport sector, which utilises
Öko-Institut’s TEMPS model (no further reference

available). For the buildings sector, both residential and
non-residential, the INVERT/EELab model is employed
(INVERT/EE-Lab model; [76]). Electricity is modelled
using FORECAST, and partially IPPU. FORECAST is a

bottom-up simulation model focused on the energy
sector and the development of long-term scenarios [106].
AFOLU employs an ad hoc bottom-up model developed
by the Thünen Institute (no further reference available).

Waste emissions are calculated internally within the
inventory.

The report specify that the scenario
calculations rely extensively on the National

Greenhouse Gas Inventory. Sectors are
integrated with support from an additional

model, the EnUSEM integration model.
However, no information is provided on how

the integration is performed.

[107]

Greece

Greece employs distinct approaches for the energy and
non-energy sectors. In the energy sector, the country
utilises the Integrated TIMES-MARKAL model along

with a probabilistic production simulation model
(ProPSim). On the other hand, GHG emissions in the
non-energy sectors are computed using spreadsheet

models. These models determine emissions through the
analysis of activity data, emission factors,

and sector-specific assumptions.

The same exogenous forecasts are used in all
sectors, based on most recent data available at
country level. The study specifies that models

are fully consistent with the inventory

[108]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Hungary

The Integrated MARKAL-EFOM System and the Green
Economy Model (GEM) originated from a computer

simulation approach tailored to streamline policy
planning over the medium to long term.

The interaction between GEM and TIMES
occurs through two mechanisms. In the first,

GEM operates its energy modules.
Alternatively, in the second approach, GEM

utilises inputs from TIMES, bypassing its own
energy demand calculation. This approach

enables the integration of the strengths of both
models, capitalising on the dynamic and

comprehensive nature of GEM alongside the
higher level of detail for the energy sector

offered by TIMES.

[109]

Ireland

Ireland described its projections of energy demand by
the use of a general equilibrium model (I3E

model; [110]), which is used to assess impact of PAMs
withing policy scenarios and is used in conjunction with
other modelling tools (the following tools are mentioned:
Plexos Integrated Energy Model, SEAI National Energy

Modelling Framework, SEAI BioHeat Model).

Sectoral interlinkages are approached within
the I3E model. No further information

is provided.
[111]

Italy

TIMES-MARKAL combined with customised bottom-up
models by sector consistent with TIMES-MARKAL

outputs and inventory methodologies, for the
agriculture, LULUCF, waste F-gases and Industrial

process sectors.

Common assumptions and general economic
parameters are described to be used in all
sectors to ensure consistency. Inventory

methodology is considered as a main
reference for all sectors (with the exception of
the use of the reference approach for energy

sector emissions, based on
TIMES-MARKAL outputs).

[112]

Japan

Japan described the use of a main model for fuel
combustion emissions (IPCC category 1A), using an

energy supply and demand model, which is composed
by several sub-models, namely a macroeconomic model,

an energy price model, and an optimum generation
planning model. The projections in sectors other than
fuel combustion are conducted by bottom-up models
created using spreadsheets following the calculation
methods of the national GHG inventory, extended to

projected years.

The report emphasises the importance of
preventing overlaps in emission reduction

efforts between PAMs related to energy
consumption and measures pertaining to the

energy supply. The efficacy of the energy
supply and demand model lies in its

capability to comprehensively address various
factors influencing both energy consumption

and CO2 emissions within a single model.
Nevertheless, there is a lack of information
regarding the methodological consistency

across sectors and components.

[113]

Latvia

Two main models are used, one for energy
(TIMES-Markal) and another one for LULUCF (AGM
using data from the national forest inventory; [114]).
The remaining sectors are projected using Excel or
R-based estimations of activity data, maintaining

methodologies from the latest inventory.

The report specifies that the modelling
approach followed ensures the comparability
of calculations with those of the inventory as
well as the calculation consistency. However,

the potential for human errors in the
calculations as well as the simplicity of the

calculations are highlighted as
main weaknesses.

[115]

Lithuania

Lithuania has built nine bottom up models representing
all relevant emission sources and sinks. In all cases,
the models are built from inventory methodologies,

using common proxies and parameters, consistent with
EU recommended parameters. No further references

available on the models used.

The Information provided did not allow an
assessment of consistency between

components. The report describes that the
main weaknesses of the models/approaches is
that it does not take into consider overlap or

synergies that may exist between
different PAMs.

