Delineating Priority Areas for Preservation and Restoration across Production–Living–Ecological Spaces in Ganzi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Coherent Framework for Delineation of Conservation Priority Areas
2.2.1. Selection of Ecosystem Indicators
2.2.2. Ranking the Relative Importance of Ecosystems across Spaces
2.2.3. Delineating Priority Areas for Preservation and Restoration According to the Human Footprint and Priority Ranks
2.2.4. Contrasting with Current Ecological Conservation Redline (ECR) and Overlapping with Production–Living–Ecological Spaces (PLES)
2.3. Assessing the Importance of Biodiversity Conservation
2.4. Assessing the Importance of Ecosystem Services
2.4.1. Carbon Sequestration
2.4.2. Water Conservation
2.4.3. Soil Retention
2.4.4. Sandstorm Prevention
2.5. Spatial Ranking of Ecological Conservation Priority
2.6. Delineating Priority Areas for Preservation and Restoration
2.7. Comparing Conservation Capability under Different Scenarios and with Ecological Conservation Redline (ECR)
2.8. Overlapping Conservation Priorities with the Production–Living–Ecological Spaces (PLES)
2.9. Data Sources
3. Results
3.1. Spatial Distributions of Species Diversity and Ecosystem Services
3.2. Spatial Ranking in Ecological Conservation Priority
3.3. Priority Areas of Preservation and Restoration under Different Scenarios
3.4. The Capability of Conservation Priority
3.5. The Overlap of Conservation Priority Areas with PLES
4. Discussion
4.1. The Importance of Distinguishing Priority Areas Separately for Preservation and Restoration
4.2. Implications for Systematic Conservation in Production–Living–Ecological Spaces (PLES)
4.3. Application in Ecological Preservation and Restoration Planning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. Available online: https://www.jstor.org/stable/20037795 (accessed on 10 August 2023). [CrossRef] [PubMed]
- Tian, Y.; Jiang, G.; Zhou, D.; Li, G. Systematically Addressing the Heterogeneity in the Response of Ecosystem Services to Agricultural Modernization, Industrialization and Urbanization in the Qinghai-Tibetan Plateau from 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Mumba, M.; Liu, J.; Rivington, M. Climate Change and Ecosystem-Based Adaptation: A New Pragmatic Approach to Buffering Climate Change Impacts. Curr. Opin. Environ. Sustain. 2013, 5, 67–71. [Google Scholar] [CrossRef]
- Naeem, S.; Chazdon, R.; Duffy, J.E.; Prager, C.; Worm, B. Biodiversity and Human Well-Being: An Essential Link for Sustainable Development. Proc. R. Soc. B Biol. Sci. 2016, 283, 20162091. [Google Scholar] [CrossRef] [PubMed]
- Cook-Patton, S.C.; Drever, C.R.; Griscom, B.W.; Hamrick, K.; Hardman, H.; Kroeger, T.; Pacheco, P.; Raghav, S.; Stevenson, M.; Webb, C.; et al. Protect, Manage and Then Restore Lands for Climate Mitigation. Nat. Clim. Chang. 2021, 11, 1027–1034. [Google Scholar] [CrossRef]
- Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp (accessed on 10 August 2023).
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-Based Conservation in the Twenty-First Century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef]
- Gatiso, T.T.; Kulik, L.; Bachmann, M.; Bonn, A.; Bösch, L.; Eirdosh, D.; Freytag, A.; Hanisch, S.; Heurich, M.; Sop, T.; et al. Effectiveness of Protected Areas Influenced by Socio-Economic Context. Nat. Sustain. 2022, 5, 861–868. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global Priority Areas for Ecosystem Restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef]
- UNEP. Kunming-Montreal Global Biodiversity Framework. Available online: http://www.unep.org/resources/kunming-montreal-global-biodiversity-framework (accessed on 10 August 2023).
