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Abstract: Understanding traveler mobility in cities is significant for urban planning and traffic man-
agement. However, most traditional studies have focused on travel mobility in a single traffic mode.
Only limited studies have focused on the travel mobility associated with multimodal transportation.
Subways are considered a green travel mode with large capacity, while taxis are an energy-consuming
travel mode that provides a personalized service. Exploring the relationship between subway mobil-
ity and taxi mobility is conducive to building a sustainable multimodal transportation system, such
as one with mobility as a service (MaaS). In this study, we propose a framework for comparatively
analyzing the travel mobilities associated with subways and taxis. Firstly, we divided taxi trips into
three groups: competitive, cooperative, and complementary. Voronoi diagrams based on subway
stations were introduced to divide regions. An entropy index was adopted to measure the mix of
taxi trips. Secondly, subway and taxi trip networks were constructed based on the divided regions.
The framework was tested based on the automatic fare collection (AFC) data and global positioning
system (GPS) data of a subway in Beijing, China. The results showed that the proportions of taxi
competition, taxi cooperation, and taxi complements were 9.1%, 35.6%, and 55.3%, respectively. The
entropy was large in the central city and small in the suburbs. Moreover, it was found that the subway
trip network was connected more closely than the taxi network. However, the unbalanced condition
of taxis is more serious than that of the subway.

Keywords: travel mobility; subway and taxi; big data analysis; entropy

1. Introduction

Subways and taxis are two significant components of public transport. In many sus-
tainable cities, subways have become a mainstay due to their large capacity and high speed.
Compared with other traffic modes with fixed routes, taxis can provide a personalized
and flexible service. During the last decade, both subways and taxis have experienced
fast development in many developing countries. Uncovering the traffic demand and the
relationship between subways and taxis could help in many applications, such as city
planning, traffic management, and geography [1–4]. With rapid urban spatial expansion
and traffic facility development, the quantity and structure of traffic flows are experiencing
great changes. Traffic demand and the relationships between different traffic modes have
drawn much attention [5–7]. However, there has been no conclusion on whether there is
competition or cooperation between subways and taxis.

Origin–destination (OD) flow describes the movement or trips between two locations,
which plays a vital role in traffic and city planning [8,9]. There are two kinds of OD flow
data: point-based flow data and area-based flow data. Point-based flow data contain many
potential locations, such as those from GPS trajectory data, while area-based flow data
include migration between OD locations within a predefined area [10]. The OD distribution
is correlated with the population distribution, land use, and socioeconomic factors [11–13].
Therefore, point-of-interest (POI) data play an important role in inferences of trip purpose
and OD information [14,15]. In urban transport systems, there are many types of traffic
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modes, such as subways, buses, taxis, bikes, and private cars. There are large differences
in the OD demands of different traffic modes due to many socioeconomic factors. Urban
planners have exerted great efforts to estimate OD demand distributions [16–18].

Questionnaire surveys are some of the most crucial sources for exploring multimodal
traffic demand, and they reveal the macroscopic characteristics of urban populations [19].
However, conducting a questionnaire survey is time-consuming and expensive. Therefore,
it is hard to acquire most people’s travel information. Big geospatial data, such as subway
IC card data, vehicle GPS data, bike-sharing trip data, and mobile phone data, provide
valuable and massive spatiotemporal information for grasping travelers’ mobility [20–23].
For traffic modes with fixed stations (e.g., subways and buses), traffic demand can be
obtained through information swiped by passengers using their IC cards when they board
and alight [24,25]. For other traffic modes without stations, such as taxis and bike-sharing
schemes, land is typically divided into regions that are considered to be nodes. The common
divisions are grids [26,27], traffic analysis zones (TAZs) [28,29], Voronoi diagrams [30,31],
and hexagons [32]. In recent years, there have been numerous applications of these data for
many aspects of data analysis, such as exploring travel mobility [33], traffic demand [34],
and job–worker dynamics [35]. Understanding the movement of people in their everyday
lives is critical in transportation science. Complex network theory provides a powerful tool
for exploring the structures and dynamics of traffic flow [36–38].

