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Abstract: Governments globally aim to boost productivity and enhance farmers’ livelihoods, address-
ing challenges like climate change, food security, and labor shortages through digital technologies.
However, adoption rates in developing countries remain low due to uncertainties regarding expected
returns and obstacles stemming from subjective and objective factors among farmers. This study
takes China as a case study to examine the internal and external factors influencing growers’ adoption
intensity of digital technology and its impact on enhancing economic benefits, aiming to provide
valuable insights for the promotion of digital technology in other countries and regions. This study
employs a mixed-methods approach, integrating qualitative and quantitative methodologies, utilizing
data from Shandong and Liaoning provinces. The findings underscore the significant role of growers’
knowledge, technology compatibility, government support, and competitive pressure in driving
the adoption of digital technology among growers, with male growers and those managing larger
cultivation areas demonstrating higher adoption intensity. Digital technologies can enhance growers’
economic benefits by reducing labor and input costs, increasing yields, and improving quality, with a
30.4% increase in economic benefits for each unit increase in adoption intensity of digital technologies.
Technology promoters can use these findings to enhance growers’ awareness, highlight the practical
benefits, and offer agricultural socialized services to promote digital technology adoption.

Keywords: digital technology adoption; adoption intensity; growers; economic benefits; mixed methods

1. Introduction

The integration of digital technologies (DTs), such as robotics, Internet of Things (IoT),
and Artificial Intelligence (AI), represents the cornerstone of the fourth agricultural revolu-
tion (Agriculture 4.0), ushering in new opportunities for agriculture [1,2]. Governments
worldwide are leveraging DTs to enhance productivity and improve farmers’ livelihoods,
aiming to address challenges related to climate change, food security, energy consumption,
labor shortages, and environmental concerns, including fertilizer and pesticide inputs, as
well as resource and energy efficiency [3–7]. Growers are also seeking ways to enhance
profitability and production efficiency, with the aim of optimizing production decisions,
mitigating costs, and elevating the value of agricultural products through the utilization
of DTs [8]. The progress of digital agriculture varies among nations, yet the low adoption
rate of DTs is a widespread issue, which is particularly pronounced in developing coun-
tries [9,10]. The United States Department of Agricultural Resource Management Survey
(ARMS) indicated that in 2019, adoption rates of yield mapping, soil mapping, and Variable
Rate Technology (VRT) for field crops such as corn, soybeans, and winter wheat ranged
from approximately 5% to 25%, while the adoption rate of automatic steering and guidance
systems exceeded 50% [11]. China exhibited a field planting informatization rate of 21.8%
and a facility cultivation informatization rate of 25.3% in 2021. Africa has implemented
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several initiatives, yet farmers have limited access to DTs. So, what are the reasons behind
the low adoption rate of DTs?

One major reason is the uncertainty often associated with the anticipated returns of
new agricultural technologies [12,13]. The Internet of Food and Farm 2020 (IoF2020) trials
in Europe showed IoT’s positive contributions to yield, herbicide, and nitrogen fertilizer
use in agriculture [14]. A decade-long Italian study on soil moisture sensors and Variable
Rate Application (VRA) digital technologies recorded a 31% average increase in maize yield
across 22 hectares, along with a 23% reduction in nitrogen fertilizer input [15]. A 2018 study
involving 115 Iranian agricultural experts found that precision agriculture technologies can
positively impact food quality, input costs, yield, income, and profitability [16]. Existing
studies suggested that while DTs can significantly enhance economic benefits, the evidence
is largely derived from relatively small-scale pilot projects and remains confined to certain
countries and contexts. Evidence regarding widespread improvements in benefits from DTs
is limited [17,18]. Some studies have also indicated inaccuracies and imprecisions in DTs
in everyday agricultural operations, which may mislead farmers into making erroneous
judgments and potentially lead to significant risks [19]. DTs widespread dissemination
may be hindered by other factors such as small-scale farming [20–22], inadequate digital
infrastructure, farmers’ risk aversion, and low digital literacy among farmers [23].

Researchers have conducted studies on the influencing factors of DTs, focusing on
crop types such as sugarcane [24], grapes [25], rice [26], corn, soybeans, and wheat [27], cot-
ton [28] as well as mixed farms engaged in both cultivation and livestock [29,30]. Schnebelin
(2022) focused specifically on the combined influence of farmers’ socio-economic character-
istics and cropping patterns on the adoption of DTs [31]. Ammann et al. (2022) [32] used
Swiss outdoor vegetable as the research object and used the Delphi method to explore DTs
adoption, highlighting the importance of financial support. Growers, acting as rational
economic agents, engage in a deliberate process of adopting new technologies driven
by benefit motives, while also being influenced by subjective perceptions and objective
constraints [33,34]. However, only a limited number of studies thoroughly investigate the
antecedents and consequences of growers’ adoption of DTs.

Given the low adoption rate of DTs in agriculture, the ongoing debate regarding
their economic benefits, and the presence of various barriers, this study examines the
effectiveness of DT adoption and the influence of both internal and external factors among
growers in Liaoning and Shandong provinces. It reflects the common issues in DTs adoption
among growers, thereby providing valuable insights for the promotion of DTs in other
countries and regions. Due to the diverse range of DTs adoption in agricultural production,
we introduce the concept of “adoption intensity” to quantify the importance and degree
of integration of DTs into growers’ daily production or operational activities. This study
addresses three pivotal research inquiries:

(1) What internal and external factors influence the intensity of DTs adoption among growers?
(2) How do these factors contribute to enhancing growers’ adoption intensity of DTs?
(3) Has the heightened adoption intensity of DTs led to improved economic benefits

for growers?

2. Research Design

This study employs a mixed-methods approach, integrating quantitative and quali-
tative research, to examine the factors that influence growers’ adoption intensity of DTs
and its impact on economic benefits. Quantitative research often tackles questions of
“how much”, whereas qualitative research explores “how”. Employing a mixed-methods
approach allows for the comparison of findings from both quantitative and qualitative
methods, enriching the evidence base and yielding deeper insights [35,36]. The sequencing
of qualitative and quantitative research hinges on the research topic. In exploratory designs,
where qualitative research precedes quantitative research, initial insights and theoretical
frameworks are established [37,38]. Conversely, in explanatory designs, qualitative research
follows quantitative research to conduct detailed exploration and clarification of complex
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phenomena, as well as to identify unexpected variables [39]. Explanatory design is used in
this study. Initially, hypotheses are formulated and tested with data from 435 growers in
Shandong and Liaoning provinces. Subsequently, insights from semi-structured interviews
with 15 growers are integrated to enrich the quantitative findings. The research design is
summarized in Table 1.

Table 1. Mixed-methods research design.

Phase Procedure Outcome
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3. Quantitative Study

This study conducts a quantitative analysis on 435 growers in China, employing a
negative binomial regression model to investigate both the internal and external factors
influencing growers’ adoption intensity of DTs as well as 2SLS to explore the impacts of
DTs adoption intensity on economic benefits.

3.1. Materials and Methods
3.1.1. Research Hypothesis

Drawing on the studies by Balogh et al. (2021) [40] and Wang et al. (2019) [41], factors
influencing the intensity of DT adoption may be classified into internal and external realms.
Internal factors relate to individuals’ or organizations’ traits when adopting innovation,
while external factors involve market dynamics, competition, government support, access
to credit, and external pressures. In this study, we examine grower’s knowledge and tech-
nology compatibility as internal factors and consider government support and competitive
pressure as external factors influencing DTs adoption intensity.

Grower’s knowledge refers to the grower’s degree of understanding, proficiency, and
utilization of DTs. Lin and Lin (2008) [42] proposed that technological competence, which
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encompasses both tangible physical infrastructure and intangible knowledge, enables
people to better integrate and leverage DTs effectively. Yadav et al. (2022) [43] emphasized
that the application of DTs in agriculture yields abundant production data, and growers’
understanding of these technologies is vital for optimizing production efficiency. A lack
of essential knowledge is the primary barrier hindering decision-makers from adopting
DTs [44]. Hence, the following Hypothesis 1 (H1) is proposed:

H1. Grower’s knowledge is positively correlated with their DTs adoption intensity.