- Dinerstein, E.; Vynne, C.; Sala, E.; Joshi, A.R.; Fernando, S.; Lovejoy, T.E.; Mayorga, J.; Olson, D.; Asner, G.P.; Baillie, J.E.M.; et al. A Global Deal for Nature: Guiding Principles, Milestones, and Targets. Sci. Adv. 2019, 5, eaaw2869. [Google Scholar] [CrossRef]
- Bai, Y.; Zhuang, C.; Ouyang, Z.; Zheng, H.; Jiang, B. Spatial Characteristics between Biodiversity and Ecosystem Services in a Human-Dominated Watershed. Ecol. Complex. 2011, 8, 177–183. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Possingham, H.P.; Bode, M.; Klein, C.J. Optimal Conservation Outcomes Require Both Restoration and Protection. PLoS Biol. 2015, 13, e1002052. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global Biodiversity Conservation Priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Pollock, L.J.; Thuiller, W.; Jetz, W. Large Conservation Gains Possible for Global Biodiversity Facets. Nature 2017, 546, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Belote, R.T.; Barnett, K.; Dietz, M.S.; Burkle, L.; Jenkins, C.N.; Dreiss, L.; Aycrigg, J.L.; Aplet, G.H. Options for Prioritizing Sites for Biodiversity Conservation with Implications for “30 by 30”. Biol. Conserv. 2021, 264, 109378. [Google Scholar] [CrossRef]
- Castillo-Mandujano, J.; Smith-Ramírez, C. The Need for Holistic Approach in the Identification of Priority Areas to Restore: A Review. Restor. Ecol. 2022, 30, e13637. [Google Scholar] [CrossRef]
- Jung, M.; Arnell, A.; de Lamo, X.; García-Rangel, S.; Lewis, M.; Mark, J.; Merow, C.; Miles, L.; Ondo, I.; Pironon, S.; et al. Areas of Global Importance for Conserving Terrestrial Biodiversity, Carbon and Water. Nat. Ecol. Evol. 2021, 5, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.G.E.; Schuster, R.; Jacob, A.L.; Hanna, D.E.L.; Dallaire, C.O.; Raudsepp-Hearne, C.; Bennett, E.M.; Lehner, B.; Chan, K.M.A. Identifying Key Ecosystem Service Providing Areas to Inform National-Scale Conservation Planning. Environ. Res. Lett. 2021, 16, 014038. [Google Scholar] [CrossRef]
- Wilson, K.A.; Underwood, E.C.; Morrison, S.A.; Klausmeyer, K.R.; Murdoch, W.W.; Reyers, B.; Wardell-Johnson, G.; Marquet, P.A.; Rundel, P.W.; McBride, M.F.; et al. Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biol. 2007, 5, e223. [Google Scholar] [CrossRef]
- Balvanera, P.; Daily, G.C.; Ehrlich, P.R.; Ricketts, T.H.; Bailey, S.-A.; Kark, S.; Kremen, C.; Pereira, H. Conserving Biodiversity and Ecosystem Services. Science 2001, 291, 2047. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping Ecosystem Services for Planning and Management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- Hiers, J.K.; Jackson, S.T.; Hobbs, R.J.; Bernhardt, E.S.; Valentine, L.E. The Precision Problem in Conservation and Restoration. Trends Ecol. Evol. 2016, 31, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Strassburg, B.B.N.; Beyer, H.L.; Crouzeilles, R.; Iribarrem, A.; Barros, F.; de Siqueira, M.F.; Sánchez-Tapia, A.; Balmford, A.; Sansevero, J.B.B.; Brancalion, P.H.S.; et al. Strategic Approaches to Restoring Ecosystems Can Triple Conservation Gains and Halve Costs. Nat. Ecol. Evol. 2019, 3, 62–70. [Google Scholar] [CrossRef]
- Gao, C.; Pan, H.; Wang, M.; Zhang, T.; He, Y.; Cheng, J.; Yao, C. Identifying Priority Areas for Ecological Conservation and Restoration Based on Circuit Theory and Dynamic Weighted Complex Network: A Case Study of the Sichuan Basin. Ecol. Indic. 2023, 155, 111064. [Google Scholar] [CrossRef]
