Citizens’ Perception of Blockchain-Based E-Voting Systems: Focusing on TAM
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Blockchain Technology
2.1.1. Blockchain-Based E-Voting
2.1.2. Blockchain-Based E-Voting Systems in Use
2.2. Technology Acceptance Model
- Behavioral Intention to Use
- Attitude
- Perceived Usefulness
- Perceived Ease of Use
- Perceived Security
- Trust
3. Research Methodology
3.1. Sampling and Data Collection
Statistical Technique
3.2. Data Analysis
3.2.1. Reliability Analysis
3.2.2. Discriminant Validity
4. Discussion and Implications
4.1. Discussion
4.2. Implications
4.2.1. Implications for Research
4.2.2. Implications for the Future
5. Conclusions
Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, S.B.; Yigitcanlar, T. Participatory Governance of Smart Cities: Insights from e-Participation of Putrajaya and Petaling Jaya, Malaysia. Smart Cities 2022, 5, 71–89. [Google Scholar] [CrossRef]
- Myeong, S.; Park, J.; Lee, M. Research Models and Methodologies on the Smart City: A Systematic Literature Review. Sustainability 2022, 14, 1687. [Google Scholar] [CrossRef]
- Hamamurad, Q.H.; Jusoh, N.M.; Ujang, U. Factors Affecting Stakeholder Acceptance of a Malaysian Smart City. Smart Cities 2022, 5, 1508–1535. [Google Scholar] [CrossRef]
- Myeong, S.; Jung, Y. Administrative Reforms in the Fourth Industrial Revolution: The Case of Blockchain Use. Sustainability 2019, 11, 3971. [Google Scholar] [CrossRef]
- Myeong, S.; Kwon, Y.; Seo, H. Sustainable E-Governance: The Relationship among Trust, Digital Divide, and E-Government. Sustainability 2014, 6, 6049–6069. [Google Scholar] [CrossRef]
- Medaglia, R.; Misuraca, G.; Aquaro, V. Digital Government and the United Nations’ Sustainable Development Goals: Towards an Analytical Framework. In Proceedings of the DG. O2021: The 22nd Annual International Conference on Digital Government Research, Omaha, NE, USA, 9–11 June 2021; pp. 473–478. [Google Scholar] [CrossRef]
- Aljarrah, E.; Elrehail, H.; Aababneh, B. E-Voting in Jordan: Assessing Readiness and Developing a System. Comput. Hum. Behav. 2016, 63, 860–867. [Google Scholar] [CrossRef]
- Anagreh, L.F.; Arabia, S.; Abu-shanab, E.A. Voter’s Intention to Use Electronic Voting Systems. Int. J. E-Bus. Res. 2017, 13, 67–85. [Google Scholar] [CrossRef]
- Abu-shanab, E.; Knight, M.B. E-voting systems: A tool for e-democracy. Manag. Res. Pract. 2010, 2, 264–274. [Google Scholar]
- Suki, N.M.; Suki, N.M. Decision-Making and Satisfaction in Campus e-Voting: Moderating Effect of Trust in the System. J. Enterp. Inf. Manag. 2017, 30, 944–963. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, P. Blockchain-Based Complete Self-Tallying E-Voting Protocol. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 47–52. [Google Scholar]
- Neziri, V.; Shabani, I.; Dervishi, R.; Rexha, B. Assuring Anonymity and Privacy in Electronic Voting with Distributed Technologies Based on Blockchain. Appl. Sci. 2022, 12, 5477. [Google Scholar] [CrossRef]
- Mohammadi, H.; Boccia, F.; Tohidi, A. The Relationship between Democracy and Economic Growth in the Path of Sustainable Development. Sustainability 2023, 15, 9607. [Google Scholar] [CrossRef]
- Hamdi, R.M.; Azim, A.; Salman, O.; Henawy, I. El The Role of E-Government as a Stimulus for Economic Growth. Int. J. Bus. Manag. Technol. 2020, 4, 69–79. [Google Scholar]