There are many difficulties in accurately mining OD demand and traveler behaviors.
However, most previous studies have focused on single travel modes. People have a variety
of travel mode options, including private cars, buses, subways, and electric bikes. There are
few studies on the differences in mobility between metros and taxis. Furthermore, there is
competition and cooperation among different travel modes, but there is no comprehensive
framework for detecting it. Moreover, it is hard to grasp residents’ travel characteristics
with traditional surveys due to the aggregation and mobility of travelers. The goal of
this study is to explore the travel characteristics of subways and taxis using big AFC data
and GPS data. The contributions of this study contain two aspects: (1) the proposition
of a framework for exploring the relationship between subways and taxis based on real
trips and dividing taxi trips into a competitive element, a cooperative element, and a
complementary element; (2) the adoption of a Voronoi diagram based on subway station
information to construct a subway OD network and taxi OD network and to analyze their
spatiotemporal characteristics.

The rest of this article is organized as follows. Section 2 introduces the literature
review. Section 3 gives the methodology. Section 4 describes the data. The results are given
in Section 5. Section 6 concludes the paper.

2. Literature Review
2.1. Applications of Big Data in Travel Mobility

Traffic-related big data, such as transit IC card data, the GPS data of taxis, trip data
from bike-sharing schemes, and mobile phone data, play crucial roles in detecting traveler
behavior, traffic status, origin–destination demand, and traffic model optimization. Transit
IC card data have been widely used in analyzing travel mobility and OD demand [39–41].
In some bus transit systems, only boarding information is recorded. The alighting infor-
mation should be inferred to achieve an OD matrix [42]. Exploring traffic flow structures
and characteristics from the perspective of a complex network has recently drawn much
attention [43,44]. GPS-based big traffic data from taxis, bike-sharing schemes, and mobile
phones have been successfully applied in traffic characteristic detection [45–48], traffic
monitoring [49,50], traffic emission inferences [51], and so on. Mobile phone data have
the characteristics of a large volume and spatiotemporal continuity, making them a good
source for exploring mobility with multimodal transportation. Bachir et al. proposed a
two-step semi-supervised learning algorithm for identifying transport modes with their
mobile network trajectories and studied dynamic origin–destination flows for each trans-
port mode [52]. Zhang et al. introduced a deep multi-scale learning model for classifying
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transportation modes and speeds, which can help in understanding the mobility of moving
objects [53].

2.2. Origin–Destination Demand Estimation

OD demand estimation plays a key role in city planning, traffic planning, and traffic
management, making it an indispensable component of human mobility [54]. The main
methods of studying OD demand estimation are model-based methods and data-driven
methods. The gravity model is one of the most famous model-based methods and has been
applied to buses [55], taxis [56], aviation [57], and so on. To grasp the underlying mech-
anisms of people’s mobility, many models have been proposed, including the maximum
entropy model [58], intervening opportunities model [59], spatial interaction model [60],
and free utility model [61]. The maximum entropy model is a macroscopic explanation of
the social gravity law, but it is not able to reflect individuals’ choices or behaviors. More
recent models have attempted to include microscopic individual choices to give better
explanations. In the last two decades, data-driven methods for OD demand estimation
have become hotspots. Krishnakumari et al. proposed a data-driven method for estimating
an OD matrix. The method includes two main components: prediction of the production
and attraction time series and OD matrix estimation [62].