Technology compatibility refers to how seamlessly DTs integrate with established
values, prior practices, and current necessities [45]. Wang et al. (2010) [46] argued that
the successful adoption of DTs by farmers is influenced by the compatibility between new
technology and existing technology, as well as the compatibility between the usage rules
and management forms of new technology and the actual needs of farmers. Yoon et al.
(2020) [47] found that farmers tend to adopt DTs that align with their existing resources
or plans, while they may reject technologies perceived as incompatible, fearing negative
consequences. The greater the compatibility between DTs and the current work of farmers,
the higher the intensity of its adoption. Hence, the following Hypothesis 2 (H2) is proposed:

H2. Technology compatibility is positively correlated with the DTs adoption intensity of growers.

Government support refers to the degree of policy and financial support required to
process DTs. Past studies have demonstrated the significant role of government support
in encouraging farmers to adopt information technologies [48]. Farmers across various
geographic regions have experienced both economic and non-economic benefits through
government agencies’ support in smart farming adoption, aiding in administrative assis-
tance and financial sustainability [49]. Wang et al. (2019) [41] noted the complexity and
high cost of investment associated with DTs, highlighting the need for government support
in providing funding, skills, resources, and other support to farmers for the introduction
and utilization of technologies.. Hence, the following Hypothesis 3 (H3) is proposed:

H3. Government support is positively correlated with the DTs adoption intensity of growers.

Competitive pressure refers to the level of perceived pressure experienced by growers
from competitors within the industry. This pressure compels farmers to adopt new technolo-
gies in order to maintain a competitive advantage [50]. Wei et al. (2015) [51] posited that the
competitive pressure positively influences the adoption of new technological innovations.
Early adopters of these technologies can showcase their benefits, raising awareness among
decision-makers and encouraging adoption. De Prieelle et al. (2022) [52] highlighted the in-
troduction of new management techniques and technologies by agricultural organizations
to address competitive pressures. Farms currently utilizing smart agricultural technologies
demonstrate improved production efficiency. Hence, the following Hypothesis 4 (H4)
is proposed:

H4. Competitive pressure is positively correlated with the DTs adoption intensity of growers.

Direct economic benefits and enhanced productivity or profitability serve as pivotal
objectives and driving forces behind farmers’ adoption of technology [53,54]. Researchers
have analyzed the role of DTs in enhancing growers’ economic benefits based on two
dimensions: cost reduction and efficiency improvement. Bahn et al. (2021) [55] found that
DTs can reduce production costs by controlling agricultural inputs and labor. The studies
of Schimmelpfennig et al. (2016) [56] and Erdem and Ağır (2024) [57] have shown that
DTs can enhance agricultural productivity and yields for farmers, leading to increased
economic benefits. Hence, the following Hypothesis 5 (H5) is proposed:
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H5. DTs adoption intensity of growers is positively correlated with its economic benefits.

3.1.2. Data Collection

This study was conducted in Shandong and Liaoning provinces, both of which are
major agricultural regions in northern China (see Figure 1). Shandong ranks second
nationwide in agricultural output value and consistently ranks in the top 10 for grain,
vegetable, and fruit production. Liaoning contributes 3.0% of the national sowing area but
produces 3.6% of the country’s grain. In 2022, Liaoning produced 8.797 million tons of fruit
and 20.554 million tons of vegetables. The formal survey, conducted from April to August
2023, utilized a stratified random sampling method and convenience sampling method
through the utilization of structured questionnaires. In Liaoning and Shandong provinces,
2–4 prefecture-level cities were randomly selected in each province, with five sample towns
randomly chosen from each prefecture-level city. Then, 10–15 growers were randomly
surveyed in each town through face-to-face household surveys. The convenience sampling
method involved collaborating with agricultural industry associations to identify sample
growers, wherein the research team directly assisted growers in completing questionnaires
to ensure data reliability. A total of 435 valid samples were collected through the random
sample and convenience sample method.
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Before the main survey, we conducted a preliminary survey involving 20 growers to
refine the questionnaire. Based on the respondents’ feedback, we rephrased the Likert-scale
questions into more accessible language to minimize inaccuracies arising from misunder-
standings. Before growers filled out the questionnaire, we introduced the purpose and
content of the survey. The questionnaire could only be completed after obtaining the
respondent’s consent, ensuring that personal privacy was not compromised. The growers
were adults proficient in smartphone usage, belonging to the categories of grain, vegetable,
and fruit growers.

The structured questionnaire was divided into three parts: individual and agricultural
production characteristics of growers; adoption status of DTs; as well as factors influencing
growers’ adoption of DTs. At the farm level, DTs encompass precision agricultural equip-
ment, robotics, agronomic advice and information, and farm management platforms [58].
In selecting the DTs for this study, we comprehensively considered the current state of DTs
in Chinese agriculture and incorporated findings from preliminary research. We focused
on technologies that are widely promoted and already in use in practical agricultural pro-
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duction. Four DTs were analyzed in this study: digital sensors, precision irrigation systems,
precision fertilization systems, and unmanned aerial vehicles (UAVs). The descriptions of
each DT can be found in Table 2. Internal and external factors were adapted from mature
scales in previous studies, with each factor comprising three measurement items on a
five-point Likert scale (1 = strongly disagree, 5 = strongly agree). Detailed information
regarding the questionnaire can be referenced in Appendix A.

Table 2. Description of the digital technologies included in this study.

Digital Technologies Descriptions

Digital sensors
Real-time monitoring, collecting, transmitting, and storing data on temperature, humidity,
soil moisture, nutrient levels, and carbon dioxide concentration in designated areas, while

also automatically controlling and providing feedback based on preset conditions [59].

Precision irrigation systems
Based on crop water requirements and soil moisture conditions, irrigation schedules, timing,

and water flow rates should be systematically devised to achieve precise control and
management of irrigation [60].

Precision fertilization systems
By monitoring factors such as soil nutrient levels, crop growth status, and meteorological
conditions, rational adjustments to fertilizer formulations and application rates have been

made, resulting in increased fertilizer efficiency and nutrient utilization by crops [61].

Unmanned aerial vehicles UAVs are utilized in agricultural production to facilitate tasks such as field monitoring, crop
growth analysis, and precision spraying [62].

3.1.3. Variable Measure

Explained variables: When examining the factors influencing the adoption intensity
of DTs, the explained variable is the DTs adoption intensity. Drawing on the study by
Isgin et al. (2008) [63], “DTs adoption intensity” is quantified by the number of DTs growers
have actually adopted, with values ranging sequentially from 1 to 4 in this study. When
studying the influence of growers’ DTs adoption intensity on economic benefits, economic
benefits are the explained variable, which is measured by the average net profit from crop
cultivation over the past three years.

Explanatory variables: When examining the factors influencing the adoption intensity
of DTs, grower’s knowledge, technology compatibility, government support and competi-
tive pressure are explanatory variables. All items listed among these variables were derived
from previous studies. Grower’s knowledge and government support were adapted
from the work of Yoon et al. (2020) [47], which measured grower’s knowledge in terms
of understanding, proficiency, and utilization, while government support was assessed
through policies and funding, projects, and technical support. Technology compatibility
was adapted from Tiago (2014) [64], and was evaluated based on the compatibility of
digital technologies with growers’ current needs, previous practices, and cultural values.
Competitive pressure was derived from Junior et al. (2019) [65], measured by the competi-
tive environment, competitive advantage, and peer effects. When studying the influence
of growers’ DTs adoption intensity on economic benefits, DTs adoption intensity is an
explanatory variable.

Control variables: This study considers four individual characteristics as well as four
agricultural production characteristics of growers as control variables: age, sex, education
years, cultivation experience, training participation, cultivation area, labor size, and crop
type [66–70]. This study also controlled for the impact of the COVID-19 pandemic on
agricultural production [71].

Instrumental variables (IV): To mitigate potential endogeneity concerns within the
model, this study draws upon the studies of Li et al. (2023) [72] and An (2015) [73],
utilizing “DTs adoption rate of local peers” as an IV to investigate the impacts of growers’
DTs adoption intensity on economic benefits. IVs should exhibit a high correlation with
potentially endogenous explanatory variables while maintaining independence from the
model’s error term [74]. Peer effects shape growers’ expectations regarding the benefits of
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information channels, thereby driving the intensity of DTs adoption. And there is no direct
link between peer DTs adoption and growers’ economic benefits. The “DTs adoption rate
of local peers” fulfills the criteria for instrumental variables in this study [75].

