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Abstract: Landslide susceptibility mapping (LSM) constitutes a valuable analytical instrument for
estimating the likelihood of landslide occurrence, thereby furnishing a scientific foundation for the
prevention of natural hazards, land-use planning, and economic development in landslide-prone
areas. Existing LSM methods are predominantly data-driven, allowing for significantly enhanced
monitoring accuracy. However, these methods often overlook the consideration of landslide mecha-
nisms and uncertainties associated with non-landslide samples, resulting in lower model reliability.
To effectively address this issue, a knowledge-guided landslide susceptibility assessment framework
is proposed in this study to enhance the interpretability and monitoring accuracy of LSM. First,
a landslide knowledge graph is constructed to model the relationships between landslide entities
and summarize landslide susceptibility rules. Next, combining the obtained landslide rules with
geographic similarity principles, high-confidence non-landslide samples are selected to optimize
the quality of the samples. Subsequently, a Landslide Knowledge Fusion Cell (LKF-Cell) is utilized
to couple landslide data with landslide knowledge, resulting in the acquisition of informative and
semantically rich landslide event features. Finally, a precise and credible landslide susceptibility as-
sessment model is built based on a convolutional neural network (CNN), and landslide susceptibility
spatial distribution levels are mapped. The research findings indicate that the CNN-based model
outperforms traditional machine learning algorithms in predicting landslide probability; in particular,
the Area Under the Curve (AUC) of the model was improved by 3–6% after sample optimization,
and the AUC value of the LKF-Cell method was 6–11% higher than the baseline method.

Keywords: landslide susceptibility mapping; knowledge graph; convolutional neural network

1. Introduction

Landslides, as geological disasters with cascade effects, pose significant threats to
human life, property, and environmental sustainability, thereby severely impeding sustain-
able development [1]. Due to complex geological conditions, intense tectonic activity, and
extensive engineering construction, landslides are widespread in China, causing substantial
losses through the frequent occurrence of landslide disasters. According to data from the
China Geological Survey Institute, tens of thousands of landslides occurred in China from
2010 to 2020, resulting in 8276 casualties and economic losses of USD 6.92 billion. Therefore,
establishing accurate assessment and dynamic early warning models for landslide risks,
allowing for the detection and identification of potential landslide hazards in advance, is
an effective approach to reduce or even prevent major landslide accidents.

The key to effective prevention and control of landslide disasters lies in accurate
LSM. With the development of big data and artificial intelligence technology, multi-modal
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monitoring data and automated algorithms have been provided for landslide disaster early
warning. Based on this, existing research has mainly adopted data-driven approaches to
establish the relationship between landslide influencing factors and landslide events, as
well as inferring the regional landslide risk level. Existing data-driven LSM methods are
mainly divided into two types: mathematical statistical methods and machine learning
methods. Mathematical statistical methods mainly rely on statistical information from
large amounts of monitoring data to analyze the correlations between landslide influencing
factors and landslide events, determine factors and their weights based on these correla-
tions, and conduct LSM. Techniques such as multiple regression, frequency ratio, statistical
index models, and evidence weight have been widely used for landslide susceptibility
assessment [2–5]. However, traditional statistical models have weak modeling capabilities
for the complex non-linear relationships between landslides and conditional factors [6],
limiting the ability of LSM. With the continuous development of computer technology,
various machine learning methods have gradually been used for regional landslide spa-
tial prediction, such as random forest (RF) [7,8], logistic regression (LR) [9–11], artificial
neural networks (ANNs) [12], and support vector machines (SVMs) [13,14]. Compared to
mathematical statistical methods, machine learning models can better model the mixed
correlations between landslide influencing factors and events, effectively improving the
landslide prediction accuracy. However, machine learning methods directly classify input
data, they are unable to fully explore the significant features of these data, and they have
limited ability to represent inter-feature relationships [15]. In recent years, CNNs have been
used for LSM, which have demonstrated higher predictive capabilities than conventional
machine learning algorithms [16,17]. Liu et al. [18] compared the overall performance of
CNN models with traditional machine learning models, such as random forest, logistic
regression, and support vector machines, for LSM, and found that the CNN achieved the
highest predictive performance, while also significantly reducing the salt and pepper effect
compared to traditional machine learning approaches. The above research contributes to
significantly improving the classification accuracy of LSM methods from the perspectives
of data mining and model optimization.