2.3. Multimode Travel Behavior Characteristics

People make various choices of traffic modes in their daily travel, such as using private
cars, taking public transportation, or walking. It is hard to grasp the OD demand of each
traffic mode. Traditional studies tend to use sampling and questionnaire surveys to obtain
traffic information, including people’s home locations, traffic modes, and so on. Cheng et al.
studied the spatial heterogeneity in accessibility and transit mode choices and found that
low transit accessibility in suburban areas is correlated with the use of public transporta-
tion [63]. Ilahi et al. found that increasing the public transport frequency or creating bus
priority lanes to reduce the travel time could increase the shares of these modes [64]. There
are many difficulties in obtaining an accurate OD demand. Questionnaire surveys are
expensive and time-consuming; thus, they hinder the ability to obtain large amounts of
traffic data. In addition, results that are based on questionnaire surveys are affected by the
age, income, and other factors of interviewees [65,66]. Automatically collected big data
(e.g., from IC cards and GPS) provide a better source for understanding OD demand and
travelers’ behaviors. Numerous studies have focused on travelers’ mobility when using a
single traffic mode. However, the relationship of travel demand with multiple modes is not
clear at present. Kim and Cho pointed out that bike-sharing schemes and public transit
might compete with or promote each other, even within a city [67]. Chan et al. studied the
choices of and equity in multimodal public transport services in Hong Kong [68]. Xu et al.
studied a ride-sourcing service with autonomous vehicles (AVs) for transportation hubs
in multimodal transport systems, and they found that differentiated pricing and fleet size
management strategies for AVs would be beneficial. Transport network companies can
benefit from a greater profit and enjoy a higher market share while public transit enjoys
higher ridership [69].

3. Methodology
3.1. Zone Entropy of Subways and Taxis

This study introduces zone entropy to the measurement of the mixed use of subways
and taxis. We divided taxi trips into three types: competitive, cooperative, and complemen-
tary. Figure 1 shows an illustration of the taxi type division. Specifically, we built a buffer
area around subway stations with radius r. Taxi trips with both origins and destinations
in the buffer area are considered competitive trips. Taxi trips with origins or destinations
in the buffer area are considered cooperative trips, which means that passengers use taxi
transfers to/from the subway. Otherwise, taxi trips are considered complementary to the
subway system. In this study, we set r = 100 m as the radius of the buffer area.



Sustainability 2024, 16, 4305 4 of 17

Sustainability 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

destinations in the buffer area are considered competitive trips. Taxi trips with origins or 
destinations in the buffer area are considered cooperative trips, which means that passen-
gers use taxi transfers to/from the subway. Otherwise, taxi trips are considered comple-
mentary to the subway system. In this study, we set r = 100 m as the radius of the buffer 
area. 

 
Figure 1. Illustration of the taxi type division. 

Then, we calculated the proportions of the three types of taxi trips in different zones. 
The zones were subdivisions of the studied area, which could be divided using many 
forms of division, such as grids, traffic analysis zones (TAZs), hexagons, and Voronoi di-
agrams. The Voronoi diagram is one of the most widely used methods for dividing areas 
in computational geometry. In this study, we used a Voronoi diagram to divide the stud-
ied area. The zone entropy of subways and taxis was calculated as 

ln( )

ln( )
j jj

i

p p
E

k
= −


 (1)

where jp  is the proportion of one taxi type (competitive, cooperative, or complemen-

tary) in zone i , and k is the number of taxi types. A value of 0 means that the zone only 
contains one taxi type, while a value of 1 means that there is an equal distribution of all 
taxi types. 

3.2. Network Construction 
A Voronoi diagram is a subdivision of an area using a set of points called generating 

points or generators. Every point in the subdivided region is closer to one generator than 

to the other generators. Let { }1 2, , , nA a a a=  , where ( , )i i ia m n=  is a set of generating 

points in 2 . A Voronoi cell ( )iV a  for generating point 
ia  is defined as [31] 

{ }2( ) : :i i jV a a a a a a for all i j= ∈ − < − ≠  (2)

where x  is the Euclidean norm of x  in 2 . The formula states that points in the Vo-
ronoi cell ( )iV a  created by point 

ia  are closer to 
ia  than they are to other generators. 