- Lortie, C.J. A Comment on the Protect–Manage–Then-Restore Workflow. Restor. Ecol. 2023, 31, e13666. [Google Scholar] [CrossRef]
- Turner, W.R.; Brandon, K.; Brooks, T.M.; Costanza, R.; da Fonseca, G.A.B.; Portela, R. Global Conservation of Biodiversity and Ecosystem Services. BioScience 2007, 57, 868–873. [Google Scholar] [CrossRef]
- Srivathsa, A.; Vasudev, D.; Nair, T.; Chakrabarti, S.; Chanchani, P.; DeFries, R.; Deomurari, A.; Dutta, S.; Ghose, D.; Goswami, V.R.; et al. Prioritizing India’s Landscapes for Biodiversity, Ecosystem Services and Human Well-Being. Nat. Sustain. 2023, 6, 568–577. [Google Scholar] [CrossRef]
- Morrison, S.A. A Framework for Conservation in a Human-Dominated World. Conserv. Biol. 2015, 29, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological Restoration for Sustainable Development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Zhou, J.; Ma, J. Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit. Land 2021, 10, 1001. [Google Scholar] [CrossRef]
- Fu, B. Several Key Points in Territorial Ecological Restoration. Bull. Chin. Acad. Sci. 2021, 36, 64–69. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable Land Use Diagnosis Based on the Perspective of Production–Living–Ecological Spaces in China. Land Use Policy 2022, 122, 106386. [Google Scholar] [CrossRef]
- Martin, D.M. Ecological Restoration Should Be Redefined for the Twenty-First Century. Restor. Ecol. 2017, 25, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wu, T.; Xiao, Y.; Rao, E.; Shi, X.; Ouyang, Z. Protecting Biodiversity to Support Ecosystem Services: An Analysis of Trade-Offs and Synergies in Southwestern China. J. Appl. Ecol. 2022, 59, 2440–2451. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Qiao, H.; Hu, J. More than Two-Fifths of the Protected Land in a Global Biodiversity Hotspot in Southwest China Is under Intense Human Pressure. Sci. Total. Environ. 2024, 906, 167283. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhou, Q.; Cao, Q.; Hu, J. Effects of Ecological Restoration Measures on Vegetation and Soil Properties in Semi-Humid Sandy Land on the Southeast Qinghai-Tibetan Plateau, China. Glob. Ecol. Conserv. 2022, 33, e02000. [Google Scholar] [CrossRef]
- Jurjonas, M.; May, C.A.; Cardinale, B.; Kyriakakis, S.; Pearsall, D.R.; Doran, P.J. The Perceived Ecological and Human Well-Being Benefits of Ecosystem Restoration. People Nat. 2024, 6, 4–19. [Google Scholar] [CrossRef]
- Moilanen, A.; Lehtinen, P.; Kohonen, I.; Jalkanen, J.; Virtanen, E.A.; Kujala, H. Novel Methods for Spatial Prioritization with Applications in Conservation, Land Use Planning and Ecological Impact Avoidance. Methods Ecol. Evol. 2022, 13, 1062–1072. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the Impacts of Land Use and Climate Change on Ecosystem Services in a Karst Landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Chen, S.; Xiang, B.; Siqin, G. An Index for Comprehensive Assessment of Species Diversity at Regional Scales. J. Xiamen Univ. (Nat. Sci.) 2010, 49, 738–742. [Google Scholar]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.A.; Koch, A. Restoring Natural Forests Is the Best Way to Remove Atmospheric Carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 Tracks Cumulative CO2 Emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M.; et al. The Global Potential for Increased Storage of Carbon on Land. Proc. Natl. Acad. Sci. USA 2022, 119, e2111312119. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, S.; He, Z.; Xue, D.; Fang, G.; Pan, K.; Fang, K. Developing a system for comprehensive regional Eco-environmental quality assessment in mountainous areas—A case study of Western Sichuan, China. Front. Environ. Sci. 2022, 10, 879662. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; O’Connor, P.; Xu, H.; Li, Y.; Lu, F.; Robinson, B.E.; Ouyang, Z.; Hai, Y.; Daily, G.C. Time and Space Catch up with Restoration Programs That Ignore Ecosystem Service Trade-Offs. Sci. Adv. 2021, 7, eabf8650. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A.; Losos, E.J.B.; Flather, A.E.C.H. Reserve Selection Using Nonlinear Species Distribution Models. Am. Nat. 2005, 165, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A. Planning Impact Avoidance and Biodiversity Offsetting Using Software for Spatial Conservation Prioritisation. Wildl. Res. 2012, 40, 153–162. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Venter, O. A Global Plan for Nature Conservation. Nature 2017, 550, 48–49. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A Global Record of Annual Terrestrial Human Footprint Dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Pryce, B.; Iachetti, P.; Wilhere, G.; Crawford, R.; Goering, M.; Lewis, J.; Kittel, G.; Heiner, M.; Warner, N.; Farone, S.; et al. Okanagan Ecoregional Assessment; Okanagan Ecoregional Assessment, Volume 1—Report; Nature Conservancy of Canada: Victoria, BC, Canada, 2006. [Google Scholar]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-Third of Global Protected Land Is under Intense Human Pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed]
- O’Bryan, C.J.; Allan, J.R.; Holden, M.; Sanderson, C.; Venter, O.; Di Marco, M.; McDonald-Madden, E.; Watson, J.E.M. Intense Human Pressure Is Widespread across Terrestrial Vertebrate Ranges. Glob. Ecol. Conserv. 2020, 21, e00882. [Google Scholar] [CrossRef]
- Palmer, M.A.; Ruhl, J. Aligning Restoration Science and the Law to Sustain Ecological Infrastructure for the Future. Front. Ecol. Environ. 2015, 13, 512–519. [Google Scholar] [CrossRef] [PubMed]
- McMahen, K.; van Bommel, J.K. Towards an Integrated Perspective of Biological Conservation and Ecological Restoration. Restor. Ecol. 2020, 28, 494–497. [Google Scholar] [CrossRef]
- Mori, A.S.; Isbell, F. Untangling the Threads of Conservation: A Closer Look at Restoration and Preservation. J. Appl. Ecol. 2024, 61, 215–222. [Google Scholar] [CrossRef]
- Reid, J.L. Restoration Ecology’s Silver Jubilee: Big Time Questions for Restoration Ecology. Restor. Ecol. 2018, 26, 1029–1031. [Google Scholar] [CrossRef]
- Isbell, F. Protecting and Restoring Biodiversity and Ecosystem Services. In The Ecological and Societal Consequences of Biodiversity Loss; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 325–346. ISBN 978-1-119-90291-1. [Google Scholar]
- Watson, K.B.; Galford, G.L.; Sonter, L.J.; Ricketts, T.H. Conserving Ecosystem Services and Biodiversity: Measuring the Tradeoffs Involved in Splitting Conservation Budgets. Ecosyst. Serv. 2020, 42, 101063. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Myers, B.J.E.; Arce-Plata, M.I.; Blanchard, J.L.; Ferrier, S.; Fulton, E.A.; Harfoot, M.; Isbell, F.; Johnson, J.A.; Mori, A.S.; et al. A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models. BioScience 2022, 72, 1062–1073. [Google Scholar] [CrossRef]