[116]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Malta

PAMs are reported to be estimated using a Marginal
Abatement Cost Curve (MACC) tool plus eleven bottom

up models for sectors and subsectors as follows:
Electricity dispatch model, Industry Fuel Consumption
model (non-transport), Energy Demand Model, Road

transport Biofuels S/O Model, PV model, Road
Transport Model, IPPU sector, Inland Navigation Fuel

Consumption Model, Agriculture Model, LULUCF
model, Waste generation and treatment model

(Waste sector).

Models are interlinked among each other.
However, the information reported did not

allow to fully assess the consistency of
reporting components.

[117]

Netherlands

The National Energy Outlook Modelling System
(NEOMS) is a comprehensive suite encompassing

various simulation models for different sectors.
SAVE-Productie calculates energy demand for industry,
agriculture, and CHP based on economic growth and

measures taken. SAVE-Services projects future gas and
electricity demand in the services sector using economic
subsector growth and interventions. SAWEC evaluates
household energy use, while EVA modelling national

electricity consumption of household appliances.
The transport model incorporates diverse sector-specific
transport models into NEOMS databases. COMPETES

guides decisions on centralised EU electricity production
investments and operations. SERUM optimises the

Dutch oil refining sector, calculating crude intake and
refining configuration. RESolve-E focuses on renewable
energy production, and the gas/oil production model
determines natural gas and crude oil supply. NEOMS

results are supplemented with non-CO2 and
non-energy-related CO2 emissions modelling using

sectoral models and spreadsheet tools. This suite
provides a holistic view of the national energy landscape,

integrating diverse sectors and anticipating future
energy demands while considering economic and

policy factors.

Within the energy sector, the consistency is
made by integrating submodels within

NEOMs. The consistency between sectors,
within PAMs and between projections and the

inventory are not further detailed.

[118]

New
Zealand

Projections of greenhouse gas emissions are estimated
across various sectors using different methodologies.

In the energy and transport sectors, a bottom-up
approach is used, relying on economic data, energy
sector information, and inventory models to project

future emissions. IPPU projections utilise a top-down
methodology, considering historical emissions, industry

forecasts, and F-gas import regulations. Agriculture
projections adopt a bottom-up approach, integrating
economic and agricultural data along with inventory

models. LULUCF projections involve a bottom-up
modelling approach, leveraging historical and projected
activity data to assess the impact of PAMs on emissions.
Waste projections utilise bottom-up methodologies with

inventory models following IPCC guidelines.
International transport projections employ a top-down

approach based on historical emission data. These
sector-specific methodologies contribute to

comprehensive and accurate projections of future
greenhouse gas emissions.

The report specifies that the consistency
among sectors is achieved using key

underlying assumptions that are consistent
across sectors, while the modelling

approaches used are tailored to the particular
characteristics of each sector

[119]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Norway

Norway’s emission projections employ diverse sources
and methods. Energy-related emissions projections
primarily use simulations with the macroeconomic

model SNOW (no further references available),
supplemented by micro studies within a computable

general equilibrium model. Emission projections from
LULUCF sector are derived from the Norwegian

Institute of Bioeconomy Research (NIBIO) using the
Yasso07 decomposition model. Other sectors use an

Excel spreadsheet model based on inventory
methodologies for estimation.

The Information reported did not allow to
fully assess the consistency of reporting

components. However, the use of common
parameters as well as the consistency with the

national inventory were described in
the report.

[120]

Poland

The STEAM-PL and MESSAGE models were used to
prepare a forecast of the national energy demand and its
results were then used to estimate the greenhouse gas

emissions from the energy sector. STEAM-PL is an
“end-use” consumption model dedicated to the national
fuel and energy system, reflecting in detail the technical
aspects related to energy use in the particular sectors of

the economy. It is an integrated hybrid model which
makes it possible at the same time to determine the
future energy demand for useful energy (using the
classical “bottom-up” approach) and the ways of

meeting the demand (using the “top-down” approach).
On the basis of the identified electricity and district heat
demand, in the next step, the optimum structure of the
generation sector and the demand-driven production by
individual generation units in the MESSAGE-PL model

was determine

The Information reported did not allow to
fully assess the consistency of reporting

components. However, the use of common
parameters as well as the consistency with the

national inventory were described in
the report.

