Combined Aerobic Fermentation of Maricultural and Agricultural Solid Waste: Physicochemical Property and Bacterial Community Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Materials
2.2. Fermentation Experiments
2.3. Measuring Methods
2.4. Factors Affecting Composting
2.5. Microbial Community Analysis
2.5.1. Sample Sampling Method
2.5.2. DNA Extraction Method
- (1)
- Prepare 2 mL centrifuge tube, add 0.8 mL Buffer SLX Mlus, shake for 5 min.
- (2)
- Add 80 μL Buffer DS and shake to mix.
- (3)
- Pyrolysis in a constant-temperature metal bath at 70 °C for 10 min.
- (4)
- 13,000 rpm centrifugation at room temperature for 5 min.
- (5)
- Absorb 600 μL of the upper liquid into the new 2 mL centrifuge tube, add 200 μL Buffer SP2, shake and mix.
- (6)
- Add 100 μL HTR Reagent and mix for 10 s. Ice bath for 5 min, centrifugation at room temperature for 5 min at 13,000 rpm.
2.5.3. PCR Amplification
2.5.4. Library Quality Control and Sample Mixing
2.6. Statistic Analysis
3. Results and Analysis
3.1. Temperature Changes during Composting
3.2. pH Value Changes during Composting
3.3. Changes in Electrical Conductivity during Composting
3.4. Changes of Organic Matter in Composting Process
3.5. Changes of Seed Germination Index
3.6. Changes in Total Nitrogen Content during Composting
3.7. Changes in Inorganic Phosphorus Content during Composting
3.8. Bacterial Abundance and Diversity of Compost Samples
3.9. Bacterial Community Structure and Dominant Flora in Compost
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, R.; Xu, S.; Qi, Z.; Zhu, Q.; Huang, H.; Weber, F. Influence of suspended mariculture on vertical distribution profiles of bacteria in sediment from Daya Bay, Southern China. Mar. Pollut. Bull. 2019, 146, 816–826. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, F.; Wu, Y.; Xu, G.; Liu, H.; Zhang, H.; Yang, F.; Xu, Y. Small-sized salt-tolerant denitrifying and phosphorus removal aerobic granular sludge cultivated with mariculture waste solids to treat synthetic mariculture wastewater. Biochem. Eng. J. 2022, 181, 108396. [Google Scholar] [CrossRef]
- Shi, W.; Fang, Y.R.; Chang, Y.; Xie, G.H. Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resour. Conserv. Recycl. 2023, 190, 106824. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Sanderson, P.; Dang, B.T.; Bui, X.T.; Nguyen, N.S.; Vo, D.V.; Tran, H.T. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 2022, 299, 299134488. [Google Scholar] [CrossRef]
- He, Y.; Liu, D.; He, X.; Wang, Y.; Liu, J.; Shi, X.; Chater, C.C.; Yu, F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. J. Environ. Manag. 2022, 324, 116377. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.J.; Chang, S.W.; Chaudhary, D.K.; Shin, J.; Kim, H.; Karmegam, N.; Govarthanan, M.; Chandrasekaran, M.; Ravindran, B. Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure. Chemosphere 2021, 283, 131129. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Xu, X.; Qu, J.; Zhu, L.; Wang, T. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J. Microbiol. Biotechnol. 2016, 32, 101. [Google Scholar] [CrossRef] [PubMed]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–24. [Google Scholar]
- Ajmal, M.; Shi, A.; Awais, M.; Mengqi, Z.; Zihao, X.; Shabbir, A.; Faheem, M.; Wei, W.; Ye, L. Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. J. Environ. Chem. Eng. 2021, 9, 105453. [Google Scholar] [CrossRef]
- Ge, J.; Huang, G.; Yang, Z.; Huang, J.; Han, L. Characterization of the dynamic thickness of the aerobic layer during pig manure aerobic composting by Fourier transform infrared microspectroscopy. Environ. Sci. Technol. 2014, 48, 5043–5050. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Wang, S.P.; Wang, L.; Sun, Z.Y.; Wang, S.T.; Shen, C.H.; Tang, Y.Q.; Kida, K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresour. Technol. 2021, 337, 125492. [Google Scholar] [CrossRef]