- Frietsch, M.; Loos, J.; Löhr, K.; Sieber, S.; Fischer, J. Future-Proofing Ecosystem Restoration through Enhancing Adaptive Capacity. Commun. Biol. 2023, 6, 377. [Google Scholar] [CrossRef]
- Laurent, A.; Owsianiak, M. Potentials and Limitations of Footprints for Gauging Environmental Sustainability. Curr. Opin. Environ. Sustain. 2017, 25, 20–27. [Google Scholar] [CrossRef]
- Huang, Z.; Qian, L.; Cao, W. Developing a Novel Approach Integrating Ecosystem Services and Biodiversity for Identifying Priority Ecological Reserves. Resour. Conserv. Recycl. 2022, 179, 106128. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, H.; Peng, C.; Liu, J.; Piao, S.; He, J.-S.; Wang, S.; Zhao, X.; Zhang, J.; Fang, X.; et al. An Early Warning Signal for Grassland Degradation on the Qinghai-Tibetan Plateau. Nat. Commun. 2023, 14, 6406. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.R.; Gurr, G.M.; Wratten, S.D. Ecological Restoration of Farmland: Progress and Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Evans, P.M.; Watson, S.C.L.; Ridding, L.E.; Brand, S.; McCracken, M.; Gosal, A.S.; Bullock, J.M. Ecological Restoration of Agricultural Land Can Improve Its Contribution to Economic Development. PLoS ONE 2021, 16, e0247850. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Lu, C. Farmland Change and Its Implications in the Three River Region of Tibet during Recent 20 Years. PLoS ONE 2022, 17, e0265939. [Google Scholar] [CrossRef] [PubMed]
- Badgery, W.; Kemp, D.; Zhang, Y.; Wang, Z.; Han, G.; Hou, F.; Liu, N.; Michalk, D.; Behrendt, K. Optimising Grazing for Livestock Production and Environmental Benefits in Chinese Grasslands. Rangel. J. 2020, 42, 347–358. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, L.; Li, Q.; Chen, H.; Zhou, H.; Xu, S.; Dong, Q.; Wu, G.; He, Y. Using Balance of Seasonal Herbage Supply and Demand to Inform Sustainable Grassland Management on the Qinghai–Tibetan Plateau. Front. Agric. Sci. Eng. 2018, 5, 1. [Google Scholar] [CrossRef]
- Li, Y.; Allan Degen, A.; Sun, T.; Wang, W.; Bai, Y.; Zhang, T.; Long, R.; Shang, Z. Three Years of Cultivating or Fencing Lands Have Different Impacts on Soil Nutrients and Properties of a Subalpine Meadow in the Tibetan Plateau. Catena 2020, 186, 104306. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Qiu, J.; Cardinale, B.J.; Chan, K.M.A.; Eigenbrod, F.; Felipe-Lucia, M.R.; Jacob, A.L.; Jones, M.S.; Sonter, L.J. Key Questions for Understanding Drivers of Biodiversity-Ecosystem Service Relationships across Spatial Scales. Landsc. Ecol. 2024, 39, 36. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the Evidence Linking Biodiversity and Ecosystem Services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef] [PubMed]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying Trade-Offs between Ecosystem Services, Land Use, and Biodiversity: A Plea for Combining Scenario Analysis and Optimization on Different Spatial Scales. Curr. Opin. Environ. Sustain. 2013, 5, 458–463. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality Assessments—More than Assessing Multiple Ecosystem Functions and Services? A Quantitative Literature Review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Fors, H.; Berlin, A.; Gottlieb, U.; Kågström, M.; Weldon, J.; Zhang, J. Interdisciplinary Insights into Navigating the Maze of Landscape Multifunctionality. People Nat. 2024. [CrossRef]