3.1.4. Regression Analysis

Poisson regression and negative binomial regression (NBREG) are widely used count
regression models in various research domains [76]. In this study, the variance of DTs
adoption intensity was found to be 1.108 (SD = 1.053), exceeding the mean value of 1.016.
Given the dispersion, a negative binomial regression model was employed instead of a
Poisson regression model [77,78]. The equation of NBREG is as follows:

µik = β0ik + β1x1ik + · · ·+β4x4ik + βnxnik + θ (1)

where i refers to the grower i.
k refers to the city where the grower i is located.
β0 is the intercept term.
β1 to βn refers to the coefficient of variables.
x1ik to x4ik refers to the grower’s knowledge, technology compatibility, government

support, and competitive pressure.
xnik refers to the control variables.
µik indicates the expected count for the grower i.
θ is the scale parameter of the negative binomial distribution.
We employed a two-stage least squares model (2SLS) to analyze the impact of grower’

DT adoption intensity on their economic benefits. This approach assists in mitigating
potential endogeneity issues and estimation biases related to the limited explanatory
variables. The procedure involves two sequential steps, effectively isolating the influence of
endogenous variables on the dependent variable while considering the potential effects of
IV and control variables [79]. The first- and second-stage regressions of 2SLS are illustrated
by the equations below:

First stage:
IVik = β0ik + β1x1ik + β2x2ik + ϵik (2)

Seond stage:
µik = β0ik + β1 IVik + β2x2ik + ϵik (3)

IVik refers to the DTs adoption rate of local peers.
µik refers to economic benefits.
x1ik refers to the DTs adoption intensity.
x2ik refers to the referenced control variables.
ϵik refers to the random perturbation term.

3.2. Results of Quantitative Study
3.2.1. Descriptive Statistics

The individual characteristics and agricultural production traits of the 435 growers are
detailed in Table 3. To improve the interpretability and numerical stability of the regression
coefficients, the variables were scaled as follows: cultivation experience was multiplied
by 10, cultivation area by 1000, labor size by 100, and economic benefits by 10,000. On
average, the growers who responded to the survey were approximately 49.230 years old,
with a predominance of male growers. Most growers have attained an education up to
middle or high school level, with an average education duration of 10.897 years. They
boast an average cultivation experience of more than 28 years. Over the past three years,
growers have engaged in an average of 3.051 training sessions. The average cultivation
area is relatively substantial, measuring 206 mu. Among the 435 growers, 210 are dedicated
to grain cultivation, 142 to fruit cultivation, and 83 to vegetable cultivation. Each grower
employs an average of about 10 fixed laborers, yielding an average net profit of CNY
6830 per mu per year. The average intensity of DTs adoption among adopters is 1.016, with



Sustainability 2024, 16, 4431 8 of 24

a minimum of 1 and a maximum of 4. Additionally, the average peer adoption rate of DTs
stands at 0.324. The average impact of COVID-19 on growers is 2.131, falling between low
and moderate impacts.

Table 3. Individual and agricultural production characteristics of surveyed growers (n = 435).

Variables Descriptions Mean Standard Deviation

Age Age of the growers in years. 49.230 9.021

Sex Sex of the growers (1 = male, 0 = female). 0.726 0.446

Education years Years of formal education of growers. 10.897 2.580

Cultivation experience (10 years) Years of experience in cultivation for growers. 2.835 1.054

Training participation

The number of times growers have participated in
digital technology training organized by

government and agricultural industry associations
over the past three years.

3.051 3.587

Cultivation area (1000 mu) Cultivation area of growers. 0.206 0.331

Labor size (×100) Fixed number of labor force. 0.099 0.243

Crop type Primary type of cultivated crop (Grains = 1,
Fruits = 2, Vegetables = 3). 1.708 1.292

Economic benefits (10,000 yuan/mu) Average net profit from cultivation over the past
three years. 0.683 0.768

DTs adoption intensity Number of digital technologies (DTs) adopted
by growers. 1.016 1.053

DTs adoption rate of local peers (0~1) Proportion of growers engaged in digitalized
cultivation within the same county. 0.324 0.299

Impacts of COVID-19

Impact of COVID-19 on agricultural production
and operations over the past three years (No

impacts = 1, Low impacts = 2, Moderate
impacts = 3, High impacts = 4).

2.131 0.822

Grower’s knowledge The grower’s degree of understanding, proficiency,
and utilization of a DT. 11.531 2.268

Technology compatibility The degree to which a DT fits with the existing
values, previous practices, and current needs. 10.189 1.922

Government support The degree of policy, finance, and technical
support from government to process DTs. 11.340 2.259

Competitive pressure The degree of perceived pressure experienced by
growers from competitors within the industry. 11.407 1.979

Figure 2 illustrates the adoption status of 435 growers regarding four DTs. In total,
264 growers have adopted at least one DT, accounting for 60.7% of the respondents, while
39.3% have not adopted DTs. Among the adopters, 33.1% of growers have adopted one DT,
and 16.1% of growers have adopted two DTs. There are relatively fewer growers who have
adopted three or more DTs.

From Figure 3, it is evident that the technology with the highest adoption rate is
UAVs, with 149 growers adopting these, accounting for a 34.3% adoption rate. The second-
highest adoption rate is observed for precision irrigation systems, which were adopted
by 120 growers, with an adoption rate of 27.6%. Precision fertilization systems rank third,
with 105 growers adopting these systems, representing an adoption rate of 24.1%. The
adoption rate of sensors is relatively low, reaching 15.6%.
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3.2.2. Test of Reliability and Validity

Before proceeding with the regression analysis, we assessed the reliability and validity
of the sample data. Validity testing gauges how well measurement indicators represent
intended meanings, while reliability testing assesses questionnaire measurement consis-
tency. Using Cronbach’s α coefficient, we evaluated the reliability of the questionnaire
data (see Table 4). All factors exhibited α values between 0.828 and 0.944, surpassing the
0.70 threshold, indicating robust reliability and internal consistency [80]. The standard-
ized factor loadings of the measurement items in this study range from 0.761 to 0.956, all
factors with KMO > 0.600 and Bartlett (p) < 0.001, suggesting that the indicators in the
measurement tool or questionnaire adequately represent the constructed concepts, thereby
enhancing the construct validity of the tool [81,82]. The average variance extracted (AVE)
values and composite reliability (CR) values exceeded thresholds of 0.5 and 0.7, indicating
the convergent validity of the measurement model [83]. Overall, our measurement model
exhibits strong reliability and validity.
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Table 4. Testing the reliability and validity of measurement items.

Variables Standardized
Factor Loadings KMO Bartlett (p) α AVE CR

Grower’s knowledge

Grower’s knowledge 1 0.915
Grower’s knowledge 2 0.850 0.680 0.000 0.830 0.753 0.901
Grower’s knowledge 3 0.836

Technology compatibility

Technology compatibility 1 0.912
0.657 0.000 0.828 0.746 0.898Technology compatibility 2 0.910

Technology compatibility 3 0.761

Government support

Government support 1 0.943
Government support 2 0.956 0.769 0.000 0.944 0.899 0.964
Government support 3 0.946

Competitive pressure

Competitive pressure 1 0.867
0.703 0.000 0.886 0.817 0.930Competitive pressure 2 0.940

Competitive pressure 3 0.903

Notes: α = Cronbach’s alpha; KMO = Kaiser–Meyer–Olkin value; AVE = average variance extracted;
CR = composite reliability.

Before conducting NBREG and 2SLS regression, we performed multicollinearity tests.
The results indicated no significant multicollinearity (see Table 5), as there were no tolerance
values below 0.1 or Variance Inflation Factor (VIF) values exceeding 5 [84,85].

Table 5. Multiple collinearities of the diagnosis.

Factors Influence on DTs Adoption Intensity DTs Adoption Intensity on Economic Benefits

Variable VIF 1/VIF Variable VIF 1/VIF

Technology compatibility 2.170 0.460 Age 1.260 0.795
Competitive pressure 2.160 0.463 Education years 1.240 0.809
Government support 1.590 0.629 Crop type 1.230 0.814
Grower’s knowledge 1.420 0.704 Labor size 1.210 0.827

Age 1.270 0.786 Cultivation area 1.190 0.842
Education years 1.240 0.803 DTs adoption intensity 1.190 0.843

Labor size 1.230 0.811 Cultivation experience 1.150 0.872
Cultivation area 1.200 0.835 Training participation 1.050 0.954

Crop type 1.190 0.842 Impacts of COVID-19 1.030 0.972
Cultivation experience 1.160 0.861 Sex 1.020 0.978
Training participation 1.060 0.946
Impacts of COVID-19 1.030 0.967

Sex 1.030 0.974

Mean VIF 1.370 Mean VIF 1.160

3.2.3. Factors Influencing DTs Adoption Intensity

We employ the NBREG model to reveal the factors influencing DT adoption intensity
(see Table 6). Model 1 depicted the regression analysis with a subset of control variables,
whereas Model 2 accounted for all the individual characteristics and agricultural production
characteristics of growers, alongside the influence of the COVID-19 pandemic. The results
showed that the grower‘s knowledge, technology compatibility, government support and
competitive pressure had significant positive correlations with the adoption intensity of
DTs, regardless of whether the variables were being controlled. H1, H2, H3 and H4
were verified.
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Table 6. Impact of internal and external factors on DTs adoption intensity: negative binomial
regression and ordered probit.