- Zhao, S.; Schmidt, S.; Qin, W.; Li, J.; Li, G.; Zhang, W. Towards the circular nitrogen economy–A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Sci. Total Environ. 2020, 704, 135401. [Google Scholar] [CrossRef]
- Ucaroglu, S.; Ozbek, B. Compostability of Treatment Sludge and Cattle Manure. KSCE J. Civ. Eng. 2021, 25, 1592–1599. [Google Scholar] [CrossRef]
- Sharma, K.; Garg, V.K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 2018, 250, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; He, Y.; He, K.; Gao, H.; Ren, M.; Qu, G. Degradation mechanism of lignocellulose in dairy cattle manure with the addition of calcium oxide and superphosphate. Environ. Sci. Pollut. Res. Int. 2019, 26, 33683–33693. [Google Scholar] [CrossRef]
- Meng, X.; Liu, B.; Zhang, H.; Wu, J.; Yuan, X.; Cui, Z. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresour. Technol. 2019, 276, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.L.; Jiang, T.; Tan, M.; He, W.H.; Lu, S.J.; Xiang, T.J. Effect of microbial agent on the fermentation of rapeseed meal aerobic compost. Phosphorus Fertil. Compd. Fertil. 2019, 35, 20–23. (In Chinese) [Google Scholar]
- Abid, N.; Sayadi, S. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Manag. 2006, 26, 1099–1107. [Google Scholar] [CrossRef]
- Liu, T.; Awasthi, M.K.; Awasthi, S.K.; Ren, X.; Liu, X.; Zhang, Z. Influence of fine coal gasification slag on greenhouse gases emission and volatile fatty acids during pig manure composting. Bioresour. Technol. 2020, 316, 123915. [Google Scholar] [CrossRef]
- Yuan, J.; Chadwick, D.; Zhang, D.; Li, G.; Chen, S.; Luo, W.; Du, L.; He, S.; Peng, S. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Manag. 2016, 56, 403–410. [Google Scholar] [CrossRef]
- Febrisiantosa, A.; Ravindran, B.; Choi, H.L. The effect of co-additives (Biochar and FGD Gypsum) on ammonia volatilization during the composting of livestock waste. Sustainability 2018, 10, 795. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Chen, H.; Wang, M.; Zhang, Z. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting. Bioresour. Technol. 2017, 245, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wang, X.; Cong, C.; Li, J.; Xu, Y.; Li, X.; Hou, F.; Wu, Y.; Wang, L. Effect of inoculating microorganisms in chicken manure composting with maize straw. Bioresour. Technol. 2020, 301, 122730. [Google Scholar] [CrossRef]
- Du, X.; Li, B.; Chen, K.; Zhao, C.; Xu, L.; Yang, Z.; Sun, Q.; Chandio, F.A.; Wu, G. Rice straw addition and biological inoculation promote the maturation of aerobic compost of rice straw biogas residue. Biomass Convers. Biorefinery 2020, 11, 1885–1896. [Google Scholar] [CrossRef]
- Wang, G.; Kong, Y.; Yang, Y.; Ma, R.; Shen, Y.; Li, G.; Yuan, J. Superphosphate, biochar, and a microbial inoculum regulate phytotoxicity and humification during chicken manure composting. Sci. Total Environ. 2022, 824, 153958. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Pan, G.; Tahir, M.I.; Imran, M.; Irfan, M. Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil Tillage Res. 2019, 186, 172–182. [Google Scholar] [CrossRef]
- Sun, L.; Tao, Z.; Liu, X.; Wu, Z. Effects of phosphate-solubilizing bacteria on phosphorus components, humus and bacterial community metabolism during spent mushroom substrate composting. Environ. Technol. Innov. 2023, 32, 103341. [Google Scholar] [CrossRef]
- Sun, Y.; Men, M.; Xu, B.; Meng, Q.; Bello, A.; Xu, X.; Huang, X. Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. Waste Manag. 2019, 92, 59–67. [Google Scholar] [CrossRef]
- Wang, C.; Chen, D.; Shen, J.; Yuan, Q.; Fan, F.; Wei, W.; Li, Y.; Wu, J. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Environ. 2021, 311, 107291. [Google Scholar] [CrossRef]