- Mastrangelo, M.E.; Weyland, F.; Villarino, S.H.; Barral, M.P.; Nahuelhual, L.; Laterra, P. Concepts and Methods for Landscape Multifunctionality and a Unifying Framework Based on Ecosystem Services. Landsc. Ecol. 2014, 29, 345–358. [Google Scholar] [CrossRef]
- Freeman, O.E.; Duguma, L.A.; Minang, P.A. Operationalizing the Integrated Landscape Approach in Practice. Ecol. Soc. 2015, 20, 24. Available online: https://www.jstor.org/stable/26269763 (accessed on 10 August 2023). [CrossRef]
- Stürck, J.; Verburg, P.H. Multifunctionality at What Scale? A Landscape Multifunctionality Assessment for the European Union under Conditions of Land Use Change. Landsc. Ecol. 2017, 32, 481–500. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, C.; Xu, Y.; Sun, M.; Wei, H.; Sun, D.; Li, Y.; Zhang, P.; Sun, Q. Quantitative Identification and the Evolution Characteristics of Production—Living—Ecological Space in the Mountainous Area: From the Perspective of Multifunctional Land. J. Geogr. Sci. 2023, 33, 779–800. [Google Scholar] [CrossRef]
- Vihervaara, P.; Mononen, L.; Auvinen, A.-P.; Virkkala, R.; Lü, Y.; Pippuri, I.; Packalen, P.; Valbuena, R.; Valkama, J. How to Integrate Remotely Sensed Data and Biodiversity for Ecosystem Assessments at Landscape Scale. Landsc. Ecol. 2015, 30, 501–516. [Google Scholar] [CrossRef]
Data | Sources | Resolution |
---|---|---|
DEM | geospatial data cloud (www.gscloud.cn, accessed on 3 June 2023) | 30 m |
land use/cover | WorldCover (www.esa-worldcover.org, accessed on 3 June 2023) | 10 m |
Vegetation coverage | Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (www.ecosystem.csdb.cn, accessed on 4 June 2023) | 250 m |
Annual rainfall erosivity, precipitation, and evapotranspiration | Chinese Ecosystem Research Network (www.nesdc.org.cn, accessed on 4 June 2023) | 250 m |
Ecological Conservation Redline data | Ganzi Bureau of Natural Resources and Planning | NA |
Production–living–ecological space | Spatial-temporal distribution of global production–living–ecological space during the period 2000–2020 (https://doi.org/10.1038/s41597-023-02497-1, accessed on 3 June 2023) | 1 km |
Soil dataset | Second National Soil Survey of China (www.soili.nfo.cn, accessed on 3 June 2023) | 1 km |
Wind speed | Global Surface of Daily Meteorological Data produced by the National Center for Environmental Information (NOAA) | NA |
Species richness data (mammals and amphibians) | International Union for Conservation of Nature (www.iucnredlist.org/resources/spatial-data-download, accessed on 3 June 2023) | NA |
Bird richness data | Shifts in bird ranges and conservation priorities in China under climate change (https://doi.org/10/gsrsn6, accessed on 4 June 2023) | 500 m |
Snow depth | National Tibetan Plateau/Third Pole Environment Data Center | 0.25° |
Conservation Approaches | Human Footprint Level | Target 30% | Target 50% | Ganzi | |||
---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | ||
Preservation | (0, 1] | 80.2 | 0.2 | 126.7 | 0.2 | 146.3 | 0.1 |
Priority | (1, 2] | 468.8 | 1.0 | 614.0 | 0.8 | 782.2 | 0.5 |
Areas | (2, 4] | 8165.2 | 17.9 | 10,567.4 | 14.1 | 17,314.0 | 11.6 |