Variables
Negative Binomial Regression Model Ordered Probit

Model 1 Model 2 Model 3

Grower’s knowledge 0.177 ** 0.160 ** 0.185 ***
(0.081) (0.063) (0.056)

Technology compatibility 0.135 *** 0.118 *** 0.111 **
(0.035) (0.039) (0.056)

Government support 0.138 *** 0.102 ** 0.115 **
(0.052) (0.046) (0.048)

Competitive pressure 0.122 *** 0.100 *** 0.104 **
(0.047) (0.039) (0.043)

Age −0.009 −0.007 −0.006
(0.006) (0.007) (0.008)

Sex 0.198 ** 0.187 ** 0.238 **
(0.080) (0.090) (0.099)

Education years 0.066 ** 0.039 0.043
(0.026) (0.027) (0.051)

Cultivation experience −0.017 −0.006 0.004
(0.035) (0.038) (0.052)

Training participation 0.017 0.019
(0.018) (0.024)

Cultivation areas 0.251 * 0.289
(0.153) (0.213)

Labor size 0.184 0.398 **
(0.118) (0.194)

Fruits −0.233 *** −0.378 ***
(0.070) (0.084)

Vegetables −0.842 * −0.931 ***
(0.453) (0.339)

Impacts of COVID-19 Controlled Controlled Controlled
_cons −0.435 −0.242

(0.643) (0.514)

Pseudo R2 0.047 0.081 0.094
Wald chi2 323.480 18,324.830 10,861.520

Prob > chi2 0.000 0.000 0.000

N 435 435 435
Notes: ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. Robust standard errors are
presented in parentheses.

Regrading internal factors, grower’s knowledge significantly enhances DTs adoption
intensity at the 5% significance level. Specifically, for each unit increase in grower’s knowl-
edge, there is a corresponding 16% rise in adoption intensity. Growers who possess a
deep understanding of DTs functionalities and agricultural prospects exhibit heightened
adoption intensity. Similarly, technology compatibility significantly enhances DTs adoption
intensity at the 1% significance level. For each unit increase in compatibility, there is a
11.8% increase in DTs adoption intensity. This suggests that growers with higher compati-
bility between DTs and landowner values, agricultural needs, local farm conditions, and
management practices tend to adopt DTs more intensively.

Regarding external factors, government support significantly enhances the intensity
of DTs adoption at a 5% significance level. For each unit increase in government support,
growers’ adoption intensity of DTs rises by 10.2%. This underscores the crucial role of



Sustainability 2024, 16, 4431 12 of 24

government policies and incentives in driving technology adoption. Competitive pressure
significantly enhances the intensity of DTs adoption at a 1% significance level. For each
unit increase in competitive pressure, growers’ adoption intensity of DTs rises by 10%.

Besides, sex and cultivation area show significance at the 5% and 1% levels, respec-
tively, indicating higher DTs adoption intensity among male growers and those with a
larger cultivation area. Fruit and vegetable growers exhibit lower DTs adoption intensity
compared to grain growers.

To ensure robustness, NBREG was replaced with ordered probit regression to analyze
determinants of DTs adoption intensity (see Model 3). The result show that growers’
intensity to adopt DTs was affected by the growers‘ knowledge, technology compatibility,
government support and competitive pressure significantly. These findings affirm the
robustness of regression results in Model 2.

3.2.4. Impact of DTs Adoption Intensity on Economic Benefits

Table 7 presents the regression outcomes detailing the influence of growers’ DTs adop-
tion intensity on their economic benefits, while controlling for individual and agricultural
production characteristics of growers, along with the impacts of the COVID-19. In the first
stage (Model 4) of the 2SLS regression, economic benefits exhibited a positive correlation
with DTs adoption intensity (β = 1.140, p < 0.01). The p-value of the Kleibergen–Paap
rk LM statistic was less than 0.01, indicating the model under identification. Conversely,
the Cragg–Donald Wald F statistic stood at 45.576, surpassing the 10% critical value of
16.38, suggesting no issues with weak instruments. Subsequently, in the second stage of
2SLS (Model 5), a significant association between DTs adoption intensity and economic
benefits was observed, revealing a 30.4% rise in economic benefits for each unit increase
in DTs adoption intensity. For robustness, Model 6 substituted 2SLS with IV-Tobit. The
regression coefficients and significance of DTs adoption intensity displayed no substantial
deviation between 2SLS and IV-Tobit. This implies that both Model 5 and Model 6 affirm
H5, ensuring the robustness of the regression outcomes.

Table 7. The impacts of DTs adoption intensity on economic benefits.

Variables
IV Economic Benefits

Model 4 (2SLS) Model 5 (2SLS) Model 6 (IV-Tobit)

DTs adoption intensity 1.140 *** 0.304 ** 0.304 **
(0.422) (0.150) (0.154)

Control variables Controlled Controlled Controlled
_cons 0.268 −0.558 −0.527

(0.472) (0.371) (0.421)

Centered R2 0.241
Wald chi2 4761.65
Prob > F 0.000

Prob > chi2 0.000

N 435 435 435
Notes: *** and ** indicate significance at 1% and 5% levels, respectively. Robust standard errors are presented
in parentheses.

3.2.5. Sensitivity Analysis

To examine potential omitted variables and their impact on the regression, this study
employs a sensitivity analysis based on Oster (2019) [86] approach, focusing on the impact
of growers’ digital technology adoption intensity on their economic benefits. The true
coefficient estimation is performed using β* = β*(Rmax, δ), where Rmax represents the
maximum goodness-of-fit of the regression equation when all unobservable variables
are accounted for, and δ is the selection proportion indicating the relationship strength
between the core explanatory variables and both observable and unobservable variables. A
δ value of one indicates equal importance between observable and unobservable variables.



Sustainability 2024, 16, 4431 13 of 24

Following the method described by Oster (2019) [86], we set Rmax = 1.3R, where R is
the current regression equation’s goodness of fit, allowing for a 1.3-fold increase in the
goodness of fit. If δ exceeds the critical value of 1, the test is passed. The results of the
sensitivity test are presented in Table 8. When Rmax = 1.3R and β* = 0, δ > 1, indicating a
passing result. This suggests that omitted variables have a negligible effect on the estimated
outcomes, as they did not lead to substantial bias in the estimation results. Therefore, the
estimates from the baseline regression are robust.

Table 8. Sensitivity analysis of DTs adoption on economic benefits.

Dependent Variables Standards Check Estimation Results Test Results

Economic benefits δ > 1 δ = 8.165 Yes

4. Qualitative Study

This section employs semi-structured interviews with 15 growers, utilizing a triangu-
lation and inductive approach to bolster and enrich the findings derived from quantitative
research. Subsequent sections outline the qualitative research methodology and highlight
key findings.

4.1. Method and Material
4.1.1. Data Collection

Growers were required to complete the questionnaire prior to the interviews, during
which their contact details were recorded for those expressing interest in further in-depth
discussions. Growers were selected based on specific criteria, including their adoption
or inclination towards adopting DTs, or having a minimum three-year history of DTs
application. Twenty-five growers agreed to participate in the interviews, from whom we
ultimately selected 15 growers (see Table 9). The interview guidelines were tailored to align
with the research objectives, and each interviewee was interviewed sequentially by a team
consisting of 2–3 interviewers. Following an initial discussion on the cultivation status of
growers and their adoption of DTs, we posed open-ended questions such as “What factors
drive or hinder your adoption of DTs?” and “How do you perceive the effectiveness of
adopting DTs?” As the interviews progressed, we delved deeper into key concepts such
as grower’s knowledge, technology compatibility, government support, and competitive
pressure. The interviews concluded within a one-hour timeframe.

Table 9. Individual and agricultural production characteristics of interviewed growers (n = 15).

