Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Problem Formulation
2.3. Proposed Algorithms
2.3.1. Role of Decision Support Model
2.3.2. Comparative Analysis
2.4. Indicator Identification
2.5. Weight Distribution
2.5.1. Quantification of Technology Weight
2.5.2. Quantification of Village Weight
2.5.3. Quantification of Final Weight
3. Study Area
4. Results and Discussion
4.1. Case Study 1—Shunjiang 2 Village
4.2. Case Study 2—Ren Village
4.3. Case Study 3—Chaganchaidamu Village
4.4. Case Study 4—Zhongba Village
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (1)
- Generalization model:
- (2)
- Objective function of economic affordability:
- (3)
- Objective function of environmental friendliness:
- (4)
- Objective function of technological adaptability:
- (5)
- Integrated functional objective:
References
- Padilla-Rivera, A.; Morgan-Sagastume, J.M.; Noyola, A.; Güereca, L.P. Addressing social aspects associated with wastewater treatment facilities. Environ. Impact Assess. Rev. 2016, 57, 101–113. [Google Scholar] [CrossRef]
- Chowdhury, F.J.; Amin, A.T.M.N. Environmental assessment in slum improvement programs: Some evidence from a study on infrastructure projects in two Dhaka slums. Environ. Impact Assess. Rev. 2006, 26, 530–552. [Google Scholar] [CrossRef]
- O’Gorman, M. Mental and physical health impacts of water/sanitation infrastructure in First Nations communities in Canada: An analysis of the Regional Health Survey. World Dev. 2021, 145, 105517. [Google Scholar] [CrossRef]
- Manga, M.; Kolsky, P.; Rosenboom, J.W.; Ramalingam, S.; Sriramajayam, L.; Bartram, J.; Stewart, J. Public health performance of sanitation technologies in Tamil Nadu, India: Initial perspectives based on E. coli release. Int. J. Hyg. Environ. Health 2022, 243, 113987. [Google Scholar] [CrossRef] [PubMed]
- UN Water. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; UN-Water: Geneva, Switzerland, 2023. [Google Scholar]
- Kanyagui, M.K.; Viswanathan, P. Water and sanitation services in India and Ghana: An assessment of implications for rural health and related SDGs. Water Policy 2022, 24, 1073–1094. [Google Scholar] [CrossRef]
- National Sample Survey Office. Drinking Water, Sanitation, Hygiene and Housing Condition in India (July 2018–December 2018); National Sample Survey Office: New Delhi, India, 2018. [Google Scholar]
- Zhou, X.; Simha, P.; Perez-Mercado, L.F.; Barton, M.A.; Lyu, Y.; Guo, S.; Nie, X.; Wu, F.; Li, Z. China should focus beyond access to toilets to tap into the full potential of its Rural Toilet Revolution. Resour. Conserv. Recycl. 2022, 178, 106100. [Google Scholar] [CrossRef]
- Attri, S.D.; Singh, S.; Dhar, A.; Powar, S. Multi-attribute sustainability assessment of wastewater treatment technologies using combined fuzzy multi-criteria decision-making techniques. J. Clean. Prod. 2022, 357, 131849. [Google Scholar] [CrossRef]
- Fetanat, A.; Tayebi, M.; Mofid, H. Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision making framework under intuitionistic fuzzy environment. Sustain. Energy Technol. Assess. 2021, 43, 100937. [Google Scholar] [CrossRef]
- Sucu, S.; van Schaik, M.O.; Esmeli, R.; Ouelhadj, D.; Holloway, T.; Williams, J.B.; Cruddas, P.; Martinson, D.B.; Chen, W.-S.; Cappon, H.J. A conceptual framework for a multi-criteria decision support tool to select technologies for resource recovery from urban wastewater. J. Environ. Manag. 2021, 300, 113608. [Google Scholar] [CrossRef]
- Vasistha, P.; Ganguly, R. Water quality assessment of natural lakes and its importance: An overview. Mater. Today Proc. 2020, 32, 544–552. [Google Scholar] [CrossRef]
- Fuentes, R.; Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Analysing the efficiency of wastewater treatment plants: The problem of the definition of desirable outputs and its solution. J. Clean. Prod. 2020, 267, 121989. [Google Scholar] [CrossRef]