In this study, we used subway stations as generating points to construct Voronoi di-
agrams dividing the study area. Taxi pick-up points or drop-off points in the Voronoi-
subdivided region ( )iV a  are closest to station 

ia . A Voronoi diagram is good way to 
divide traffic regions when studying the relationship between subways and taxis. This is 

Figure 1. Illustration of the taxi type division.

Then, we calculated the proportions of the three types of taxi trips in different zones.
The zones were subdivisions of the studied area, which could be divided using many
forms of division, such as grids, traffic analysis zones (TAZs), hexagons, and Voronoi
diagrams. The Voronoi diagram is one of the most widely used methods for dividing areas
in computational geometry. In this study, we used a Voronoi diagram to divide the studied
area. The zone entropy of subways and taxis was calculated as

Ei = −
∑j pj ln(pj)

ln(k)
(1)

where pj is the proportion of one taxi type (competitive, cooperative, or complementary) in
zone i, and k is the number of taxi types. A value of 0 means that the zone only contains
one taxi type, while a value of 1 means that there is an equal distribution of all taxi types.

3.2. Network Construction

A Voronoi diagram is a subdivision of an area using a set of points called generating
points or generators. Every point in the subdivided region is closer to one generator than
to the other generators. Let A = {a1, a2, · · · , an}, where ai = (mi, ni) is a set of generating
points in R2. A Voronoi cell V(ai) for generating point ai is defined as [31]

V(ai) :=
{

a ∈ R2 : ‖ai − a‖ < ‖aj − a‖ f or all i 6= j
}

(2)

where ‖x‖ is the Euclidean norm of x in R2. The formula states that points in the Voronoi
cell V(ai) created by point ai are closer to ai than they are to other generators.

In this study, we used subway stations as generating points to construct Voronoi
diagrams dividing the study area. Taxi pick-up points or drop-off points in the Voronoi-
subdivided region V(ai) are closest to station ai. A Voronoi diagram is good way to
divide traffic regions when studying the relationship between subways and taxis. This
is because many taxi travelers tend to use the nearest subway stations when they use
the subway. Figure 2 shows an example of a Voronoi diagram based on subway stations
(created randomly). Each subdivided region is considered as a node, and trips are regarded
as edges. In this study, we created the Voronoi diagram based on real subway stations in
Beijing using ArcGIS 10.3.
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Figure 2. Voronoi diagram based on subway stations.

In this study, we define a directed graph as G = (V, E, W) to represent the movement
of travelers, where V is the set of nodes V := {vi|i = 1, 2, · · · , N}, and N is the total
number of nodes. E is the set of edges E :=

{
eij
∣∣i, j ∈ {1, 2, · · · , N}

}
. eij = 1 if there is

an edge between node i and node j; otherwise, eij = 0. W is the set of weights of edges
W :=

{
wij
∣∣i, j ∈ {1, 2, · · · , N}

}
, and wij is the number of trips between i and node j.

In this part, we adopted several indicators to obtain the travel characteristics of subway
and taxi trip networks. These indicators were calculated with Python 3.8.

3.3. Measurement
3.3.1. Network Structure Measures

(1) Node degree. The node degree contains the in-degree and out-degree. The in-
degree of node i is denoted as kin

i , which means the number of nodes that point to node i;
the out-degree kout

i denotes the number of nodes that node i points to. The degree of node i
is the sum of the in-degree and out-degree.

kin
i =

N

∑
j=1

eji (3)

kout
i =

N

∑
j=1

eij (4)

ki = kin
i + kout

i (5)

(2) Node strength. Similarly to the node degree, we define the node strength to reflect
the strength of traffic flow. The in-strength sin

i of node i denotes the amount of traffic flow
to node i; the out-strength sout

i is the amount of traffic flow from node i. The node strength
is defined as the sum of the in-strength and out-strength.

sin
i =

N

∑
j=1

wji (6)

sout
i =

N

∑
j=1

wij (7)
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si = sin
i + sout

i (8)

(3) Betweenness. Betweenness is a significant indicator for measuring the importance
of nodes in propagating information. It is defined as follows [70]:

CB(v) = ∑
s 6=t

σst(v)
σst

(9)

where σst is the number of shortest paths going from s to t, and σst(v) is the number of
shortest paths going from s to t through node v.