[113]

Portugal

Energy system: GHG emissions were estimated based
on the TIMES_PT. Agriculture, forests and other land

uses: GHG emissions were estimated based on different
assumptions aligned with the narratives of the

socioeconomic scenarios, from which the respective
evolutionary trends of the crop and animal sector,
and their emissions, were established. Waste and

wastewater: GHG emissions were estimated based on
projections of the volume of municipal waste and

domestic wastewater generated each year, considering
the resident population, and the impact of the policies

already adopted. This sector includes emissions from the
Fluorinated gases: GHG emissions were estimated based

on the implications of implementation of the Kigali
Agreement and the European Regulations that foresee

the phasing out of some of these gases over
coming decades.

In all sectors, GHG emissions estimation
follows the methodologies presented in the

national emissions inventories, which comply
with the emissions calculation guidelines of

the 2006 Intergovernmental Panel on Climate
Change and relevant UNFCCC decisions for

calculation of emissions and reporting
emissions projections

[121]

Slovakia

The report described that projections in Slovakia are
based on the MS Excel platform and the calculation

includes various policies and measures defined
according to the WM and WAM scenarios.

The projections of emissions and removals in the Forest
category used outputs from the national FCarbon model

to project LULUCF emissions (no further
reference available).

The report justified the use of the national
Fcarbon model based on the requirements for

consistency with the reporting of GHG
emissions and removals in national emission

inventories and also the inclusion of forest
dynamics through characteristics related to

the age structure of the forest. The information
available did not allow further analysis of

consistency between components.

[122]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

Slovenia

Several models were used to produce projections in
Slovenia, including a technology simulation bottom-up

model for energy (the Reference Energy Ecological
Model for Slovenia; no further reference in English),

a transport model for Freight and passenger transport
(Integralni prometni model Slovenije; no further

reference in English available), and a model for LULUCF
emissions (the CBM-CFS3 model; [123]).

A relational model is used to compile GHG
projections integrating all sectoral estimates
(the BILANCA TGP NH3 NOX model; no

further reference available in English).

[124]

Sweden

Sweden’s approach to projecting GHG emissions
involves comprehensive methodologies for various
sectors. Projections for the whole energy system are

made using the national version of TIMES-Markal [68],
which includes its relationship with neighbouring

countries (Times-Nordic; no further reference available).
Industry sector projections rely on an Excel-based model
linking energy use with economic relations and energy
prices. Transport sector emissions projections are based
on energy use forecasts. Industrial process emissions are
determined through Excel-based trend analysis. Waste
sector landfill emissions use a modified IPCC model.
Agricultural sector projections rely on the Swedish
Agricultural Sector model (SASM model; no further

reference available) and economic equilibrium
assumptions. Forest land net removals projections
mainly use the Heureka Regwise modelling tool,

simulating future forest development.

The report does not address specifically how
consistency between components

is addressed.
[125]

Switzerland

Switzerland describes the modelling approach followed
for all sectors. In the energy sector, a network of various

energy system models is utilised, and the resulting
energy demand is integrated into the EMIS national air

pollution database to calculate GHG emissions.
For Industrial Processes and Product Use and

Agriculture sectors, bottom-up estimates align with the
2006 IPCC guidelines for national GHG inventories.

LULUCF projections utilise the Massimo model,
a stochastic empirical single tree forest management

scenario model for CO2 emissions, incorporating simple
assumptions for CH4 and N2O.

The report describes that the modelling
scenarios are tailored to the particular

characteristics of each sector, always ensuring
consistency with actual data of the greenhouse

gas inventory.

[126]

Türkiye

The report only mentions that the “TIMES-MACRO
model has been used for energy related modelling and

industrial processes and product use, while for
non-energy emissions different national models and

studies have been used”

The Information reported did not allow to
fully assess the consistency of

reporting components.
[127]
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Table A1. Cont.

Country Models and Tools Used Assessment of Consistency Source

United

Kingdom

The UK employs a comprehensive modelling approach
for emission projections, primarily using the national
Energy and Emissions Projections modelling suite for
annual publications and internal analyses. The suite

encompasses a top-down econometric model of energy
demand and combustion-related GHG emissions,

complemented by a bottom-up supply side Dynamic
Dispatch Model. Energy demand projections undergo
adjustments for policy impacts modelled separately
using detailed sectoral models. The Transport sector

utilises a road transport model integrated into the
Energy Demand Model, calibrated against the National
Transport Model. For IPPU, CO2 emissions projections
rely on Manufacturing subsector Gross Value Added or

energy demand projections. LULUCF emissions are
modelled by the Centre for Ecology and Hydrology and

Forest Research. Waste projections use the national
MELMod model, based on IPCC’s first-order decay

methodology. Agriculture projections employ the Food
and Agricultural Policy Research Institute methodology

for activity projections up to 2030, with later years
held constant.