Grower ID Cultivation Area (mu) Cultivation
Experience Digital Technology Adoption Crop Type

HG 01 5 40 Digital sensors Vegetable

HG 02 11 10 Digital sensors Fruit

HG 03 18 21 Digital sensor, precision irrigation
system, precision fertilization system Fruit

HG04 30 24 Digital sensor, precision irrigation
system, precision fertilization system Fruit

HG 05 40 35 Digital sensor, precision irrigation
system, precision fertilization system Fruit

HG 06 100 38 Precision irrigation system; precision
fertilization systems Vegetable

HG 07 100 25 UAVs Vegetable

HG 08 106 29 Precision irrigation systems, precision
fertilization systems Fruit
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Table 9. Cont.

Grower ID Cultivation Area (mu) Cultivation
Experience Digital Technology Adoption Crop Type

HG 09 200 31 Digital sensor, precision irrigation
system, precision fertilization system Fruit

HG 10 1000 10 Precision irrigation systems; precision
fertilization systems Fruit

HG 11 3 36 Non-adopter Vegetable

HG 12 7 37 Non-adopter Vegetable

HG 13 8 18 Non-adopter Vegetable

HG 14 16 31 Non-adopter Fruit

HG 15 24.5 29 Non-adopter Vegetable

4.1.2. Data Analysis

We utilized an inductive approach to analyze the qualitative data, distilling said data
into concise statements or insights [87]. Before commencing qualitative data analysis, we
consolidated the interview transcript into a single document, marking the formal initiation
of the six-step data analysis process [88]. Firstly, the authors familiarized themselves with
the data by repeatedly reviewing the interview transcripts. Secondly, they generated codes
for segments of information relevant to the core research questions. Thirdly, they reviewed
and analyzed the coded data to identify themes or subthemes. Fourthly, they scrutinized
the themes or subthemes, adding or removing those that did not align with the research
objectives. Fifthly, they conducted detailed analysis, defining and naming the themes.
Lastly, the authors reached a consensus on the research findings and drafted the results of
data analysis.

4.2. Results of Qualitative Study
4.2.1. Factors Influencing DTs Adoption Intensity

Based on sample analysis, it became apparent that a deficiency in DTs knowledge may
impede growers’ adoption of such DTs. This is particularly evident among smallholder
farmers such as HG11 and HG13 (see Table 10). Some smallholders perceive traditional
farming methods reliant on experiential knowledge as adequate for meeting production
needs, indicating that embracing new technologies necessitates both time and a cultural
shift. Other smallholders possess an understanding of DTs but lack clarity regarding their
specific benefits, resulting in a reserved stance toward their adoption. Another group of
growers, exemplified by HG05, consists of large-scale growers who are pioneers in adopting
DTs. They typically possess extensive industry connections and social networks, along
with more experience and financial resources. Consequently, they can leverage various
channels to access the latest cultivation knowledge and technology, and they have a deeper
understanding of the capabilities and functionalities of DTs.

Table 10. Growers’ statements regarding knowledge.

Grower’s Knowledge

HG05 [...] I’m an early adopter of DTs. I’m always willing to learn and try new technologies, and I plan to use some
more precise and intelligent devices in the next 5 years. [...]

HG11 [...] I’ve heard about and have some understanding of DTs, but I’m not clear on the specific benefits it can
bring to me. [...]

HG13 [...] I don’t understand the intricacies of DTs, I can determine when to ventilate and when to irrigate based on
my experience. [...]
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Technology compatibility emerges as a pivotal factor driving growers’ adoption of DTs.
Growers highlight the current deficiency in DTs’ compatibility across different crop types,
cultivation areas, and crop growth cycles (see Table 11). Digital equipment predominantly
caters to a select few high-value vegetable crops, rendering them unsuitable for relatively
low-tech crops like onions and spinach, where traditional cultivation and management
methods are deemed more suitable (HG12). Given the efficiency and cost considerations
associated with DTs, larger-scale growers are better positioned to adopt these technologies
to manage the operational challenges of large-scale farming (HG07). However, even among
large-scale growers, instances of incompatibility with DTs may arise. Limitations inherent
in DTs may hinder their ability to adjust pesticide dosage and irrigation timing according to
crop growth status, making it challenging to achieve results comparable to manual methods.
Therefore, further development and improvement of DTs may be necessary (HG09).

Table 11. Growers’ statements regarding technology compatibility.

Technology Compatibility

HG07 [...] UAVs spraying is only suitable for large-scale farmland. With 100 mu of land on my farm, we meet the
scale requirements for drone spraying. [...]

HG09 [...] The growth of trees varies, so precise irrigation can only result in uniform spraying, while manual
application allows for dosage adjustment based on different trees. [...]

HG12 [...] I believe technology compatibility is very important. For example, manual labor is the only option for
cultivating onions, while DTs are more suitable for cucumbers and tomatoes. [...]

The analysis of the sample indicates a strong correlation between growers’ adoption of
DTs and comprehensive government support. Growers who have embraced DTs have cited
a range of supportive policies, notably those promoting precision irrigation systems and
precision fertilization systems (see Table 12). Initiatives such as infrastructure provision,
advanced equipment, training sessions, and financial support are aimed at mitigating finan-
cial and technological risks, thereby fostering DT adoption among growers. These efforts
have yielded positive outcomes, underscoring the pivotal role of government support in
driving agricultural digitization, as reinforced by the interview findings.

Table 12. Growers’ statements regarding government support.

Government Support

HG04 [...] Nine years ago, I installed precision irrigation devices during greenhouse construction, subsidized by the
government at ten thousand yuan per mu for circuitry and equipment. [...]

HG06 [...] The government supports through the provision of network infrastructure and DTs equipment to
demonstration households. [...]

HG08 [...] The government facilitates exchanges on technologies among local producers, offering brief on-site
training sessions to encourage technology adoption. [...]

The interview findings emphasize the constructive influence of peer effects on growers’
adoption of DTs. Growers who have effectively integrated DTs may motivate their peers
to adopt similar approaches (see Table 13). For example, HG01 was inspired by the favor-
able results observed in their peers’ utilization of DTs, and therefore chose to implement
technologies like digital sensors and precision irrigation systems. Although some of the
growers have yet to adopt DTs, they also acknowledged being influenced by their peers
(HG14 and HG15).
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Table 13. Growers’ statements regarding competitive pressure.

Competitive Pressure

HG01 [...] I observed the effects on my peers in the same village who implemented precision irrigation. They were
able to save 10–20% on water and fertilizer costs, which prompted me to follow suit. [...]

HG14 [...] Once demonstration households demonstrate positive economic benefits, everyone will be motivated to
learn from and emulate their adoption. [...]

HG15 [...] China is currently vigorously promoting digital agriculture, and competitors and partners in the vicinity
did have impacts on me. [...]

4.2.2. Impact of DTs Adoption Intensity on Economic Benefits

Most growers highlighted the efficacy of DTs across five dimensions: yield, quality,
labor cost, irrigation water usage, and pesticide usage (see Table 14). The primary benefits
included a notably higher crop yield and quality, along with reduced labor cost, leading to
increased profitability. Specific economic gains included a 20% boost in yield and quality
(HG05), labor cost reductions of 20–30% (HG02), and a 30% decrease in water and pesticide
usage (HG04) (see Table 15). Only one grower (HG03) reported suboptimal performance
of digital sensors due to equipment quality issues, widespread temperature measurement
errors, and equipment damage. He believed that achieving the desired outcome without
manual intervention was difficult with this DT. He indicated that the decision to adopt
would depend on the advancement level of DTs in the future.

Table 14. Economic benefits.

Economic Benefits Grower

Increase yield HG01, HG05, HG06, HG07
Improve quality HG01, HG05, HG06, HG07, HG10

Reduce labor costs HG02, HG04, HG05, HG07, HG08
Decrease irrigation water usage HG04, HG05

Decrease pesticide usage HG04
No effects HG03

Table 15. Growers’ statements regarding economic benefits.

Economic Benefits

HG02 [...] I am relatively satisfied with the use of UAVs for spraying pesticides on vegetables. Labor costs can be
reduced by 20% to 30%, yield and quality were improved. [...]

HG04 [...] The benefits of using DTs are evident in water and pesticide savings, with a reduction of 30% in both. [...]

HG05 [...] After applied precision irrigation systems, labor costs for three greenhouses can be reduced by over 10,000
yuan, and yield and quality can increase by 20%. [...]