(4) Pagerank. The Pagerank is a famous index for finding important nodes in graphs,
and it can grasp global topological information. It is defined as follows [71]:

pi =
1
N
(1− p) + p×

N

∑
j=1

eji

kout
j
× pj (10)

where pi denotes the influence score of the ith node, p is a damping coefficient, kout
j denotes

the out-degree of the jth node, and eji is an adjacency matrix.

3.3.2. Traffic Flow Disequilibrium Factor

Typically, the inbound and outbound traffic flows of a node are different for many
reasons. In this study, the traffic flow disequilibrium factor (TFDF) of node i is defined as

TFDFi =
2×max(sin

i , sout
i )

sin
i + sout

i
(11)

The traffic flow disequilibrium factor is defined as the ratio of the maximum value
and the average value of the in-strength and out-strength. It ranges from 1 to 2. A larger
value means a greater imbalance between the inbound and outbound flows of a node.

3.3.3. Transfers of Subway Flow

Average transfer times: In subway networks, transferring from one line to another line
is a common phenomenon due to the large scale. Transfers increase travelers’ travel time,
thus reducing the transport efficiency of the subway. We used the average transfer time
(ATT) to measure the transfer efficiency of subways in this study. It is defined as

ATT =

(
N

∑
i=1

N

∑
j=1

wij · trij

)/( N

∑
i=1

N

∑
j=1

wij

)
(12)

where wij is the number of passengers from node i and node j; trij is the shortest transfer
time between node i and node j, and it can be achieved with space P [72].

4. Data Description

The data were collected in Beijing, the capital city of China (see Figure 3). The total
land area is 16,410 km2, and the population is 21.53 million. Figure 3 shows the subway
stations with red nodes. Automatic fare collection (AFC) data from the subway and global
positioning system (GPS) data were collected from 23 July 2018 to 29 July 2018. The main
study area was located in the region ranging from 115.8538 E to 117.1420 E in longitude
and from 39.4894 N to 40.4667 N in latitude.
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Table 1 shows the main information in the AFC data from the Beijing subway, which
included the card number, entry time, origin station, exit time, and destination station. The
data were cleaned before use. The cleaning process included an abnormal flow check, the
removal of duplicate data and missing data, and outlier detection.

Table 1. Sample of the AFC data from the Beijing subway.

Card No. Entry Time Origin Station Exit Time Destination Station

12752453 20180723 21:09:05 150995466 20180723 21:37:03 1509954474
12548517 20180723 21:15:20 150996031 20180723 21:47:47 150995457
12523198 20180723 21:19:03 150998595 20180723 21:52:19 150995214

Table 2 shows an example of the taxi GPS data. The data included the ID, time,
longitude, latitude, instantaneous speed, and status. The status refers to whether a taxi
was occupied or vacant. A value of ‘0’ means that the taxi was vacant, and a value of
‘1’ means that the taxi was occupied. Each taxi sent a record approximately every 30 s.
We extracted the origin and destination of each trip based on the information. These data
were preprocessed before their use. Records with missing information were removed.
Moreover, trips that were more than 3 h or less than 5 min were defined as outlier data that
were removed.

Table 2. Examples of the taxi GPS data.

ID Time Longitude Latitude Speed Status

4976662200768 20180723070437 115.94916 40.43039 20.34 0
4976662200172 20180723120812 116.44217 39.95301 0 1
4976662201413 20180723201425 116.49595 39.97312 37.01 1

In this study, we collected point-of-interest (POI) data using a Python program from
Baidu Map (https://map.baidu.com/) (accessed on 1 July 2018). The POI data included
14 categories: “restaurant”, “scenic spot”, “shopping”, “transport facilities”, “finance and

https://map.baidu.com/


Sustainability 2024, 16, 4305 8 of 17

insurance”, “education, hotel”, “health service”, “company”, “government”, “residence”,
“life service”, “public service”, and “sport and recreation”.