The modelling estimates the mitigation
impacts of policies using a common cross

Government methodology.
[128]

United States

of America

The United States reports using a differentiated
approach for modelling energy CO2 emissions and

non-energy CO2 and non-CO2 GHG projections. In the
first case, the National Energy Modelling System

(NEMS) is employed. NEMS is organised and
implemented as a modular system, with modules

representing fuel supply markets, conversion sectors,
and end-use consumption sectors of the energy system.

Additionally, NEMS includes macroeconomic and
international modules. It utilises information from the
most recent greenhouse gas inventory as the starting

point for emissions and underlying activities.
The Environmental Protection Agency (EPA) projects

changes in activity data and emission factors from that
base year, incorporating macroeconomic drivers such as

population, gross domestic product, and energy use,
as well as source-specific activity data. Official sources

are consulted where possible, and future changes in
emissions factors are determined by past trends and

expected policy implementations.

PAMs are integrated in the modelling
approach for projecting CO2 emissions from

the energy sector. Furthermore, non-CO2,
and non-energy emissions are estimated
building from inventory methodologies.

[129]

In summary, it is observed that most developed Parties adopt sector-specific bottom-
up models built from national GHG inventory methodologies and use them in conjunction
with macro top-down models incorporating exogenous drivers that characterise their
respective national economies. A notable drawback identified in this approach is the
substantial resources, including time, personnel, and budget, required for generating
distinct mitigation scenarios for each IPCC category and sector. This is attributed to the
considerable human interventions necessary in model production.

Apart from analysing approaches employed by developed countries, the paper also
delves into the modelling approaches currently applied by developing countries for the
development of mitigation scenarios within submitted NDCs. This provides insights into
the starting situation that MITICA should build upon. Since [20] have already outlined
the main alternatives for developing countries, this paper does not offer an exhaustive
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review on the subject. Several models and tools are broadly recommended for adoption in
developing countries, including LEAP, GACMO and NEXT, among others.

The Long-range Energy Alternative Planning (LEAP) system is applied by numerous
countries to produce mitigation scenarios within the energy sector [130]. LEAP is defined
as a framework that could be used to accommodate different modelling approaches [131].
The main drawbacks found in countries using LEAP is the challenge to clearly incorporate
and assess the impact of PAMs, considering historical GHG emission trends, as well as the
uncertainty associated with ad-hoc modelling assumptions beyond the scope of energy
planning. As such, the use of LEAP may impede the accurate reporting of the impacts of
individual PAMs, as well as the comprehensive modelling of all sectors within the national
GHG inventory.

The Greenhouse gas Abatement Cost Model (GACMO) is a GHG projections tool de-
veloped by the United Nations Environment Programme (UNEP) [132]. GACMO operates
by inputting the national energy balance and utilises growth rates for various sectors to cre-
ate GHG emission projections. It offers methodologies for estimating the mitigation impact
and cost of various policy alternatives, aligning with internationally recognised method-
ologies. Despite its strengths in addressing PAMs, GACMO does have limitations. These
include the simplistic approach to projecting GHG emissions, the limited consideration of
the national GHG inventory, and the inability to directly create WM and WAM scenarios.

The Nationally Determined Contribution Expert Tool (NEXT) is a GHG accounting
tool to support annual environmental impact assessment (EIA) for the Agriculture, Forestry
and Other Land Use (AFOLU) sector [133]. The NEXT tool adheres to ETF definitions
and IPCC good practices, and therefore is considered as a robust alternative to produce
mitigation scenarios in the AFOLU sector. However, the incorporation of the energy, waste,
and IPPU sectors remains a challenge for this tool.

The Paris Agreement requires that developing countries adhere to reporting require-
ments equivalent to those of developed countries, although flexibility provisions are pro-
vided [67], but which are not considered in this study. As such, it’s implied that comparable
approaches to those of developed parties should be adopted by developing countries.
Additionally, MITICA draws inspiration from the main modelling alternatives utilised by
developing countries, offering an extensive list of possibilities for PAMs, and developing
sector-specific modelling approaches. Considering various alternatives discussed in the
literature [19,20], the most suitable option to meet the study’s requirements appears to be
statistical frameworks with the flexibility to accommodate diverse sector-specific models
tailored to different circumstances and data availability, while maintaining overall consis-
tency across sectors, scenarios, and time periods. In this vein, Appendix A.3 delves into the
key insights from the literature review on time series forecasting approaches, commonly
employed in projecting GHG emissions.