- Shahzad, B.; Crowcroft, J. Trustworthy Electronic Voting Using Adjusted Blockchain Technology. IEEE Access 2019, 7, 24477–24488. [Google Scholar] [CrossRef]
- Mac Donald, J.L. International Election Observation Mission Republic of Uzbekistan–Presidential Election, 24 October 2021; Organization for Security and Co-Operation in Europe: Helsinki, Finland, 24 October 2021. [Google Scholar]
- Mugnier, C.J. Republic of Uzbekistan. Photogramm. Eng. Remote. Sens. 2016, 82, 473–474. [Google Scholar] [CrossRef]
- Onur, C.; Yurdakul, A. ElectAnon: A Blockchain-Based, Anonymous, Robust and Scalable Ranked-Choice Voting Protocol. Distrib. Ledger Technol. Res. Pract. 2023, 2, 1–25. [Google Scholar] [CrossRef]
- Goloshchapova, T.; Yamashev, V.; Skornichenko, N.; Strielkowski, W. E-Government as a Key to the Economic Prosperity and Sustainable Development in the Post-COVID Era. Economies 2023, 11, 112. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, Q.; Liu, Y.; Lin, H.; Chen, Y.; Wen, Q. The Notarial Office in E-Government: A Blockchain-Based Solution. IEEE Access 2021, 9, 44411–44425. [Google Scholar] [CrossRef]
- Benabdallah, A.; Audras, A.; Coudert, L.; El Madhoun, N.; Badra, M. Analysis of Blockchain Solutions for E-Voting: A Systematic Literature Review. IEEE Access 2022, 10, 70746–70759. [Google Scholar] [CrossRef]
- Bell, S.; Benaloh, J.; Byrne, M.D.; DeBeauvoir, D.; Eakin, B.; Fisher, G.; Kortum, P.; McBurnett, N.; Montoya, J.; Parker, M.; et al. STAR-Vote: A Secure, Transparent, Auditable and Reliable Voting System. In Real-World Electronic Voting: Design, Analysis and Deployment; Taylor & Francis Ltd.: London, UK, 2016; Volume 1, pp. 375–403. [Google Scholar] [CrossRef]
- Sadia, K.; Masuduzzaman, M.; Paul, R.K.; Islam, A. Blockchain-Based Secure E-Voting with the Assistance of Smart Contract. In Proceedings of the IC-BCT 2019: Proceedings of the International Conference on Blockchain Technology, Honolulu, HI, USA, 15–18 March 2019; Springer: Singapore, 2020; pp. 161–176. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electron. J. 2008, 1–9. [Google Scholar] [CrossRef]
- Hjalmarsson, F.P.; Hreioarsson, G.K.; Hamdaqa, M.; Hjalmtysson, G. Blockchain-Based E-Voting System. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 983–986. [Google Scholar] [CrossRef]
- Kurbatov, O.; Kravchenko, P.; Poluyanenko, N.; Shapoval, O.; Kuznetsova, T. Using Ring Signatures for An Anonymous E-Voting System. In Proceedings of the 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 18–20 December 2019; pp. 187–190. [Google Scholar] [CrossRef]
- Albayati, H.; Kim, S.K.; Rho, J.J. Accepting Financial Transactions Using Blockchain Technology and Cryptocurrency: A Customer Perspective Approach. Technol. Soc. 2020, 62, 101320. [Google Scholar] [CrossRef]
- Saputra, U.W.E.; Darma, G.S. The Intention to Use Blockchain in Indonesia Using Extended Approach Technology Acceptance Model (TAM). CommIT (Commun. Inf. Technol.) J. 2022, 16, 27–35. [Google Scholar] [CrossRef]
- Oliveira, T.A.; Oliver, M.; Ramalhinho, H. Challenges for Connecting Citizens and Smart Cities: ICT, e-Governance and Blockchain. Sustainability 2020, 12, 2926. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chaudhary, R.; Aujla, G.S.; Kumar, N.; Choo, K.K.R.; Zomaya, A.Y. Blockchain for Smart Communities: Applications, Challenges and Opportunities. J. Netw. Comput. Appl. 2019, 144, 13–48. [Google Scholar] [CrossRef]