5. Results
5.1. Temporal Characteristics of Travel Mobility

Figure 4 shows the distributions of the numbers of trips on the subway and those with
competitive, cooperative, and complementary taxis. As can be seen, there were obvious
morning peaks and evening peaks on the subway on weekdays. However, the taxi peaks
happened during off-peak times, which indicated that passengers seldom chose taxis for
commuting due to road congestion or higher costs. Moreover, one can observe that the
numbers of passengers both on the subway and in taxis decreased on weekends. The
proportions of competitive, cooperative, and complementary taxis were 9.3% (9.03%),
35.67% (34.1%), and 55.03% (56.88%), respectively, on weekdays (weekends). Notably, taxi
trips outside of the subway service time were considered as complementary to the subway.
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Figure 4. Temporal trip distributions: (a) subway, (b) taxis, (c) competitive taxis (T-competition),
(d) cooperative taxis (T-cooperation), and (e) complementary taxis (T-complement).

5.2. Spatial Characteristics of Travel Mobility

To detect the spatial characteristics of subway and taxi trips, we assessed the spatial
OD flow distributions for subways and taxis, as shown in Figure 5. It was observed
that both subway trips and taxi trips were concentrated in the central city, especially for
competitive taxis. To some extent, the proportion of competitive taxis was smaller than
those of cooperative and complementary taxis. Moreover, cooperative taxis played a key
role in the central city and urban–rural fringe. In addition, it was found that the proportion
of complementary taxis was the largest, which meant that there was relative independence
between the subway and taxis. We found that taxis are a significant complement to the
subway in the areas that do not have subway service.
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5.3. Distribution of Travel Distances

Figure 6 shows the travel distance distributions of the subway, taxis, competitive
taxis, cooperative taxis, and complementary taxis on a Wednesday and a Sunday. The
trip distances on the subway were concentrated between 5 km and 20 km, while the trip
distances with taxis were concentrated between 1 km and 10 km. The median values
of the subway and taxi trip distances were 12.85 km and 4.30 km. The median values
of competitive, cooperative, and complementary taxi trips were 3.47 km, 4.77 km, and
4.16 km, respectively. The travel distances of competitive taxi trips were smaller than those
of the other types of taxi trips. There was a small number of passengers using taxis rather
than the subway when the travel distances were larger than 70 km. The reason for this is
that passengers have to transfer when they travel long distances using the subway, which
increases the travel time. Therefore, taxis are a better travel choice for long trips.
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5.4. Zone Entropy

Large values of zone entropy were distributed in the central area of Beijing, as shown
in Figure 7a,b. Figure 7a,b show the spatial distributions of entropy on a Wednesday
and a Sunday, respectively. In the suburbs, the values of zone entropy were small. This
was because the distributions of subway stations were sparse due to the low accessibility
of the subway network. A small proportion of passengers could transfer to the subway
using taxis. We also observed that there were more zones with large zone entropy values
on weekends than on weekdays. The reason for this may be that passengers have more
free time to travel, and they prefer to use mixed travel modes to reduce their travel costs.
Figure 7c,d show the distributions of zone entropy values. It can be seen that most values
were larger than 0.5, and there was a small proportion of zones with small entropy values,
which indicates that the types of taxi trips were diverse in most areas.
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Figure 8 shows the entropy values and taxi types for each hour on a Wednesday
and a Sunday. It can be seen in Figure 8a that the entropy values in the peak hours in
the early morning and evening were slightly smaller than those in other time periods.
Specifically, one can see in Figure 8b that the proportion of complementary taxi trips
increased during these two time periods. The proportions of competitive, cooperative, and
complementary taxi trips were 9.1%, 35.6%, and 55.3%, respectively. The results indicate
that complementary taxi trips played a dominant role, especially at night when the subway



Sustainability 2024, 16, 4305 11 of 17

was closed. It can be seen in the figures that there were no obvious differences between
Wednesdays and Sundays.
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Figure 8. Entropy values during different hours of the day (a) and taxi type distribution on Wednes-
days and Sundays (b,c).