Existing data-driven methods focus on fitting models using a large amount of data,
and their classification accuracy highly depends on the scale and reliability of monitoring
data. Although increasing the amount of sample data can improve model performance
to some extent, there is still a “ceiling” effect on the improvement and breaking through
this “ceiling” requires guidance from landslide mechanism knowledge. Therefore, using
landslide mechanism knowledge as semantic supplementation to guide models in exploring
the potential patterns, trends, and correlations in landslide data at a microscopic level is
crucial [19,20].

The theory of landslide disaster systems points out that landslide influencing factors
mainly include triggering factors, susceptible environments, and vulnerable bodies [21].
These factors are numerous and complex, posing severe challenges for the extraction of
landslide mechanism knowledge. How to effectively organize multi-source heterogeneous
landslide data is one of the most important problems to be solved. In recent years, using
knowledge graphs to process multi-source heterogeneous information has become a re-
search hotspot. Knowledge graphs express entities, concepts, and their relationships in
the form of nodes and edges and have been widely used for the storage, management,
querying, and analysis of multi-source heterogeneous data. Their powerful knowledge
reasoning ability provides new solutions for the acquisition, use, and display of potential
relationships and chain propagation of geological disaster information, facilitating the
rapid collection, integration, and correlation of geological disaster-related data, as well
as providing key support for comprehensive and high-precision knowledge management
and decision support for landslide disasters. However, existing research on landslide
knowledge graphs has mainly focused on constructing the graphs themselves [22–24], and
landslide knowledge graphs have not yet been applied as prior knowledge to guide LSM.
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At the same time, regarding the limitations of data-driven landslide monitoring sam-
ples, existing studies have mainly balanced the positive and negative ratios of the data
set through generating pseudo-negative samples to replace non-landslide samples [25].
However, there is considerable uncertainty in the selection of non-landslide samples. Due
to the randomness of model training, the selection of non-landslide samples has a signifi-
cant impact on the performance of the model. Chen et al. [11] proposed limiting negative
samples based on spatial distance; however, this method has strong data randomness and
low reliability in selecting negative samples. Achour et al. [26] proposed a method for mea-
suring the reliability of negative samples based on geographical environmental similarity;
however, this method overly relies on the feature distribution of positive samples, easily
leading to model over-fitting. In summary, existing non-landslide sample selection methods
have strong subjectivity and randomness, resulting in insufficient representativeness of the
obtained non-landslide samples, thereby reducing the quality of the test set and affecting
the subsequent modeling performance.

To address the above issues, in this study, a landslide knowledge graph is first con-
structed to describe landslide mechanisms and summarize and generalize landslide sus-
ceptibility rules. Then, combining the landslide rules with the geographical similarity
of samples, high-confidence non-landslide samples are filtered out. Subsequently, the
LKF-Cell method is employed to couple landslide data with landslide knowledge, resulting
in landslide event characteristics that are informative and semantically rich. Finally, an
accurate and reliable landslide susceptibility assessment model is constructed based on a
convolutional neural network, and the spatial distribution level of landslide susceptibility
is mapped.

The three main contributions of this study are as follows:

(1) Addressing the problem that existing knowledge representation models are not suit-
able for expressing the complex mechanistic knowledge in the landslide domain, the
landslide knowledge system centered on “triggering factors–pregnancy environments–
vulnerable bodies” is first constructed in this study, and guided by this, a landslide
disaster knowledge graph is constructed, thus achieving the structured expression of
landslide disaster monitoring data and the fusion of landslide knowledge.