- Taş, R.; Tanrıöver, Ö.Ö. A Systematic Review of Challenges and Opportunities of Blockchain for E-Voting. Symmetry 2020, 12, 1328. [Google Scholar] [CrossRef]
- Wang, K.-H.; Mondal, S.K.; Chan, K.; Xie, X. A Review of Contemporary E-Voting: Requirements, Technology, Systems and Usability. Ubiquitous Int. 2017, 1, 31–47. [Google Scholar]
- Liang, Y.C. Blockchain for Dynamic Spectrum Management. Signals Commun. Technol. 2020, 121–146. [Google Scholar] [CrossRef]
- Abuidris, Y.; Kumar, R.; Yang, T.; Onginjo, J. Secure Large-Scale E-Voting System Based on Blockchain Contract Using a Hybrid Consensus Model Combined with Sharding. ETRI J. 2021, 43, 357–370. [Google Scholar] [CrossRef]
- Ben Dhaou, S.; Backhouse, J. Blockchain for Smart Sustainable Cities; International Telecommunication Union: Geneva, Switzerland, 2020; ISBN 9789261321215. [Google Scholar]
- Su, X.; Wang, S. Research on Model Design and Operation Mechanism of Enterprise Blockchain Digital System. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Bhadoria, R.S.; Das, A.P.; Bashar, A.; Zikria, M. Implementing Blockchain-Based Traceable Certificates as Sustainable Technology in Democratic Elections. Electronics 2022, 11, 3359. [Google Scholar] [CrossRef]
- González, C.D.; Mena, D.F.; Muñoz, A.M.; Rojas, O.; Sosa-Gómez, G. Electronic Voting System Using an Enterprise Blockchain. Appl. Sci. 2022, 12, 531. [Google Scholar] [CrossRef]
- Ahn, B. Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting. Sustainability 2022, 14, 2917. [Google Scholar] [CrossRef]
- Choi, S.O.; Kim, B.C. Voter Intention to Use E-Voting Technologies: Security, Technology Acceptance, Election Type, and Political Ideology. J. Inf. Technol. Politics 2012, 9, 433–452. [Google Scholar] [CrossRef]
- Khan, S.; Arshad, A.; Mushtaq, G.; Khalique, A.; Husein, T. Implementation of Decentralized Blockchain E-Voting. EAI Endorsed Trans. Smart Cities 2020, 4, 164859. [Google Scholar] [CrossRef]
- Shukla, S.; Thasmiya, A.N.; Shashank, D.O.; Mamatha, H.R. Online Voting Application Using Ethereum Blockchain. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 873–880. [Google Scholar] [CrossRef]
- Wei, C.C.Z.; Wen, C.C. Blockchain-Based Electronic Voting Protocol. Int. J. Inform. Vis. 2018, 2, 336–341. [Google Scholar] [CrossRef]
- Wen, B.; Wang, Y.; Ding, Y.; Zheng, H.; Qin, B.; Yang, C. Security and Privacy Protection Technologies in Securing Blockchain Applications. Inf. Sci. 2023, 645, 119322. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Fang, L.; Chen, P.; Dong, X. Privacy-Protected Electronic Voting System Based on Blockchin and Trusted Execution Environment. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1252–1257. [Google Scholar] [CrossRef]
- McCorry, P.; Mehrnezhad, M.; Toreini, E.; Shahandashti, S.F.; Hao, F. On Secure E-Voting over Blockchain. Digit. Threat. Res. Pract. 2021, 2, 3461461. [Google Scholar] [CrossRef]
- Chaieb, M.; Yousfi, S.; Lafourcade, P.; Robbana, R. Verify-your-vote: A verifiable blockchain-based online voting protocol. In Proceedings of the Information Systems: 15th European, Mediterranean, and Middle Eastern Conference, EMCIS 2018, Limassol, Cyprus, 4–5 October 2018. [Google Scholar]