5. Discussion

In this study, employing a mixed-method approach, we quantitatively analyze data
from 435 growers to investigate the influence of managerial knowledge, technology com-
patibility, government support, and competitive pressure on DT adoption intensity. Addi-
tionally, we delve into the correlation between adoption intensity and economic benefits.
Our qualitative analysis, based on interviews with 15 growers, further strengthens and
elaborates on our findings. These findings hold substantial significance for promoting DT
adoption among growers in the North China region and beyond.

5.1. Discussion of Factors Influencing DTs Adoption Intensity

We discovered that grower’s knowledge is a significant factor in facilitating adoption
intensity of DTs. These findings were aligned with the results of prior studies [89,90].
Technology adoption typically begins with acquiring and understanding knowledge about
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technology usage in production, which varies based on individual and contextual factors,
depending on available information [91]. Qualitative findings revealed that non-adopters
of DTs lack an initial understanding of the functionalities and advantages of DTs. Limited
access to information channels and weaker receptivity to DTs among some growers, es-
pecially small-scale growers, often hinder their adoption capacity. As a result, many DTs
tend to cater to the high-tech and capital-intensive growers, inadvertently excluding or
marginalizing certain grower demographics [92]. Growers can obtain more knowledge
through diverse sources such as technology provider training, informal networks, peer
observation, and social media [93].

In line with prior research, technology compatibility is crucial for growers who are
adopting and diffusing DTs [94,95]. The adoption of DTs may be constrained if there is a
lack of compatibility between the technologies and users’ existing values, needs, and experi-
ences [96]. Growers are faced with a range of available DTs, not all of which are compatible
with their plots, nor do all DTs necessarily provide benefits to them. Due to the insufficient
maturity of DTs themselves, there is a lack of compatibility with various cultivation areas,
cultivation modes, and crop types, thereby impeding the current capability to meet the
production demands of all crops [97]. Therefore, growers need to fully understand the
characteristics and functionalities of DTs and assess their own capabilities before making
adoption decisions [18]. Pre-emptive agricultural advisory services are crucial.

Quantitative and qualitative analysis further reveals that government support sig-
nificantly promotes growers’ adoption intensity of DTs. Government support measures
encompass infrastructure development, investment in advanced technological equipment,
establishment of demonstration sites, and dissemination of successful cases. These research
findings align with the findings of Rose et al. (2016) [98] and Sun et al. (2016) [99]. The
supportive role of government is evident not only among Chinese growers but also in
Iran. A study revealed that farms with access to government funding, technology, and
management resources demonstrate a greater propensity to adopt new technologies. This
is attributed to the assurance provided by robust system software and hardware design, as
well as effective daily equipment maintenance [100].

Competitive pressure significantly correlates with DTs adoption intensity, aligning
with prior studies [101,102]. DTs are regarded as essential for growers aiming to sustain
competitiveness [103,104]. A notable phenomenon of competitive pressure manifests in the
form of peer effects. Peer effects are frequently observed in growers’ adoption intensity of
DTs, wherein individuals are more inclined to adopt DTs if their peers or competitors do so.
Krishnan et al. (2014) [105] and Ferrali et al. (2019) [106] identified similar trends in their
studies on agricultural technology adoption in Ethiopia and Uganda, respectively.

Moreover, the individual characteristics of growers play a crucial role in determining
DTs adoption. Males may find it easier to access information, material and financial
resources, and conform to social norms, thereby increasing their likelihood of adopting
DTs [107]. Additionally, larger-scale farming operations, which generate relatively higher
incomes, tend to reduce the perceived investment risk for new technologies [108], providing
greater capital channels for acquiring DTs and increasing the likelihood of adopting multiple
ones [109].

5.2. DTs Adoption Intensity on Economic Benefit

This study demonstrates that the impact of digital technology on enhancing growers’
economic benefits has passed a significance test. Growers can boost their economic benefits
by adopting DTs, leading to increased yield and quality, reduced labor costs, irrigation
water, and pesticide usage. These findings align with existing studies [110,111]. A study
indicated that between 2002 and 2020, in China’s major grain-producing regions, the
utilization of computers in disseminating meteorological data, managing farmer operations,
and maintaining records has led to an increase in grain yield [112].

The economic benefits of DTs hinge on their proper and thorough utilization, which
cannot be overlooked. Given their inherent complexity and demanding operational require-
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ments, improper handling by farmers can seriously compromise their effectiveness and
pose risks of reduced yields [113,114]. However, attributing all errors in the application of
DTs to farmers alone would be inappropriate. The limitations and immaturity of the DTs
itself should also be taken into account [19].

5.3. Limitation

While this study offers a comprehensive analysis and discussion on the adoption
of DTs in cultivation in China, several limitations should be noted. Perhaps the most
significant limitation lies in the rapid evolution of the technology itself, coupled with the
dynamic nature of growers’ adoption of DTs. It is crucial to identify pertinent barriers by
assessing state-of-the-art technologies across different developmental stages. This study
holds crucial implications for the current promotion of DTs. It is also imperative to conduct
a follow-up study, employing a long-term tracking approach, to understand the evolving
trends in the adoption and benefits of DTs over time.

6. Conclusions and Policy Implications

This study conducts an in-depth examination of the key factors and application ef-
fectiveness of digital technologies (DTs) adoption, using Chinese growers as a case study.
Our findings can provide insights for developing countries facing similar challenges in
agricultural modernization and digital transformation to advance the application of DTs
in agriculture more effectively. In terms of internal factors, the grower’s knowledge and
technology compatibility play a crucial role in the adoption of DTs. Growers with higher
levels of knowledge are more likely to comprehend the functionalities and advantages of
DTs, thus increasing their likelihood of adoption. Lower technology compatibility implies
that DTs are more suitable for large-scale operations, specific agricultural environments, or
crop types, rather than being universally applicable to all growers and agricultural sectors.
From an external standpoint, government support and competitive pressure significantly
influence DTs adoption. Governments mitigate financial and technological risks by pro-
viding infrastructure, advanced equipment, training, and financial support. Competitive
pressure, mainly through peer effects, promotes DTs adoption. Additionally, growers’
personal and agricultural production characteristics also affect adoption, with male and
larger-scale growers showing higher adoption rates. These findings further corroborate
that DTs can enhance growers’ economic benefits by reducing labor and input costs while
simultaneously increasing yields and improving quality. However, such benefits are not
always guaranteed and are contingent upon the maturity of DTs and the standardization of
growers’ practices.

Drawing from the findings of this study, two policy implications emerged. It is
recommended that governments bolster agricultural socialized services related to DTs. This
includes offering pre-adoption technical consultation and support to growers, guiding
them in selecting and implementing appropriate DTs. Post-adoption support should be
provided through regular technology updates and maintenance to address any challenges
encountered during DTs utilization. Second, DTs promotion should prioritize aligning
DTs with the practical needs of agricultural production to facilitate their widespread
adoption. This entails tailoring technology research, development, and dissemination to
accommodate the diverse requirements of growers, considering elements such as cultivation
areas, cultivation modes, and crop types.
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Appendix A. Survey Questionnaire on Growers’ Digital Technology Adoption

Dear growers,
We appreciate your participation in completing the survey. The purpose of this survey

is to understand the adoption and application of digital technologies by growers in China.
The questionnaire is anonymous and will not disclose your privacy. The data obtained will
only be used for academic research. Participation in this study is entirely voluntary, and
you have the freedom to decline or withdraw at any time without facing any repercussions.
Feel free to raise concerns or questions; we’ll address them satisfactorily. The estimated
time for completion is about 10 min. We sincerely thank you for your participation!

Table A1. A Survey questionnaire and information.

Part 1. Individual and Agricultural Production Characteristics

1. Sex:
2. Age:
3. Years of education:
4. Geographical location:
5. Ho many years you involved in cultivation:
6. What is the main crop you cultivated:
7. What is the area you cultivation (mu):
8. The fixed laborers you employ:
9. The number of digital technology training sessions attended over the past three years:
10. What is the output value of cultivation over the past three years (yuan/mu/year):
11. What is the total cost of cultivation over the past three years (yuan/mu/year):
12. Over the last three years, has agricultural production and operations been impacted by COVID-19:
# No impacts # Low impacts # Moderate impacts # High impacts

Part 2. The digital technology adoption status
13. The digital technologies you currently adopted are as follows:
# Digital sensors
# Precision irrigation systems
# Precision fertilization systems
# Unmanned aerial vehicles
14. The proportion of peers in your county applying digital technologies for agricultural production:
15. Over the next five years, what is the likely trend regarding your adoption of digital technologies:
# Decrease # Maintain status quo # Increase # Uncertain

Part 3. Influencing factors
16. In terms of factors, please choose the option that best suits you:
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Table A1. Cont.