(2) Addressing the problem of poor directional features of non-landslide samples, a
rule-constrained non-landslide sample selection method is first proposed to ensure
the discrimination between positive and negative samples and to extract more com-
prehensive negative sample features as much as possible, effectively improving the
LSM accuracy.

(3) An innovative landslide knowledge fusion method based on a contrastive learning
framework is proposed in this study, achieving the organic fusion of a knowledge
graph representing landslide mechanisms and a deep neural network representing
data features. Landslide event features that are informative and semantically rich are
obtained, and the LSM accuracy is effectively improved through feature interpretation
using convolutional networks.

The remainder of this paper is organized as follows. Section 2 introduces the study
area and data sources. Section 3 describes the research methods used. Section 4 details
the experimental results and analysis. Section 5 summarizes the content of this paper and
proposes future prospects.

2. Study Area and Available Data
2.1. Study Area

Yunnan Province is situated in the southwest of China, covering an area of approx-
imately 390,000 km2 and extending between 97◦53′ E and 106◦20′ E in longitude and
21◦14′ N and 29◦25′ N in latitude (Figure 1). The study area is located at the boundary
between the Indian Ocean Plate and the Eurasian Plate, characterized by active tectonic
movements and complex lithological formations. Bounded by the Red River Fault, the
eastern part comprises karst plateaus, while the western part consists of high mountain
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valleys. Under the influence of internal and external geological forces, near-surface rocks
and soils are fragmented, resulting in high instability. The topography of Yunnan Province
is predominantly mountainous, with some hills and plains. The elevations in the study
area vary significantly, ranging from a maximum of 6740 m to a minimum of 76.4 m above
sea level. The climate in the study area is classified as tropical monsoon, with an average
annual maximum temperature of approximately 23 ◦C, minimum temperature around 7 ◦C,
and average annual rainfall of about 1086 mm. Rainfall is concentrated mainly from May
to October, accounting for 85% of the total annual precipitation. With rapid urbanization
and infrastructure development, human activities are increasingly impacting the geological
environment. Meanwhile, frequent extreme weather events and increased seismic activity
contribute to the persistent trend of multiple and frequent landslide disasters.
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Figure 1. Location of the study area.

2.2. Landslide Conditioning Factors

The landslide inventory data used in this study were sourced from the Yunnan Geo-
logical Environmental Monitoring Institute, covering 1712 landslide events from 2015 to
2022. Each landslide inventory was divided into two groups, designated for constructing
the model’s training data set (70%) and testing data set (30%).

Landslide occurrence is closely related to the combined effects of various factors, in-
cluding topography, geological structure, and environmental factors. A proper combination
of susceptibility factors can enhance the competitiveness of the model [27]. Different topo-
graphic features influence rock weathering, vegetation coverage, and soil moisture, thereby
affecting slope stability [28,29]. Geological structures affect the stability of strata and rock
structures, thereby increasing the risk of landslides [30]. Environmental factors directly im-
pact soil stability and hydrological processes, consequently affecting slope stability [29,31].
Yong C et al. [32] summarized the importance of factors for landslide susceptibility of
different causes. Taking into account the evaluation factors in the aforementioned study
and the uniqueness of the research area, the following 16 regulating factors were selected:
elevation, slope angle, slope aspect, plane curvature, profile curvature, soil types, distance
from fault, fault density, lithology, land use, normalized difference vegetation index (NDVI),
distance from river, river density, average annual precipitation, distance from road, and
road density (see Figure 2). As the 16 evaluation indicators are represented in different
forms or scales, all evaluation indicators were standardized into 30 m × 30 m raster data
using the ArcGIS10.2. Multilinearity tests were performed on the selected feature factors
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using stepwise regression [33]. The tolerance and variance inflation factor (VIF) results
indicated that all feature factors had tolerance values greater than 0.1 and VIF values less
than 10, indicating low collinearity among the factors and good independence.
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(o) distance from road; and (p) river density.