- Zou, X.; Li, H.; Li, F.; Peng, W.; Sui, Y. Transparent, Auditable, and Stepwise Verifiable Online e-Voting Enabling an Open and Fair Election. Cryptography 2017, 1, 13. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Xiong, H. Chaintegrity: Blockchain-Enabled Large-Scale e-Voting System with Robustness and Universal Verifiability. Int. J. Inf. Secur. 2020, 19, 323–341. [Google Scholar] [CrossRef]
- Tso, R.; Liu, Z.Y.; Hsiao, J.H. Distributed E-Voting and E-Bidding Systems Based on Smart Contract. Electronics 2019, 8, 422. [Google Scholar] [CrossRef]
- Rathee, G.; Iqbal, R.; Waqar, O.; Bashir, A.K. On the Design and Implementation of a Blockchain Enabled E-Voting Application within IoT-Oriented Smart Cities. IEEE Access 2021, 9, 34165–34176. [Google Scholar] [CrossRef]
- Kost’Al, K.; Bencel, R.; Ries, M.; Kotuliak, I. Blockchain E-Voting Done Right: Privacy and Transparency with Public Blockchain. In Proceedings of the 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019; pp. 592–595. [Google Scholar] [CrossRef]
- Ehin, P.; Solvak, M.; Willemson, J.; Vinkel, P. Internet Voting in Estonia 2005–2019: Evidence from Eleven Elections. Gov. Inf. Q. 2022, 39, 101718. [Google Scholar] [CrossRef]
- Krimmer, R.; Duenas-Cid, D.; Krivonosova, I. New Methodology for Calculating Cost-Efficiency of Different Ways of Voting: Is Internet Voting Cheaper? Public Money Manag. 2021, 41, 17–26. [Google Scholar] [CrossRef]
- Alshamsi, M.; Al-Emran, M.; Shaalan, K. A Systematic Review on Blockchain Adoption. Appl. Sci. 2022, 12, 4245. [Google Scholar] [CrossRef]
- Jafar, U.; Ab Aziz, M.J.; Shukur, Z.; Hussain, H.A. A Systematic Literature Review and Meta-Analysis on Scalable Blockchain-Based Electronic Voting Systems. Sensors 2022, 22, 7585. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, M.; Yousfi, S. LOKI Vote: A Blockchain-Based Coercion Resistant E-Voting Protocol. Lect. Notes Bus. Inf. Process. 2020, 402, 151–168. [Google Scholar] [CrossRef]
- Amrutkar, D.; Dongare, G.; Sonune, S.; Chaudhari, A.Y. E-Voting Systems Using Blockchain: A Systematic Review and Future Research Direction. EPRA Int. J. Res. Dev. (IJRD) 2021, 413–423. [Google Scholar] [CrossRef]
- Lai, P. The Literature Review of Technology Adoption Models and Theories for the Novelty Technology. J. Inf. Syst. Technol. Manag. 2017, 14, 21–38. [Google Scholar] [CrossRef]
- Shrestha, A.K.; Vassileva, J.; Joshi, S.; Just, J. Augmenting the Technology Acceptance Model with Trust Model for the Initial Adoption of a Blockchain-Based System. PeerJ Comput. Sci. 2021, 7, e502. [Google Scholar] [CrossRef]
- Yao, Y.; Murphy, L. Remote Electronic Voting Systems: An Exploration of Voters’ Perceptions and Intention to Use. Eur. J. Inf. Syst. 2007, 16, 106–120. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–339. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K.; Janssen, M.; Ilavarasan, P.V. Perceived Usefulness, Ease of Use and User Acceptance of Blockchain Technology for Digital Transactions–Insights from User-Generated Content on Twitter. Enterp. Inf. Syst. 2019, 13, 771–800. [Google Scholar] [CrossRef]