Grower’s knowledge Strongly disagree Disagree Neutral Agree Strongly agree
You have heard about and gained knowledge about these
digital technologies. # # # # #

You are very familiar with the functionalities and
prospects of these digital technologies in the
agricultural sector.

# # # # #

You are willing to undergo training in digital technologies
when given the opportunity. # # # # #

Technology compatibility Strongly disagree Disagree Neutral Agree Strongly agree
The application of digital technologies can solve the
difficulties currently faced by your farm. # # # # #

Digital technologies can be compatible with your farm’s
existing software and hardware. # # # # #

The application of digital technologies aligns with the
organizational culture and value system of your farm.

Government support Strongly disagree Disagree Neutral Agree Strongly agree
Your farm’s adoption of digital technologies can benefit
from government policies and financial support. # # # # #

The government supports various agricultural
information and digitization projects of your farm. # # # # #

The government encourages farms to adopt digital
technologies by promoting successful cases and
technical training.

# # # # #

Competitive pressure Strongly disagree Disagree Neutral Agree Strongly agree
Under competitive pressure, you have no choice but to
adopt digital technologies. # # # # #

Applying digital technologies can provide you with more
competitive advantages. # # # # #

If peers or competitors adopt digital technologies, you are
also inclined to adopt it. # # # # #

The questionnaire concludes here. Thank you once more for your support and cooperation. Wishing you a productive and
enjoyable work ahead!

References
1. Klerkx, L.; Rose, D. Dealing with the Game-Changing Technologies of Agriculture 4.0: How Do We Manage Diversity and

Responsibility in Food System Transition Pathways? Glob. Food Secur. 2020, 24, 100347. [CrossRef]
2. Lezoche, M.; Hernandez, J.E.; Alemany Díaz, M.d.M.E.; Panetto, H.; Kacprzyk, J. Agri-Food 4.0: A Survey of the Supply Chains

and Technologies for the Future Agriculture. Comput. Ind. 2020, 117, 103187. [CrossRef]
3. Gebresenbet, G.; Bosona, T.; Patterson, D.; Persson, H.; Fischer, B.; Mandaluniz, N.; Chirici, G.; Zacepins, A.; Komasilovs, V.;

Pitulac, T.; et al. A Concept for Application of Integrated Digital Technologies to Enhance Future Smart Agricultural Systems.
Smart Agric. Technol. 2023, 5, 100255. [CrossRef]

4. Regan, Á. ‘Smart Farming’ in Ireland: A Risk Perception Study with Key Governance Actors. NJAS—Wagening. J. Life Sci. 2019,
90–91, 100292. [CrossRef]

5. Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; LeBlanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al.
Automated Pastures and the Digital Divide: How Agricultural Technologies Are Shaping Labour and Rural Communities.
J. Rural Stud. 2019, 68, 112–122. [CrossRef]

6. Kitole, F.A.; Mkuna, E.; Sesabo, J.K. Digitalization and Agricultural Transformation in Developing Countries: Empirical Evidence
from Tanzania Agriculture Sector. Smart Agric. Technol. 2024, 7, 100379. [CrossRef]

7. Carolan, M. Publicising Food: Big Data, Precision Agriculture, and Co-Experimental Techniques of Addition. Sociol. Rural. 2017,
57, 135–154. [CrossRef]

8. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
9. Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of Agriculture: A Way to Solve the Food Problem or a Trolley Dilemma?

Technol. Soc. 2021, 67, 101744. [CrossRef]
10. Abiri, R.; Rizan, N.; Balasundram, S.K.; Shahbazi, A.B.; Abdul-Hamid, H. Application of Digital Technologies for Ensuring

Agricultural Productivity. Heliyon 2023, 9, e22601. [CrossRef]
11. McFadden, J. Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms; USDA Economic Research Service: Washington,

DC, USA, 2023.

https://doi.org/10.1016/j.gfs.2019.100347
https://doi.org/10.1016/j.compind.2020.103187
https://doi.org/10.1016/j.atech.2023.100255
https://doi.org/10.1016/j.njas.2019.02.003
https://doi.org/10.1016/j.jrurstud.2019.01.023
https://doi.org/10.1016/j.atech.2023.100379
https://doi.org/10.1111/soru.12120
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.techsoc.2021.101744
https://doi.org/10.1016/j.heliyon.2023.e22601


Sustainability 2024, 16, 4431 21 of 24

12. Zul Azlan, Z.H.; Junaini, S.N.; Bolhassan, N.A.; Wahi, R.; Arip, M.A. Harvesting a Sustainable Future: An Overview of Smart
Agriculture’s Role in Social, Economic, and Environmental Sustainability. J. Clean. Prod. 2024, 434, 140338. [CrossRef]

13. Koutsos, T.; Menexes, G. Economic, Agronomic, and Environmental Benefits from the Adoption of Precision Agriculture
Technologies: A Systematic Review. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2019, 10, 40–56. [CrossRef]

14. Wolfert, S.; Isakhanyan, G. Sustainable Agriculture by the Internet of Things—A Practitioner’s Approach to Monitor Sustainability
Progress. Comput. Electron. Agric. 2022, 200, 107226. [CrossRef]

15. Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten Years of Corn Yield Dynamics at Field Scale under Digital
Agriculture Solutions: A Case Study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [CrossRef]

16. Far, S.T.; Rezaei-Moghaddam, K. Impacts of the Precision Agricultural Technologies in Iran: An Analysis Experts’ Perception &
Their Determinants. Inf. Process. Agric. 2018, 5, 173–184.

17. Abate, G.T.; Abay, K.A.; Chamberlin, J.; Kassim, Y.; Spielman, D.J.; Tabe-Ojong, M.P., Jr. Digital Tools and Agricultural Market
Transformation in Africa: Why Are They Not at Scale yet, and What Will It Take to Get There? Food Policy 2023, 116, 102439.
[CrossRef]

18. Deichmann, U.; Goyal, A.; Mishra, D. Will Digital Technologies Transform Agriculture in Developing Countries? Agric. Econ.
2016, 47, 21–33. [CrossRef]

19. Visser, O.; Sippel, S.R.; Thiemann, L. Imprecision Farming? Examining the (in)Accuracy and Risks of Digital Agriculture. J. Rural
Stud. 2021, 86, 623–632. [CrossRef]

20. Yi, Y.; Xu, W.; Fan, Y.; Wang, H.-X. Drosophila as an Emerging Model Organism for Studies of Food-Derived Antioxidants. Food
Res. Int. 2021, 143. [CrossRef]

21. Li, L.; Paudel, K.P.; Guo, J. Understanding Chinese Farmers’ Participation Behavior Regarding Vegetable Traceability Systems.
Food Control 2021, 130, 108325. [CrossRef]

22. Yang, C.; Ji, X.; Cheng, C.; Liao, S.; Obuobi, B.; Zhang, Y. Digital Economy Empowers Sustainable Agriculture: Implications for
Farmers’ Adoption of Ecological Agricultural Technologies. Ecol. Indic. 2024, 159, 111723. [CrossRef]

23. Jiang, K.; Chen, Z.; Rughoo, A.; Zhou, M. Internet Finance and Corporate Investment: Evidence from China. J. Int. Financ. Mark.
Inst. Money 2022, 77, 101535. [CrossRef]

24. Carrer, M.J.; Filho, H.M.d.S.; Vinholis, M.d.M.B.; Mozambani, C.I. Precision Agriculture Adoption and Technical Efficiency: An
Analysis of Sugarcane Farms in Brazil. Technol. Forecast. Soc. Chang. 2022, 177, 121510. [CrossRef]

25. Dressler, M.; Paunovic, I. Sensing Technologies, Roles and Technology Adoption Strategies for Digital Transformation of Grape
Harvesting in SME Wineries. J. Open Innov. Technol. Mark. Complex. 2021, 7, 123. [CrossRef]

26. Allahyari, M.S.; Mohammadzadeh, M.; Nastis, S.A. Agricultural Experts’ Attitude towards Precision Agriculture: Evidence from
Guilan Agricultural Organization, Northern Iran. Inf. Process. Agric. 2016, 3, 183–189. [CrossRef]

27. Kolady, D.E.; Van der Sluis, E.; Uddin, M.M.; Deutz, A.P. Determinants of Adoption and Adoption Intensity of Precision
Agriculture Technologies: Evidence from South Dakota. Precis. Agric. 2021, 22, 689–710. [CrossRef]