5.5. Network-Based Features

In order to analyze the OD network characteristics of the subway and taxis, we cal-
culated the main values of complex network indicators, as shown in Table 3. We found
that the average degrees of the subway OD network and taxi OD network were 229.13 and
123.76 on Wednesdays, which indicated that the subway OD network had closer connec-
tions than the taxi OD network did. It was shown that the community structure of the
taxi OD network was more obvious than that of the subway network. The AD and CC of
the competitive taxi network were smaller than those of the other taxi types because the
proportion of competitive taxi trips was smaller.

Table 3. Values of complex network indicators for the subway, taxis, competitive taxis (T-competition), co-
operative taxis (T-cooperation), and complementary taxis (T-complement) on weekdays and weekends.

AD BC CC PageRank Modularity ASPL

Subway (Wed.) 229.13 6.47 × 10−5 0.810 0.0029 0.101 1.033
Subway (Sun.) 226.47 8.66 × 10−5 0.802 0.0029 0.081 1.044

Taxi (Wed.) 123.76 0.0019 0.579 0.0028 0.364 1.662
Taxi (Sun.) 100.77 0.0021 0.537 0.0027 0.376 1.737

T-competition (Wed.) 30.373 0.0026 0.357 0.0025 0.282 2.283
T-competition (Sun.) 23.21 0.0024 0.292 0.0027 0.293 2.446
T-cooperation (Wed.) 80.73 0.0025 0.523 0.0027 0.305 1.861
T-cooperation (Sun.) 62.49 0.0028 0.462 0.0027 0.308 1.987

T-complement (Wed.) 88.38 0.0022 0.512 0.0027 0.395 1.781
T-complement (Sun.) 69.26 0.0024 0.458 0.0027 0.417 1.849

5.6. Subway Transfer Flow

With the expansion of the subway network, there are more and more passengers
that need transfers to reach their destinations. However, transfers cost more time. Some
passengers dislike transfers and shift to other travel modes, such as taxis and private cars.
In this section, we quantitatively analyze transfers in the subway system. Figure 9 shows
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the traffic flow distribution among different lines and within the same lines. Only 19.42% of
the total passengers can travel without transfers. Transfers can increase travel times, which
decreases travel efficiency. In order to measure subway transfers, we calculated the transfer
proportions in the subway network and the flow, as shown in Table 4. Firstly, we calculated
the minimum transfer times between all nodes in space P. Then, the proportions of transfer
times were calculated. Finally, the transfer proportions of passenger flow were given
based on structural transfers. As can be seen in the network structure, a traveler can
reach any station by transferring a maximum of four times. Actually, more than 98% of
travelers travel with at most two transfers, only 0.19736% travel with three transfers, and
no travelers travel with four transfers. The average number of transfers in the subway flow
was 1.084. Therefore, managers should do their best to improve the subway network to
reduce transfers and enhance its competitiveness.
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Table 4. Proportions of transfer time for the subway’s structure and flow.

Transfer Times 0 1 2 3 4

Proportion (structure) 0.082947 0.425891 0.375646 0.10619 0.009327
Proportion (flow) 0.19422 0.547401 0.238643 0.019736 0

5.7. Unbalanced Traffic Flow

The occurrence and attraction of regions are unbalanced due to diversity in the origin–
destination demand. Figure 10 shows the unbalanced distributions of the subway flow and
taxi flow. It can be seen that unbalanced nodes appeared in suburban areas for both the
subway and taxis. Moreover, the imbalance in the taxi flow was more serious than that in
the subway flow from the perspective of the indicators. The largest value for the subway
was 1.406, while the smallest value for taxis was 1.408.
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5.8. Correlations between Ridership and Socioeconomic Indicators