- Alshurideh, M.T.; Al Kurdi, B.; AlHamad, A.Q.; Salloum, S.A.; Alkurdi, S.; Dehghan, A.; Abuhashesh, M.; Masa’deh, R. Factors Affecting the Use of Smart Mobile Examination Platforms by Universities’ Postgraduate Students during the COVID-19 Pandemic: An Empirical Study. Informatics 2021, 8, 32. [Google Scholar] [CrossRef]
- Taherdoost, H. A Critical Review of Blockchain Acceptance Models—Blockchain Technology Adoption Frameworks and Applications. Computers 2022, 11, 24. [Google Scholar] [CrossRef]
- Gao, S.; Li, Y. An Empirical Study on the Adoption of Blockchain-Based Games from Users’ Perspectives. Electron. Libr. 2021, 39, 596–614. [Google Scholar] [CrossRef]
- Lai, P.C. Design and Security Impact on Consumers’ Intention to Use Single Platform E-Payment. Interdiscip. Inf. Sci. 2016, 22, 111–122. [Google Scholar] [CrossRef]
- Althuizen, N. Using Structural Technology Acceptance Models to Segment Intended Users of a New Technology: Propositions and an Empirical Illustration. Inf. Syst. J. 2018, 28, 879–904. [Google Scholar] [CrossRef]
- De Moraes, G.H.S.M.; Meirelles, F. de S. User ’ s Perspective of Eletronic Government Adoption in Brazil User ’ s Perspective of Eletronic Government Adoption in Brazil. J. Technol. Manag. Innov. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Tahar, A.; Riyadh, H.A.; Sofyani, H.; Purnomo, W.E. Perceived Ease of Use, Perceived Usefulness, Perceived Security and Intention to Use e-Filing: The Role of Technology Readiness. J. Asian Financ. Econ. Bus. 2020, 7, 537–547. [Google Scholar] [CrossRef]
- Damghanian, H.; Zarei, A.; Siahsarani Kojuri, M.A. Impact of Perceived Security on Trust, Perceived Risk, and Acceptance of Online Banking in Iran. J. Internet Commer. 2016, 15, 214–238. [Google Scholar] [CrossRef]
- Chauhan, S.; Jaiswal, M.; Kar, A.K. The Acceptance of Electronic Voting Machines in India: A UTAUT Approach. Electron. Gov. 2018, 14, 255–275. [Google Scholar] [CrossRef]
- Srivastava, G.; Dwivedi, A.D.; Singh, R. Crypto-Democracy: A Decentralized Voting Scheme Using Blockchain Technology. In Proceedings of the ICETE 2018—Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, Porto, Portugal, 26–28 July 2018; Volume 2, pp. 508–513. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications. Eur. J. Tour. Res. 2014, 6, 211–213. [Google Scholar]
- Palos-Sanchez, P.; Saura, J.R.; Ayestaran, R. An Exploratory Approach to the Adoption Process of Bitcoin by Business Executives. Mathematics 2021, 9, 355. [Google Scholar] [CrossRef]
- Al-Maroof, R.A.S.; Al-Emran, M. Students Acceptance of Google Classroom: An Exploratory Study Using PLS-SEM Approach. Int. J. Emerg. Technol. Learn. 2018, 13, 112–123. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS Path Modeling in New Technology Research: Updated Guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Yang, C.; Yang, S. Predicting Older Adults’ Mobile Payment Adoption: An Extended TAM Model. Int. J. Environ. Res. Public Health 2023, 20, 1391. [Google Scholar] [CrossRef] [PubMed]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Ab Hamid, M.R.; Sami, W.; Mohmad Sidek, M.H. Discriminant Validity Assessment: Use of Fornell & Larcker Criterion versus HTMT Criterion. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 890. [Google Scholar]