- Hosney, H.; Tawfik, M.H.; Duker, A.; van der Steen, P. Prospects for treated wastewater reuse in agriculture in low-and middle-income countries: Systematic analysis and decision-making trees for diverse management approaches. Environ. Dev. 2023, 46, 100849. [Google Scholar] [CrossRef]
- Ullah, A.; Hussain, S.; Wasim, A.; Jahanzaib, M. Development of a decision support system for the selection of wastewater treatment technologies. Sci. Total Environ. 2020, 731, 139158. [Google Scholar] [CrossRef] [PubMed]
- Dewalkar, S.V.; Shastri, S.S. Integrated life cycle assessment and life cycle cost assessment based fuzzy multi-criteria decision-making approach for selection of appropriate wastewater treatment system. J. Water Process Eng. 2022, 45, 102476. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Z.; Wang, Y.; Huang, Q.; Sun, Y.; Bi, D. Weighting of toilet assessment scheme in China implementing analytic hierarchy process. J. Environ. Manag. 2021, 283, 111992. [Google Scholar] [CrossRef] [PubMed]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Masoud, A.M.; Belotti, M.; Alfarra, A.; Sorlini, S. Multi-Criteria Analysis for Evaluating Constructed Wetland as a Sustainable Sanitation Technology, Jordan Case Study. Sustainability 2022, 14, 14867. [Google Scholar] [CrossRef]
- Kanchanapiya, P.; Tantisattayakul, T. Analysis of wastewater reuse options using a multicriteria decision tool for Phuket, Thailand. J. Environ. Manag. 2023, 334, 117426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, F.; Lei, Y.; Chen, B.; Xiong, T.; Wu, J. The obstacles to China’s rural toilet revolution discussed on social media: A content analysis of Weibo posts and Zhihu answers data. Environ. Sci. Policy 2023, 142, 173–182. [Google Scholar] [CrossRef]
- Cossio, C.; Norrman, J.; McConville, J.; Mercado, A.; Rauch, S. Indicators for sustainability assessment of small-scale wastewater treatment plants in low and lower-middle income countries. Environ. Sustain. Indic. 2020, 6, 100028. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, C.; Liu, F.; Chen, P.; Wei, X.; Li, H.; Yi, G.; Xu, Y.; Zheng, X. Three-compartment septic tanks as sustainable on-site treatment facilities? Watch out for the potential dissemination of human-associated pathogens and antibiotic resistance. J. Environ. Manag. 2021, 300, 113709. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Hygienic Specification for Rural Household Latrine of China; Standards Press of China: Beijing, China, 2012. [Google Scholar]
- Boukhari, S.; Djebbar, Y.; Amarchi, H.; Sohani, A. Application of the analytic hierarchy process to sustainability of water supply and sanitation services: The case of Algeria. Water Sci. Technol. Water Supply 2018, 18, 1282–1293. [Google Scholar] [CrossRef]
- Alam, M.S.; Mondal, M. Assessment of sanitation service quality in urban slums of Khulna city based on SERVQUAL and AHP model: A case study of railway slum, Khulna, Bangladesh. J. Urban Manag. 2019, 8, 20–27. [Google Scholar] [CrossRef]
- Qi-yu, Z.; Zeng-jin, L.; Lai-sheng, L.; Na, L. Research on comprehensive evaluation model of rural domestic sewage treatment technology based on fuzzy comprehensive evaluation and analytic hierarchy process method. Water Pract. Technol. 2021, 16, 452–471. [Google Scholar] [CrossRef]
- Deng, H. Multicriteria analysis with fuzzy pairwise comparison. Int. J. Approx. Reason. 1999, 21, 215–231. [Google Scholar] [CrossRef]
- Yahya, M.N.; Gökçekuş, H.; Ozsahin, D.U.; Uzun, B. Evaluation of wastewater treatment technologies using TOPSIS. Desalin. Water Treat. 2020, 177, 416–422. [Google Scholar] [CrossRef]