28. Paudel, K.P.; Mishra, A.K.; Pandit, M.; Larkin, S.; Rejesus, R.; Velandia, M. Modeling Multiple Reasons for Adopting Precision
Technologies: Evidence from U.S. Cotton Producers. Comput. Electron. Agric. 2020, 175, 105625. [CrossRef]

29. Drewry, J.L.; Shutske, J.M.; Trechter, D.; Luck, B.D.; Pitman, L. Assessment of Digital Technology Adoption and Access Barriers
among Crop, Dairy and Livestock Producers in Wisconsin. Comput. Electron. Agric. 2019, 165, 104960. [CrossRef]

30. Michels, M.; von Hobe, C.-F.; Musshoff, O. A Trans-Theoretical Model for the Adoption of Drones by Large-Scale German
Farmers. J. Rural Stud. 2020, 75, 80–88. [CrossRef]

31. Schnebelin, É. Linking the Diversity of Ecologisation Models to Farmers’ Digital Use Profiles. Ecol. Econ. 2022, 196, 107422.
[CrossRef]

32. Ammann, J.; Umstaetter, C.; El Benni, N. The Adoption of Precision Agriculture Enabling Technologies in Swiss Outdoor
Vegetable Production: A Delphi Study. Precis. Agric. 2022, 23, 1354–1374. [CrossRef]

33. Fan, X.; Wang, Z.; Wang, Y. Rural Business Environments, Information Channels, and Farmers’ Pesticide Utilization Behavior: A
Grounded Theory Analysis in Hainan Province, China. Agriculture 2024, 14, 196. [CrossRef]

34. Ji, J.; Zhuo, K.; Zeng, Y.; Su, J.; Xie, Y. The Impact of Multi-Subjective Governance on Tea Farmers’ Green Production Behavior
Based on the Improved Theory of Planned Behavior. Sustainability 2023, 15, 15811. [CrossRef]

35. Creswell, J.D. Creswell Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 5th ed.; SAGE Publications: New
York, NY, USA, 2017.

36. Malina, M.A.; Nørreklit, H.S.O.; Selto, F.H. Lessons Learned: Advantages and Disadvantages of Mixed Method Research. Qual.
Res. Account. Manag. 2011, 8, 59–71. [CrossRef]

37. Stathakopoulos, V.; Kottikas, K.G.; Painesis, G.; Theodorakis, I.G.; Kottika, E. Why Shape a Market? Empirical Evidence on the
Prominent Firm-Level and Market-Level Outcomes of Market-Driving Strategy. J. Bus. Res. 2022, 139, 1240–1254. [CrossRef]

38. Kurtaliqi, F.; Lancelot Miltgen, C.; Viglia, G.; Pantin-Sohier, G. Using Advanced Mixed Methods Approaches: Combining
PLS-SEM and Qualitative Studies. J. Bus. Res. 2024, 172, 114464. [CrossRef]

39. Garrido-Moreno, A.; Martín-Rojas, R.; García-Morales, V.J. The Key Role of Innovation and Organizational Resilience in Improving
Business Performance: A Mixed-Methods Approach. Int. J. Inf. Manag. 2024, 77, 102777. [CrossRef]

40. Balogh, P.; Bai, A.; Czibere, I.; Kovach, I.; Fodor, L.; Bujdos, A.; Sulyok, D.; Gabnai, Z.; Birkner, Z. Big Data in Smart Farming—A
Review. Agricultural Systems. Agronomy 2021, 11, 1112. [CrossRef]

https://doi.org/10.1016/j.jclepro.2023.140338
https://doi.org/10.4018/IJAEIS.2019010103
https://doi.org/10.1016/j.compag.2022.107226
https://doi.org/10.1016/j.compag.2021.106126
https://doi.org/10.1016/j.foodpol.2023.102439
https://doi.org/10.1111/agec.12300
https://doi.org/10.1016/j.jrurstud.2021.07.024
https://doi.org/10.1016/j.foodres.2021.110307
https://doi.org/10.1016/j.foodcont.2021.108325
https://doi.org/10.1016/j.ecolind.2024.111723
https://doi.org/10.1016/j.intfin.2022.101535
https://doi.org/10.1016/j.techfore.2022.121510
https://doi.org/10.3390/joitmc7020123
https://doi.org/10.1016/j.inpa.2016.07.001
https://doi.org/10.1007/s11119-020-09750-2
https://doi.org/10.1016/j.compag.2020.105625
https://doi.org/10.1016/j.compag.2019.104960
https://doi.org/10.1016/j.jrurstud.2020.01.005
https://doi.org/10.1016/j.ecolecon.2022.107422
https://doi.org/10.1007/s11119-022-09889-0
https://doi.org/10.3390/agriculture14020196
https://doi.org/10.3390/su152215811
https://doi.org/10.1108/11766091111124702
https://doi.org/10.1016/j.jbusres.2021.10.057
https://doi.org/10.1016/j.jbusres.2023.114464
https://doi.org/10.1016/j.ijinfomgt.2024.102777
https://doi.org/10.3390/agronomy11061112


Sustainability 2024, 16, 4431 22 of 24

41. Wang, Y.; Jin, L.; Mao, H. Farmer Cooperatives’ Intention to Adopt Agricultural Information Technology—Mediating Effects of
Attitude. Inf. Syst. Front. 2019, 21, 565–580. [CrossRef]

42. Lin, H.-F.; Lin, S.-M. Determinants of E-Business Diffusion: A Test of the Technology Diffusion Perspective. Technovation 2008,
28, 135–145. [CrossRef]

43. Yadav, S.; Kaushik, A.; Sharma, M.; Sharma, S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment
Analysis. AgriEngineering 2022, 4, 424–460. [CrossRef]

44. Annosi, M.C.; Brunetta, F.; Monti, A.; Nati, F. Is the Trend Your Friend? An Analysis of Technology 4.0 Investment Decisions in
Agricultural SMEs. Comput. Ind. 2019, 109, 59–71. [CrossRef]

45. Shi, P.; Yan, B. Factors Affecting RFID Adoption in the Agricultural Product Distribution Industry: Empirical Evidence from
China. SpringerPlus 2016, 5, 2029. [CrossRef]

46. Wang, Y.-M.; Wang, Y.-S.; Yang, Y.-F. Understanding the Determinants of RFID Adoption in the Manufacturing Industry. Technol.
Forecast. Soc. Chang. 2010, 77, 803–815. [CrossRef]

47. Yoon, C.; Lim, D.; Park, C. Factors Affecting Adoption of Smart Farms: The Case of Korea. Comput. Hum. Behav. 2020, 108, 106309.
[CrossRef]

48. Kuan, K.K.Y.; Chau, P.Y.K. A Perception-Based Model for EDI Adoption in Small Businesses Using a Technology-Organization-
Environment Framework. Inf. Manag. 2001, 38, 507–521. [CrossRef]

49. Dixit, K.; Aashish, K.; Kumar Dwivedi, A. Antecedents of Smart Farming Adoption to Mitigate the Digital Divide—Extended
Innovation Diffusion Model. Technol. Soc. 2023, 75, 102348. [CrossRef]

50. Low, C.; Chen, Y.; Wu, M. Understanding the Determinants of Cloud Computing Adoption. Ind. Manag. Data Syst. 2011,
111, 1006–1023. [CrossRef]

51. Wei, J.; Lowry, P.B.; Seedorf, S. The Assimilation of RFID Technology by Chinese Companies: A Technology Diffusion Perspective.
Inf. Manag. 2015, 52, 628–642. [CrossRef]

52. de Prieelle, F.; de Reuver, M.; Rezaei, J. The Role of Ecosystem Data Governance in Adoption of Data Platforms by Internet-of-
Things Data Providers: Case of Dutch Horticulture Industry. IEEE Trans. Eng. Manag. 2022, 69, 940–950. [CrossRef]

53. Garbach, K.; Lubell, M.; DeClerck, F.A.J. Payment for Ecosystem Services: The Roles of Positive Incentives and Information
Sharing in Stimulating Adoption of Silvopastoral Conservation Practices. Agric. Ecosyst. Environ. 2012, 156, 27–36. [CrossRef]

54. Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al.
A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020,
3, 809–820. [CrossRef]

55. Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the
MENA Region. Sustainability 2021, 13, 3223. [CrossRef]

56. Schimmelpfennig, D. (Ed.) Farm Profits and Adoption of Precision Agriculture; Economic Research Report; USDA: Washington, DC,
USA, 2016.
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