Appendix A.3. Time Series Forecasting

The widely applied autoregressive integrated moving average (ARIMA) models offer
several advantages in the context of time series forecasting for GHG emissions. One notable
advantage lies in their ability to capture and model the temporal dependencies within
the data. Furthermore, ARIMA models have the capacity to autonomously determine the
appropriate order of differencing, autoregressive, and moving average components, thereby
alleviating the need for manual intervention in selecting these parameters. The estimation
of parameters in ARIMA is based on rigorous statistical methods, enabling robust inference
and hypothesis testing [134].

The authors of [25,135] provide relevant examples of the use of ARIMA models for
projecting time series data. In [25], the authors employed ARIMA models for forecasting
energy consumption and GHG emissions from pig iron manufacturing in India. Their
findings highlight the need to properly define the ARIMA model specification to obtain
accurate results. Similarly, the authors in [135] applied ARIMA models to project CO2 emis-
sions in South Africa for the years 2015–2027, highlighting the relevance of the approach
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for framing feasible environmental policies. Despite their strengths and applicability in
projecting greenhouse gas (GHG) emissions, ARIMA models have certain limitations that
require consideration in the context of time series forecasting for GHG emissions. One
notable drawback is the limitations associated with dealing with the complex and nonlinear
dynamics of GHG emissions [136]. Additionally, ARIMA may face challenges in adequately
addressing long-term trends or cycles, as its forecasting horizon is inherently limited [137].
These limitations may impede the model’s utility when projecting GHG emissions over
extended timeframes. Consequently, ARIMA models were discarded for MITICA, as they
fail to meet its conceptualisation requirements.

A refinement of ARIMA models that mitigates most of its challenges is found in the
Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX)
framework. Notably, one significant improvement offered by SARIMAX is its ability
to incorporate exogenous factors alongside the autoregressive, integrated, and moving
average components. This feature proves particularly advantageous in the context of
GHG emissions, where various environmental, economic, or other determinants may
drive emissions trends. SARIMAX is better equipped to handle nonlinearity in the data
and provides a longer forecasting horizon compared to traditional ARIMA models [138].
As such, by leveraging the seasonal components and incorporating exogenous variables,
SARIMAX can produce more accurate and reliable forecasts over an extended period,
addressing one of the limitations of ARIMA that restricts its forecasting capabilities beyond
a short timeframe.

Authors of [26] applied SARIMAX to forecast hourly electricity generation for the year
2015, utilising data from 2012 to 2014 for calibration. The study found that the SARIMAX
model incorporating exogenous proxies provides the best fit to the actual data. Similarly,
the authors in [27] compared the ARIMA and the SARIMAX methods in forecasting natural
gas production and consumption in the United States from 2013 to 2025. Their findings
revealed an improved forecast accuracy for SARIMAX, measured by the results of the root
mean square error (RMSE) and mean absolute percentage error (MAPE) as indicators.

In addition to ARIMA and SARIMAX methods, state-of-the-art prediction approaches
for time series data include different methods based on artificial intelligence and machine
learning techniques. These approaches use computation to improve the model efficiency
and prediction accuracy. Among the main innovative methods, four stand out for their
applicability and widespread use: Support Vector Regression (SVR), Artificial Neural
Network (ANN), Random Forest Regression, and Gradient Boosting Regression (GBR).

By using observed data to estimate a function, the SVR approach trains a Support Vec-
tor Machine (SVM). SVM is widely used to accurately forecast time series data, particularly
in situations where the underlying system processes are nonlinear, non-stationary, and lack
a predetermined framework [45]. The main weaknesses of SVR for time series forecasting
include sensitivity to hyperparameter estimation, and challenges in handling noisy or
high-dimensional time series data. Furthermore, SVR frequently needs data normalisation,
added to an observed propensity for the overestimation of the influence of exogenous
factors in model specification [139].