To better understand the relationship between ridership and socioeconomic indicators,
we plotted a correlation heat map, as shown in Figure 11. As can be seen, the correlations
between subway ridership and socioeconomic indicators were not strong. In contrast,
some kinds of POIs, such as those related to finance and insurance, had obviously positive
correlations with taxi ridership. Moreover, it was observed that there were no evident
correlations between population and the ridership of the subway and taxis.
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6. Discussions

The travel mobility of urban residents plays a key role in transportation planning and
management. Traditional studies have focused on single travel modes [1,25,26]. In reality,
people can opt for many travel modes, such as subways, buses, and bikes. Previous studies
have indicated that there are different temporal distributions of ridership between subways
and taxis. The subway ridership shows a bimodal distribution with a morning peak and
an evening peak [4]. However, there is no morning peak in taxi ridership [21]. People
prefer to use the subway to commute and dislike using taxis due to the congested road
conditions. At present, there is limited research on comparative analyses of multimodal
transportation mobility. In this study, we propose a data-driven framework for analyzing
the spatiotemporal characteristics of taxis and the subway. We divided taxi trips into com-
petitive, cooperative, and complementary trips. It was found that the competition between
the subway and taxis was only slight. However, there was a high level of cooperation
between them. In addition, taxis are an important complement to the subway, especially in
suburban areas.

The limitations of this study are as follows. Firstly, we only explored the spatiotem-
poral characteristics of subways and taxis. It was difficult to find determinants based on
ridership data. In future studies, the use of a questionnaire can help in this regard. Secondly,
this study only assessed two travel modes, but more travel modes (e.g., buses and bikes)
should be studied together. Finally, we only used a Voronoi diagram to divide the study
area. More types of traffic analysis zones should be considered.

In future studies, we intend to consider more travel modes to study mobility with
multimodal transportation. Moreover, better traffic analysis zoning will be considered. In
addition, more determinants will be considered.

7. Conclusions

Big data analysis provides new insights for understanding traffic demand. However,
people meet the dilemma of exploring traffic demand between different travel modes when
merging different types of data. In this study, a framework was proposed based on large
amounts of subway AFC data and taxi GPS data to analyze traffic demand. Taxi trips
were divided into three groups: competitive, cooperative, and complementary. Voronoi
diagrams based on subway stations were introduced to divide the regions. An entropy
index was adopted to measure the mix of taxi trips. Then, subway and taxi networks were
constructed to analyze the traffic demand, where divided regions were considered as nodes,
and trips between nodes were regarded as edges.

The results showed that there were two obvious peaks in the subway flow in the
morning and afternoon, while taxi flow peaks were not evident. Moreover, there were
similar distance distributions and very different flow structures between subway trips and
taxi trips. It was found that the proportions of competitive, cooperative, and complementary
taxis were 9.1%, 35.6%, and 55.3%, respectively. Furthermore, the entropy was large in the
central city and small in the suburbs. Due to the fixed subway lines, more than 80% of
subway passengers needed to transfer to other lines to reach their destinations. The average
number of transfers on the subway was 1.084, and the maximum number of transfers was
3. Moreover, it was shown that the subway network was more closely connected than the
taxi network. However, the imbalance in taxis was more serious than that in the subway.

The results indicated that there was less cooperation between the subway and taxis
in suburban areas. Cooperation between different travel modes is very important when
building a sustainable transportation system. For example, mobility as a service (MaaS)
aims to integrate multimodal transportation into a system to reduce the use of private cars.
This study suggests that managers should provide more transport facilities and policies
to promote cooperation between different travel modes. This study can help in urban
planning and traffic management; for example, managers should enhance the connectivity
of the subway to reduce transfers. Moreover, the government should provide more traffic
facilities in suburban areas to promote cooperation between the subway and taxis. In future
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studies, more division methods will be considered. Additionally, more traffic modes will
be considered, as well as the connections between different traffic modes.
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