(PPAs) | Subtotal | 8714.2 | 19.1 | 11,308.1 | 15.1 | 18,242.5 | 12.2 |
Restoration | (4, 8] | 22,572.9 | 49.6 | 37,892.7 | 50.6 | 74,286.8 | 49.6 |
Priority | (8, 16] | 11,766.9 | 25.8 | 21,928.2 | 29.3 | 49,482.7 | 33.0 |
Areas | (16, 50] | 2477.8 | 5.4 | 3751.1 | 5.0 | 7753.8 | 5.2 |
(RPAs) | Subtotal | 36,817.7 | 80.9 | 63,572 | 84.9 | 131,523.3 | 87.8 |
Total | 45,531.8 | 100.0 | 63,572.0 | 100.0 | 149,765.8 | 100.0 |
Indicators | Target 30% | Target 50% | ||||
---|---|---|---|---|---|---|
PPAs | RPAs | Total | PPAs | RPAs | Total | |
Proportion of Ganzi (%) | 5.7 | 24.3 | 30.0 | 7.5 | 42.3 | 50.0 |
Area (km2) | 8714.2 | 36,817.7 | 45,531.9 | 11,308.1 | 63,578.4 | 74,886.6 |
Number of large patches | 108 | 200 | 308 | 143 | 395 | 538 |
Area within ECR (km2) | 5782.5 | 14,463.9 | 20,246.4 | 7686.0 | 26,349.9 | 34,035.9 |
Proportion of area in ECR (%) | 66.4 | 39.3 | 44.5 | 68.0 | 41.4 | 45.4 |
Number of large patches in ECR | 62 | 169 | 231 | 89 | 302 | 391 |
Proportion of large patches in ECR (%) | 57.4 | 84.5 | 75.0 | 62.2 | 76.5 | 72.7 |
Categories | Ganzi | The Ecological Conservation Redline | The Proportion of ECR to Ganzi (%) | ||
---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | ||
Production space | 57,468.3 | 38.4 | 25,449.0 | 36.5 | 44.3 |
Living space | 219.9 | 0.2 | 2.3 | 0.0 | 1.0 |
Ecological space | 92,077.6 | 61.4 | 44,310.3 | 63.5 | 48.1 |
Total | 149,765.8 | 100.0 | 69,761.6 | 100.0 | 46.6 |
Categories | Indicators | Target 30% | Target 50% | ||||
---|---|---|---|---|---|---|---|
PPAs | RPAs | Total | PPAs | RPAs | Total | ||
Area in conservation priority areas (km2) | Production space | 2127.1 | 9090.8 | 11,217.9 | 2610.4 | 20,637.1 | 23,247.5 |
Living space | 0.0 | 77.1 | 77.1 | 0.0 | 105.1 | 105.1 | |
Ecological space | 6587.1 | 27,649.8 | 34,236.9 | 8697.7 | 42,836.1 | 51,533.8 | |
Proportion in conservation priority areas (%) | Production space | 24.4 | 24.7 | 24.6 | 23.1 | 32.5 | 31.0 |
Living space | 0.0 | 0.2 | 0.2 | 0.0 | 0.2 | 0.1 | |
Ecological space | 75.6 | 75.1 | 75.2 | 76.9 | 67.4 | 68.8 | |
Proportion in Ganzi PLES (%) | Production space | 3.7 | 15.8 | 19.5 | 4.5 | 35.9 | 40.5 |
Living space | 0.0 | 35.1 | 35.1 | 0.0 | 47.8 | 47.8 | |
Ecological space | 7.2 | 30.0 | 37.2 | 9.4 | 46.5 | 56.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Deng, X.; Wu, L.; Zhao, K.; Huang, Z.; Chen, Q.; Zhang, X. Delineating Priority Areas for Preservation and Restoration across Production–Living–Ecological Spaces in Ganzi, China. Sustainability 2024, 16, 4327. https://doi.org/10.3390/su16114327
Chen S, Deng X, Wu L, Zhao K, Huang Z, Chen Q, Zhang X. Delineating Priority Areas for Preservation and Restoration across Production–Living–Ecological Spaces in Ganzi, China. Sustainability. 2024; 16(11):4327. https://doi.org/10.3390/su16114327
Chicago/Turabian StyleChen, Shengbin, Xingwei Deng, Lilei Wu, Kunming Zhao, Zengjing Huang, Qi Chen, and Xuan Zhang. 2024. "Delineating Priority Areas for Preservation and Restoration across Production–Living–Ecological Spaces in Ganzi, China" Sustainability 16, no. 11: 4327. https://doi.org/10.3390/su16114327
APA StyleChen, S., Deng, X., Wu, L., Zhao, K., Huang, Z., Chen, Q., & Zhang, X. (2024). Delineating Priority Areas for Preservation and Restoration across Production–Living–Ecological Spaces in Ganzi, China. Sustainability, 16(11), 4327. https://doi.org/10.3390/su16114327