3. Methodology

To implement knowledge-guided LSM, the CNN optimized with landslide knowledge
fusion (LKF-CNN) model was introduced in this study, whose workflow is depicted
in Figure 3. Initially, a landslide knowledge graph was constructed, and an encoded
embedding of the landslide knowledge was derived using a knowledge graph embedding
model. Subsequently, through combining the landslide rules and the geographical similarity
of the samples, high-confidence non-landslide samples were selected to construct landslide
event subgraphs. Then, the Landslide Knowledge Fusion Cell (LKF-Cell) method was
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used to embed the knowledge with the landslide event subgraph to produce landslide
event features integrated with external knowledge. Finally, the CNN model was employed
to evaluate landslide sensitivity, generate landslide susceptibility maps, and evaluate the
performance of the landslide model on the experimental data set using statistical methods
and Receiver Operating Characteristic (ROC) curves.
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3.1. Prior Knowledge Extraction Method Based on Landslide Knowledge Graphs
3.1.1. The Construction and Embedding of Knowledge Graphs

In order to provide a comprehensive view of the landslide knowledge system, a land-
slide knowledge graph was constructed, outlining the hierarchical structure of landslide
influencing factors and their object properties. Recognizing the close relationships among
these factors, relevant knowledge regarding the mechanisms of landslide occurrence was
gathered from hundreds of academic papers to enrich the content of landslide knowledge
graph (LandslideKG). Figure 4 shows a snapshot of LandslideKG, which consists of two
levels: the instance level and class level (represented in green and blue, respectively). At
the instance level, landslide influencing factors are depicted as entities within LandslideKG
(denoted by green blocks). Relations between entities, such as destructive and influen-
tial relationships among influence factors, are established according to object properties
(indicated by green arrows). Subsequently, all entities are classified based on their com-
monalities to derive the class level of LandslideKG. Entities are assigned to corresponding
classes via rdf:type (depicted by dashed black arrows). Blue blocks represent different
classes, while blue arrows reflect their inclusion relationships (rdfs:subClassOf), forming
the class hierarchy of LandslideKG, which serves as its backbone.

To fully exploit the structural and semantic information of all entities, relationships,
and other components in LandslideKG to obtain meaningful representations, a KG embed-
ding approach based on OWL2Vec* [34] was employed. This method consists of two steps:
first, extracting a corpus from LandslideKG, including structural documents, vocabulary
documents, and composite documents and, second, training language models on the corpus
to acquire high-quality knowledge graph embeddings [35]. Finally, embeddings for each
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entity and relation in LandslideKG were obtained and used to initialize the input features
of the molecular graph.
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3.1.2. Rules Derived from LandslideKG

In this study, the landslide knowledge graph was stored in the Neo4j graph database,
and operations were conducted using the Cypher query language. Utilizing syntax such
as pattern matching, precise matching of nodes and relationships, property queries, and
filtering, event nodes, factor nodes, attribute nodes, and relationships can be queried
and matched within the landslide knowledge graph. This enables the extraction of
rules and knowledge which are implicit in landslide texts, thus generating rules for
landslide susceptibility.

3.2. Selection of Non-Landslide Samples Based on Landslide Rules and Geographical Similarity

Non-landslide samples play a crucial role in LSM, as they can mitigate the over-
estimation of landslide susceptibility by statistical models and enhance the monitoring
accuracy of LSM. Existing LSM methods primarily employ the random generation of
pseudo-samples to fill negative samples, which significantly increases the likelihood of
misidentifying potential landslide risk points as negative samples. These potential landslide
risk points can degrade the overall quality of the sample set, thus impacting the effective-
ness of mapping. Therefore, a landslide rule-constrained geographic similarity sample
optimization method is proposed in this study. This method evaluates the geographic
similarity of landslide occurrences and the relationship between landslide influencing
factors and occurrence frequency under the constraint of the susceptibility rules, in order
to select high-confidence non-landslide samples.