- Yu, X.; Suntrayuth, S.; Su, J. A comprehensive evaluation method for industrial sewage treatment projects based on the improved entropy-topsis. Sustainability 2020, 12, 6734. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K.; Hwang, C.-L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Izquierdo, J.; Montalvo, I.; Pérez, R.; Fuertes, V.S. Design optimization of wastewater collection networks by PSO. Comput. Math. Appl. 2008, 56, 777–784. [Google Scholar] [CrossRef]
- Ye, X.; Chen, B.; Jing, L.; Zhang, B.; Liu, Y. Multi-agent hybrid particle swarm optimization (MAHPSO) for wastewater treatment network planning. J. Environ. Manag. 2019, 234, 525–536. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W. A PSO-RBF neural network for BOD multi-step prediction in wastewater treatment process. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 7259–7263. [Google Scholar]
- Abdelshafy, A.M.; Hassan, H.; Jurasz, J. Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach. Energy Convers. Manag. 2018, 173, 331–347. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Hasanien, H.M.; Alkuhayli, A. A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng. J. 2021, 12, 621–630. [Google Scholar] [CrossRef]
- Chawla, P.; Malik, A.; Sreekrishnan, T.R.; Dalvi, V.; Gola, D. Selection of optimum combination via comprehensive comparison of multiple algal cultures for treatment of diverse wastewaters. Environ. Technol. Innov. 2020, 18, 100758. [Google Scholar] [CrossRef]
- Schütze, M.; Wriege-Bechtold, A.; Zinati, T.; Söbke, H.; Wißmann, I.; Schulz, M.; Veser, S.; Londong, J.; Barjenbruch, M.; Alex, J. Simulation and visualization of material flows in sanitation systems for streamlined sustainability assessment. Water Sci. Technol. 2019, 79, 1966–1976. [Google Scholar] [CrossRef] [PubMed]
- Spuhler, D.; Germann, V.; Kassa, K.; Ketema, A.A.; Sherpa, A.M.; Sherpa, M.G.; Maurer, M.; Lüthi, C.; Langergraber, G. Developing sanitation planning options: A tool for systematic consideration of novel technologies and systems. J. Environ. Manag. 2020, 271, 111004. [Google Scholar] [CrossRef] [PubMed]
- Vidal, B.; Hedström, A.; Barraud, S.; Kärrman, E.; Herrmann, I. Assessing the sustainability of on-site sanitation systems using multi-criteria analysis. Environ. Sci. Water Res. Technol. 2019, 5, 1599–1615. [Google Scholar] [CrossRef]
- Hu, M.; Xiao, J.; Fan, B.; Sun, W.; Zhu, S. Constructing and selecting optimal sustainable sanitation system based on expanded structured decision-making for global sanitation and resources crisis. J. Clean. Prod. 2021, 318, 128598. [Google Scholar] [CrossRef]
- Hashemi, S. Sanitation sustainability index: A pilot approach to develop a community-based indicator for evaluating sustainability of sanitation systems. Sustainability 2020, 12, 6937. [Google Scholar] [CrossRef]
- Acey, C.; Kisiangani, J.; Ronoh, P.; Delaire, C.; Makena, E.; Norman, G.; Levine, D.; Khush, R.; Peletz, R. Cross-subsidies for improved sanitation in low income settlements: Assessing the willingness to pay of water utility customers in Kenyan cities. World Dev. 2019, 115, 160–177. [Google Scholar] [CrossRef]
- Arroyo, P.; Molinos-Senante, M. Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach. Sci. Total Environ. 2018, 625, 819–827. [Google Scholar] [CrossRef]
- Sutherland, C. Social acceptability and household expectations of green sanitation systems. City Environ. Interact. 2023, 20, 100119. [Google Scholar] [CrossRef]
- Firmansyah, I.; Carsjens, G.; De Ruijter, F.; Zeeman, G.; Spiller, M. An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts: A contribution to sustainability analysis. J. Environ. Manag. 2021, 295, 113131. [Google Scholar] [CrossRef] [PubMed]
- GB/T 50378-2019; Assessment Standard for Green Building. Standardization Administration of China: Beijing, China, 2019.
- GB/T 36670-2018; Guideline on the Design of Traffic Operation of Urban Roads. Standardization Administration of China: Beijing, China, 2018.
- GB/T 50445-2019; Technique Standard for Village Renovation. Standardization Administration of China: Beijing, China, 2019.