ANNs constitute a class of machine learning models inspired by the structure and
functioning of the human brain. Comprising interconnected nodes, or neurons, organised
into layers, ANNs are proficient in learning complex relationships from data. In the area of
time series forecasting, ANNs exhibit prowess in non-linear modelling, enabling them to
capture complex temporal patterns and depict dynamic relationships in sequential data.
However, an important drawback of ANNs is their tendency to overfit, particularly in the
presence of noise or outliers in the training data, leading to suboptimal generalisation to
new data. Additionally, the training process of ANNs often requires substantial amounts
of data, and they may struggle with performance when faced with limited datasets.

Random Forest Regression, an adaptable ensemble technique, displays considerable
potential in time series forecasting, outperforming in the analysis of high-dimensional data
and discerning complex non-linear patterns. Its ability to mitigate overfitting, achieved
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through ensemble averaging of individual tree predictions, contributes to the creation of
more robust and comprehensive models [140,141].

GBR stands out as a robust machine learning technique known for its effectiveness in
time series forecasting. As an ensemble learning technique, GBR combines the strengths
of several weak learners—typically decision trees—to gradually construct a predictive
model. The key of GBR is its capacity to improve its forecast accuracy incrementally
by iteratively rectifying errors made by earlier models. Particularly adept at identifying
complex temporal patterns, trends, and dependencies in data when it comes to time
series forecasting, GBR outperforms in managing nonlinear interactions, rendering it well-
suited for situations characterised by complex and non-stationary temporal processes.
Several studies have compared the applicability and performance of the main methods
for time series forecasting. For instance, in their study on forecasting the net ecosystem
carbon exchange between biological organisms and the atmosphere, the authors of [38]
demonstrated that GBR outperformed SVM, Stochastic Gradient Descent, and Bayesian
Ridge techniques. GBR shows higher R-squared values, as well as lower mean absolute
error and root mean squared error values. These results confirmed the finding from [36,37],
which showed the advantages of GBR, notably its low prediction errors and increased
stability.

Furthermore, authors in [32] projected the CO2 emissions from India up to 2030 using a
dataset from 1980 to 2019. They employed various methods, including ARIMA, SARIMAX,
the Holt-Winters model, random forest model and a deep learning-based long short-term
memory (LSTM) model. Their study concluded that SARIMAX and the LSTM showed the
most accurate prediction results.

Based on the previous studies, we concluded that SARIMAX, GBR and the Random
Forest Regression model align best with the requirements of MITICA for projecting the
WOM. These methods demonstrate good modelling results with limited time series data
and offer the capability to specify category-specific models by emission source. Conversely,
deep learning methods, ANN and SVR were discarded due to their dependency on big
datasets and their tendency to overfitting.

Finally, various studies underscore the applicability of LASSO (Least Absolute Shrink-
age and Selection Operator), a novel regression model that integrates shrinkage and vari-
able selection methods to improve prediction accuracy. LASSO has demonstrated superior
performance in forecasting time series with limited samples, as demonstrated by [42,44].
Hence, it is emphasised in this literature review for its applicability under the requirements
of this study.
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Appendix B. Modelling Steps in ANNALIST

Figure A1. Modelling steps in ANNALIST.
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Appendix C. MITICA Workflow

Figure A2. MITICA Workflow.
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Appendix D. List of PAMs Incorporated in MITICA

Table A2. List of PAMs incorporated in MITICA.

IPCC Sector Mitigation Sector Name of the Policy Associated IPCC
Category

Energy Power sector Use of RES for power production 1A1a

Energy Power sector
Commissioning of new efficient plants

and/or fuel switch to less carbon intensive
fuels

1A1a

Energy Power sector Production of electricity from
biomass residues 1A1a

Energy Power sector Improvement of the energy efficiency of the
electricity grid 1A1a

Energy Power sector Development of advanced metering
infrastructure in the electricity grid 1A1a

Energy Industry Fuel switch from coal to natural gas 1A2

Energy Industry Fuel switch from coal to biomass 1A2

Energy Industry Fuel switch from Heavy Fuel Oil (HF) to
Natural Gas (NG) 1A2

Energy Industry Replacement of clinker with other physical
raw materials 2A1

Energy Industry Combined Heat and Power (CHP) in industry 1A2

Energy Transport Renewal of diesel vehicles 1A3b

Energy Transport Renewal of gasoline vehicles 1A3b

Energy Transport Fuel switch from fossil diesel to biodiesel 1A3b

Energy Transport Fuel switch from fossil gasoline to
bio-gasoline 1A3b

Energy Transport Electric cars 1A3b

Energy Transport Electric mopeds 1A3b

Energy Transport Battery Electric Buses 1A3b

Energy Transport Promotion of public means or transport and
more energetic ways of transport 1A3b