- Wang, X.Z. Study on Effects of Manure Manure on Soil Physicochemistry and Microbial Community Evolution of Tabanopsis. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Tian, W.; Sun, Q.; Xu, D.; Zhang, Z.; Chen, D.; Li, C.; Shen, Q.; Shen, B. Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int. Biodeterior. Biodegrad. 2013, 78, 58–66. [Google Scholar] [CrossRef]
- Chang, H.Q.; Zhu, X.H.; Jie, W.U.; Guo, D.Y.; Zhang, L.H.; Yao, F.E. Dynamics of microbial diversity during the composting of agricultural straw. J. Integr. Agric. 2021, 20, 1121–1136. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, L.J.; Xu, B.; Men, M.; Sun, Y.; Zhang, W.; Deng, L.; Jiang, X.; Wu, X.; Sheng, S. Analysis of bacterial community dynamics in cow manure compost based on high-throughput sequencing. J. Northeast Agric. Univ. 2018, 49, 10–20. [Google Scholar]
- Li, J. Study on Prevention and Treatment of Southern Root-Knot Nematode by Pseudoxanthomonas Japonensis. Master’s Thesis, Yunnan University, Kunming, China, 2013. [Google Scholar]
- Zhang, Z.; Zhao, J.; Yu, C.; Dong, S.; Duan, H.; Yu, R.; Liu, Y.; Wang, C. Chelatococcus composti sp. nov., isolated from penicillin fermentation fungi residue with pig manure co-compost. Int. J. Syst. Evol. Microbiol. 2017, 67, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Kaparullina, E.N.; Doronina, N.V.; Ezhov, V.A.; Trotsenko, Y.A. EDTA degradation by cells of Chelativorans oligotrophicus immobilized on a biofilter. Appl. Biochem. Microbiol. 2012, 48, 396–400. [Google Scholar] [CrossRef]
Material | MC (%) | pH | EC (ms/cm) | OM (%) | TOC (%) | TN (%) | C/N |
---|---|---|---|---|---|---|---|
Maricultural solid waste | 53 | 7.9 | 15 | 12.3 | 7.2 | 0.7 | 10 |
Chicken manure | 38 | 6.6 | 7.6 | 24 | 14 | 1.2 | 11.7 |
Cow manure | 76 | 8.3 | 6.4 | 19.8 | 11.6 | 0.44 | 26.4 |
Wheat straw | 11 | 5.8 | 3.1 | 87 | 50 | 0.65 | 77 |
Biochar | 30 | 6.7 | 3.6 | 75 | 44 | 0.56 | 78.57 |
Treatment | Solid Waste | Cow Manure | Chicken Manure | Wheat Straw | Biochar |
---|---|---|---|---|---|
T1 | 1 | - | - | 1 | - |
T2 | 1 | 7 | - | 3 | - |
T3 | 1 | 7 | - | 3 | 5% |
T4 | 1 | 7 | 1 | 3 | 5% |
Project | Primers | Sequence |
---|---|---|
Bacteria 16S rRNA | 341F | ATGCGTAGCCGACCTGAGA |
805R | CGTCAGACTTTCGTCCATTGC |
Sample | Number | OTUs | Shannon | Chao 1 | Ace | Simpson | Coverage |
---|---|---|---|---|---|---|---|
C1 | 32,393 | 825 | 2.37 | 838.49 | 872.93 | 0.41 | 1 |
C2 | 30,131 | 905 | 4.17 | 923.78 | 966.86 | 0.04 | 1 |
C3 | 31,752 | 1010 | 4.84 | 1028.28 | 1069.44 | 0.02 | 1 |
C4 | 37,478 | 904 | 4.03 | 933.36 | 981.61 | 0.06 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudi, Y.; Pan, L.; Du, X.; Liu, B.; Li, X.; Zheng, F.; Zhang, Q. Combined Aerobic Fermentation of Maricultural and Agricultural Solid Waste: Physicochemical Property and Bacterial Community Structure. Sustainability 2024, 16, 4306. https://doi.org/10.3390/su16104306
Tudi Y, Pan L, Du X, Liu B, Li X, Zheng F, Zhang Q. Combined Aerobic Fermentation of Maricultural and Agricultural Solid Waste: Physicochemical Property and Bacterial Community Structure. Sustainability. 2024; 16(10):4306. https://doi.org/10.3390/su16104306
Chicago/Turabian StyleTudi, Yalikun, Lanlan Pan, Xinjian Du, Biyue Liu, Xiuchen Li, Fuying Zheng, and Qian Zhang. 2024. "Combined Aerobic Fermentation of Maricultural and Agricultural Solid Waste: Physicochemical Property and Bacterial Community Structure" Sustainability 16, no. 10: 4306. https://doi.org/10.3390/su16104306
APA StyleTudi, Y., Pan, L., Du, X., Liu, B., Li, X., Zheng, F., & Zhang, Q. (2024). Combined Aerobic Fermentation of Maricultural and Agricultural Solid Waste: Physicochemical Property and Bacterial Community Structure. Sustainability, 16(10), 4306. https://doi.org/10.3390/su16104306