- Wu, Y.; Liao, M.; Hu, M.; Xu, C.; Tao, Y.; Zhou, J. Effectiveness assessment of air pollution prevention and control under collaborative supervision in the Beijing-Tianjin-Hebei region based on combination weights and grey fuzzy synthetic evaluation analysis. Sustain. Cities Soc. 2021, 64, 102543. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press, Ed.; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- National Bureau of Statistics of China. Chian Statistical Abstract; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- National Bureau of Statistics of China. Urban Rural Statistical Yearbook; China Statistics Press: Beijing, 2016. [Google Scholar]
- National Bureau of Statistics of China. Urban Rural Statistical Yearbook; China Statistics Press: Beijing, 2022. [Google Scholar]
- Ministry of Environmental Protection; General Administration of Quality Supervision, Inspection and Quarantine. Environmental Quality Standard for Noise; China Environmental Science Press: Beijing, China, 2008. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for Design of Outdoor Wastewater Engineering; China Planning Press: Beijing, China, 2006. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical Specification of Wastewater Treatment Facilities for Village; China Architecture & Building Press: Beijing, China, 2011. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical Code for Ground Treatment of Buildings; China Architecture & Building Press: Beijing, China, 2012. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical Standard for Domestic Wastewater Treatment Engineering of Rural Area; China Architecture & Building Press: Beijing, China, 2019. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technique Standard for Village Renovation; China Architecture & Building Press: Beijing, China, 2019. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Assessment Standard for Green Building; China Architecture & Building Press: Beijing, China, 2019. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Evaluation Standard for Green Construction of Building; China Planning Press: Beijing, China, 2010. [Google Scholar]
- Ministry of Health of the People’s Republic of China; Standardization Administration of China. Hygienic Requirements for Harmless Disposal of Night Soil; Standards Press of China: Beijing, China, 2012. [Google Scholar]
- State Administration for Market Regulation of China; Standardization Administration of China. Guideline on the Design of Traffic Operation of Urban Roads; China Architecture & Building Press: Beijing, China, 2018. [Google Scholar]
- State Environmental Protection Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
Size | 10 | 20 | 40 | |||
Algorithm | GWO | GWO-PSO | GWO | GWO-PSO | GWO | GWO-PSO |
MBF | 4.19 | 4.32 | 4.23 | 4.33 | 4.26 | 4.34 |
SD | 0.06 | 0.04 | 0.03 | 0.03 | 0.05 | 0.02 |
Runtime | 0.86 | 1.04 | 1.69 | 2.03 | 3.78 | 4.22 |
Size | 60 | 100 | ||||
Algorithm | GWO | GWO-PSO | GWO | GWO-PSO | ||
MBF | 4.28 | 4.34 | 4.30 | 4.35 | ||
SD | 0.04 | 0.01 | 0.03 | 0.01 | ||
Runtime | 5.37 | 6.08 | 8.93 | 9.82 |
Factor | Options | N (%) | Factor | Options | N (%) |
---|---|---|---|---|---|
Occupation | Professor | 50 (23.04%) | Education level | High school and below | 102 (47%) |
Engineering designer | 46 (21.2%) | Undergraduate | 74 (34.1%) | ||
Civil Engineer | 26 (11.98%) | Master’s degree or above | 41 (18.9%) | ||
Environmental Engineer | 56 (25.81%) | Years of experience | Less than 6 years | 64 (29.49%) | |
Environmental monitors | 39 (17.97%) | 6–12 years | 114 (52.53%) | ||
More than 12 years | 39 (17.97%) |
Criteria (CR) | Indicators (INs) | Reference | ||
---|---|---|---|---|
Economic affordability (EA) | 0.205 | R11 Initial investment | [40] | 0.185 |
R12 Capital cost | [41] | 0.171 | ||
R13 Pipeline network costs | [42] | 0.221 | ||
R14 Operation and maintenance costs | [40,41,43] | 0.249 | ||
R15 Availability of financial subsidies | [42] | 0.174 | ||
Environmentally friendly (EF) | 0.466 | R21 Low contamination of the air | [39,40,45] | 0.144 |
R22 Low noise pollution | [45] | 0.156 | ||
R23 Energy conservation and low carbon materials | [40,41,42,46] | 0.158 | ||
R24 Water conservation and recycling | [40,43,46] | 0.191 | ||
R25 Potential for nutrient recycling | [39] | 0.182 | ||
R26 Beneficial landscape integration | [40] | 0.168 | ||