Energy Other sectors (Commercial, Residential
and Agriculture) Fuel switch from diesel to NG

1A4a

1A4b

Energy Other sectors (Commercial, Residential
and Agriculture)

Fuel switch from diesel to biomass efficient
boilers

1A4a

1A4b
1A4c

Energy Other sectors (Commercial, Residential
and Agriculture)

Fuel switch from diesel to biomass high
efficiency stoves

1A4a
1A4b

Energy Other sectors (Commercial, Residential
and Agriculture)

Retrofitting of buildings towards improving
energy efficiency

1A4a
1A4b

Energy Other sectors (Commercial, Residential
and Agriculture)

Switching to efficient residential air
conditioners

1A4a
1A4b

Energy Other sectors (Commercial, Residential
and Agriculture) Switching to efficient residential refrigerators

1A4a
1A4b

Energy Other sectors (Commercial, Residential and
Agriculture)

Switching to efficient domestic lighting
with light-emitting diode (LEDs)

1A4a
1A4b
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Table A2. Cont.

IPCC Sector Mitigation Sector Name of the Policy Associated IPCC
Category

Energy Fugitives Reduction of coal mining in surface mines 1B1aii

Energy Fugitives Reduction of coal mining in
underground mines 1B1ai

IPPU Industrial processes Replacement of clinker with other physical
raw materials with hydraulic properties 2A1

IPPU Industrial processes N2O abatement from nitric acid production 2B2

IPPU Product use Substitution of high GWP F-gases with low
GWP ones 2F1

AFOLU Livestock and Manure Management Improved feeding practices 3A1

AFOLU Livestock and Manure Management Feed additives for ruminant diets 3A1

AFOLU Livestock and Manure Management Optimisation of feeding strategies for
livestock 3A2

AFOLU Livestock and Manure Management Longer-term management changes and
animal breeding 3A1

AFOLU Livestock and Manure Management Improving animal health through
better monitoring

3A1
3A2

AFOLU Forestry Afforestation and reforestation 3B1

AFOLU Forestry Restoration of degraded forests 3B1

AFOLU Forestry Reducing deforestation 3B1

AFOLU Croplands and Grasslands Reduced and Zero Tillage 3B2

AFOLU Croplands and Grasslands Agronomic practices: Residue management 3B2

AFOLU Croplands and Grasslands Agronomic practices: cease of field burning of
vegetation and agricultural waste 3B2

AFOLU Croplands and Grasslands Agronomic practices: temporary
vegetative cover 3B2

AFOLU Croplands and Grasslands Soil and nutrient management plan
3C4
3C5

AFOLU Croplands and Grasslands Biological N fixation in rotations and
in forages 3C4

AFOLU Croplands and Grasslands Water management
3B2
3B3

AFOLU Croplands and Grasslands Development of new fruit orchards 3B2

AFOLU Croplands and Grasslands Rice management 3C7

AFOLU Croplands and Grasslands Agroforestry
3B2
3B3

AFOLU Croplands and Grasslands Grazing land management and
pasture improvement 3B3

AFOLU Croplands and Grasslands Land cover (use) change: Conversion of
arable land to grassland

3B2

3B3

AFOLU Croplands and Grasslands
Land cover (use) change: Wetland

conservation / restoration (drained croplands
back to wetlands)

3B2

3B4

AFOLU Croplands and Grasslands Management of organic/peaty soils 3B4
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Table A2. Cont.

IPCC Sector Mitigation Sector Name of the Policy Associated IPCC
Category

AFOLU Croplands and Grasslands
Nitrification inhibitors (which slow the

microbial processes leading to
N2O formation)

3C4

3C5

Waste Solid waste Methane recovery in Solid Waste Disposal
Sites (SWDS) 4A

Waste Solid waste Reduction of biodegradable material that is
disposed in SWDS 4A

Waste Solid waste Reduction of waste production per capita 4A

Waste Solid waste Composting of organic municipal waste
4A
4B

Waste Solid waste Diversion of solid waste from unmanaged
disposal sites to aerobic landfills 4A

Waste Wastewater Improvement of the wastewater
treatment infrastructure 4D1

Waste Wastewater Improvement of the wastewater
treatment infrastructure 4D1
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