- Farooq, M.S.; Iftikhar, U.; Khelifi, A. A Framework to Make Voting System Transparent Using Blockchain Technology. IEEE Access 2022, 10, 59959–59969. [Google Scholar] [CrossRef]
- Haleem, A.; Allen, A.; Thompson, A.; Nijdam, M.; Garg, R. Helium A Decentralized Wireless Network. Helium Netw. 2018, 2, 2018–2029. [Google Scholar]
- Dzhunev, P. Helium Network—Integration of Blockchain Technologies in the Field of Telecommunications. In Proceedings of the 2022 13th National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 19–20 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Smart City as Urban Innovation: Focusing on Management, Policy, and Context. In Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance, Tallinn, Estonia, 26–29 September 2011; pp. 185–194. [Google Scholar] [CrossRef]
Variable | Category | Frequency | Percentage |
---|---|---|---|
Gender | Male | 286 | 72 |
Female | 101 | 28 | |
Total | 397 | 100 | |
Age | 18–29 | 211 | 54.5 |
30–39 | 107 | 27.6 | |
40–49 | 44 | 11.4 | |
50–59 | 18 | 4.7 | |
60 or Older | 7 | 1.8 | |
Education | High school | 66 | 17.1 |
Bachelor | 216 | 55.8 | |
Master | 77 | 19.9 | |
PhD | 28 | 7.2 | |
Career | Student | 153 | 39.5 |
Entrepreneur | 49 | 12.7 | |
Public Government Entities | 83 | 21.4 | |
Private sector | 82 | 21.2 | |
Unemployed | 20 | 5.2 | |
Degree of ICT skills | Low | 0 | 0 |
Basic | 6 | 1.6 | |
Intermediate | 37 | 9.6 | |
Good | 150 | 38.8 | |
Very good | 194 | 50.1 |
Convergent Validity | Consistency Reliability | |||
---|---|---|---|---|
Indicators of Constructs | Loadings | AVE | Composite Reliability ρc | Cronbach’s Alpha |
0.70 | 0.50 | 0.70 | 0.60–0.95 | |
Eligibility (PS1) | 0.804 | 0.679 | 0.937 | 0.921 |
Uniqueness (PS2) | 0.848 | |||
Privacy (PS3) | 0.825 | |||
Accuracy (PS4) | 0.857 | |||
Verifiability (PS5) | 0.84 | |||
Robustness (PS6) | 0.808 | |||
Fairness (PS7) | 0.781 | |||
Trust in Technology (Tr1) | 0.917 | 0.767 | 0.868 | 0.704 |
Trust in Government (Tr2) | 0.833 | |||
PEoU1 | 0.913 | 0.816 | 0.947 | 0.925 |
PEoU2 | 0.906 | |||
PEoU3 | 0.913 | |||
PEoU4 | 0.882 | |||
PU1 | 0.869 | 0.793 | 0.939 | 0.913 |
PU2 | 0.874 | |||
PU3 | 0.911 | |||
PU4 | 0.907 | |||
ATU1 | 0.959 | 0.923 | 0.96 | 0.917 |
ATU2 | 0.962 | |||
ITU1 | 0.967 | 0.937 | 0.967 | 0.933 |
ITU2 | 0.969 |
ATU | ITU | PEoU | PS | PU | Trust | |
---|---|---|---|---|---|---|
ATU | ||||||
ITU | 0.777 | |||||
PEoU | 0.822 | 0.838 | ||||
PS | 0.823 | 0.747 | 0.893 | |||
PU | 0.795 | 0.753 | 0.845 | 0.837 | ||
Trust | 0.825 | 0.831 | 0.889 | 0.938 | 0.881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannonov, K.M.u.; Myeong, S. Citizens’ Perception of Blockchain-Based E-Voting Systems: Focusing on TAM. Sustainability 2024, 16, 4387. https://doi.org/10.3390/su16114387
Mannonov KMu, Myeong S. Citizens’ Perception of Blockchain-Based E-Voting Systems: Focusing on TAM. Sustainability. 2024; 16(11):4387. https://doi.org/10.3390/su16114387
Chicago/Turabian StyleMannonov, Kamoliddin Murodjon ugli, and Seunghwan Myeong. 2024. "Citizens’ Perception of Blockchain-Based E-Voting Systems: Focusing on TAM" Sustainability 16, no. 11: 4387. https://doi.org/10.3390/su16114387
APA StyleMannonov, K. M. u., & Myeong, S. (2024). Citizens’ Perception of Blockchain-Based E-Voting Systems: Focusing on TAM. Sustainability, 16(11), 4387. https://doi.org/10.3390/su16114387