Technological adaptability (TA) | 0.329 | R31 Adaptability to changing temperature conditions | [39,40] | 0.165 |
R32 Available treatment capacity | [41,45] | 0.221 | ||
R33 Discharge limits | [39,45] | 0.322 | ||
R34 Complexity of operation and management | [45,47] | 0.292 |
General Characteristics | Case Study 1 | Case Study 2 | Case Study 3 | Case Study 4 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Plateau (Shunjiang 2 village) | Mountainous (Ren village) | Plain (Chaganchaidamu village) | Basin (Zhongba village) | ||||||||||||||||||||
Climate | Wet and rainy, low winter temperatures | Cold winters, hot and rainy summer | Drought and low precipitation | Moist and rainy | ||||||||||||||||||||
Elevation within the area (m) | 0 900 1800 2700 | 0 900 1800 2700 | 0 900 1800 2700 | 0 700 1800 2700 | ||||||||||||||||||||
Average annual precipitation (mm) | 0 300 600 900 1200 | 0 300 600 900 1200 | 0 300 600 900 1200 | 0 300 600 900 1200 | ||||||||||||||||||||
Population | 1500 | 3783 | 916 | 1123 | ||||||||||||||||||||
Income sources | Tourism | Agriculture | Agriculture, livestock, tourism | Agriculture | ||||||||||||||||||||
Centralized drainage facilities | ||||||||||||||||||||||||
Wastewater treatment facilities | ||||||||||||||||||||||||
Status of drainage facilities | ||||||||||||||||||||||||
Pit latrines | ||||||||||||||||||||||||
Status of toilets |
CR | Ins | Case Study 1 | Case Study 2 | Case Study 3 | Case Study 4 | |||||
---|---|---|---|---|---|---|---|---|---|---|
0.8 | 0.2 | 0.5 | 0.5 | 0.8 | 0.2 | 0.5 | 0.5 | |||
EA | R11 | 0.185 | 0.112 | 0.127 | 0.255 | 0.220 | 0.202 | 0.199 | 0.284 | 0.235 |
R12 | 0.171 | 0.179 | 0.177 | 0.174 | 0.173 | 0.253 | 0.237 | 0.277 | 0.224 | |
R13 | 0.221 | 0.157 | 0.170 | 0.133 | 0.177 | 0.242 | 0.238 | 0.124 | 0.173 | |
R14 | 0.249 | 0.291 | 0.283 | 0.13 | 0.190 | 0.118 | 0.144 | 0.127 | 0.188 | |
R15 | 0.174 | 0.261 | 0.244 | 0.308 | 0.241 | 0.185 | 0.183 | 0.187 | 0.181 | |
EF | R21 | 0.144 | 0.223 | 0.207 | 0.202 | 0.173 | 0.143 | 0.143 | 0.140 | 0.142 |
R22 | 0.156 | 0.204 | 0.194 | 0.135 | 0.146 | 0.102 | 0.113 | 0.218 | 0.187 | |
R23 | 0.158 | 0.111 | 0.120 | 0.226 | 0.192 | 0.096 | 0.108 | 0.286 | 0.222 | |
R24 | 0.191 | 0.107 | 0.124 | 0.129 | 0.160 | 0.326 | 0.299 | 0.068 | 0.130 | |
R25 | 0.182 | 0.073 | 0.095 | 0.168 | 0.175 | 0.257 | 0.242 | 0.25 | 0.216 | |
R26 | 0.168 | 0.282 | 0.259 | 0.136 | 0.152 | 0.076 | 0.094 | 0.115 | 0.142 | |
TA | R31 | 0.165 | 0.185 | 0.181 | 0.420 | 0.293 | 0.315 | 0.285 | 0.124 | 0.145 |
R32 | 0.221 | 0.214 | 0.215 | 0.147 | 0.184 | 0.216 | 0.217 | 0.410 | 0.316 | |
R33 | 0.322 | 0.459 | 0.432 | 0.31 | 0.316 | 0.136 | 0.173 | 0.189 | 0.256 | |
R34 | 0.292 | 0.165 | 0.190 | 0.124 | 0.208 | 0.333 | 0.325 | 0.277 | 0.285 |
Wastewater Treatment Technology | Toilet Technology | |||
---|---|---|---|---|
Primary | Secondary | Tertiary | ||
Case study 1 | Grating + Regulating tank + Sedimentation tank | Contact oxidation + Sedimentation tank + Constructed wetland | Activated carbon filtration + Chlorine-containing disinfectant tablets | Flush toilets (connected to sewerage) |
Case study 2 | Grating + Sedimentation tank | Anaerobic filter+ Constructed wetland | Activated carbon filtration + Chlorine-containing disinfectant tablets | Three-compartment septic tank toilet |
Case study 3 | Grating + Septic tank | Constructed wetland + Oxidation pond | Activated carbon filtration + Chlorine-containing disinfectant tablets | Double pit alternating toilet |
Case study 4 | Grating + Sedimentation tank | Integrated purification tank | Activated carbon filtration + Chlorine-containing disinfectant tablets | Three-compartment septic tank toilet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; He, B.-J. Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement. Sustainability 2024, 16, 4384. https://doi.org/10.3390/su16114384
Wu S, He B-J. Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement. Sustainability. 2024; 16(11):4384. https://doi.org/10.3390/su16114384
Chicago/Turabian StyleWu, Simei, and Bao-Jie He. 2024. "Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement" Sustainability 16, no. 11: 4384. https://doi.org/10.3390/su16114384
APA StyleWu, S., & He, B. -J. (2024). Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement. Sustainability, 16(11), 4384. https://doi.org/10.3390/su16114384