3.2.1. Measurement of Geographic Environmental Similarity

Landslides occur more frequently under certain environmental conditions, indicating
that these conditions can be considered as typical geographic environments conducive to
landslide formation. To quantify this concept, the frequency ratio method and kernel den-
sity estimation were utilized to calculate the relationship between discrete and continuous
landslide influencing factors and landslide occurrence frequency, respectively. This was
carried out to determine the degree of similarity between individual landslide influencing
factors and their typical values for triggering landslides in specific environments.

The frequency ratio method [36] is a single-factor quantitative analysis model that
calculates frequencies for sample categories to roughly determine which categories of a dis-
crete influencing factor have a significant impact on landslide occurrence. In Equation (1),
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S′
i,j represents the frequency of landslides occurring in category j of influencing factor i,

pi,j represents the number of landslides occurring in category j of influencing factor i, Ai,j
represents the area of category j under influencing factor i, m represents the number of
categories of influencing factor i, and A represents the total area of the study area.

Si,j
′ =

pi,j | Ai,j

∑ m
j=1 pi,j | A

(1)

Normalizing the frequency of landslides occurring in category j of influencing factor
i yields the similarity between category j of influencing factor i and the typical category
under which landslides occur for influencing factor i. The expression is as follows:

Si,j =
S′

i,j

max
(

S′
i,j

) (2)

In Equation (2), Si,j represents the similarity between category j of influencing factor i
and the typical category under which landslides occur for influencing factor i.

Kernel density estimation [37] is a method for estimating the probability density
function of a population from a sample. Let x1, x2, · · · , xi, · · · , xn be the values of an
influencing factor x at n landslide points. The basic expression for kernel density estimation
of the influencing factor x is as follows:

f (x) =
1

nh

n

∑
i=1

k
(

x − xi
h

)
(3)

In Equation (3), f (x) represents the probability density function of the relationship
between the influencing factor x and the frequency of landslide occurrences; k(·) denotes the
kernel function; h represents the bandwidth, whose value affects the shape and smoothness
of the kernel density estimation curve; and x − xi represents the difference between the
value of the influencing factor x and the value of the influencing factor at landslide points
xi. In this study, a Gaussian kernel function was employed to estimate the kernel density
curve, and the bandwidth h was computed using the “rule of thumb” method.

After computing the probability density function, normalization was performed to
obtain the degree of similarity between individual influencing factors and their typical
values under landslide occurrences. The normalization expression is shown in Equation (4),
where Sx represents the similarity between the influencing factor and its typical value
under landslide occurrences, and fmax(x) represents the maximum value of x.

Sx =
f (x)

fmax(x)
(4)

3.2.2. Calculation of Confidence for Non-Landslide Samples

The landslide geographic similarity measurement method highly relies on the quality
of positive samples. However, the uncertainties in collecting positive samples result in
biased descriptions of landslide features, thus affecting the reliability of the aforementioned
measurement method. Therefore, in this study, non-landslide sample selection was con-
strained by landslide susceptibility rules to reduce the impact of erroneous features caused
by sample quality on the overall model.

Specifically, the distribution patterns of individual landslide influencing factors were
first assessed to determine whether they adhered to the landslide susceptibility rules. If
they complied with these rules, they were deemed as Reliable factors; conversely, if they
did not conform, they were classified as Unreliable factors. To assess the guiding effect of
different factors on the collection of non-landslide samples, the comprehensive similarity
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between each factor and typical geographical environments where landslides occur was
calculated using a linear weighting method. The specific formula is as follows:

S = ∑ N
n=1Wn ∗ Sn (5)

Wn =

{
1 n ∈ Reliable f actor

0.5 n ∈ Unreliable f actor
(6)

In the equation, n denotes the sequence of feature influencing factors for the sample at
that location, N represents the total number of influencing factors, Wn signifies the weight
of the influencing factor, Sn denotes the geographical similarity of factor n, and S represents
the comprehensive similarity.

Based on the fundamental principles of geography that “the more similar the geo-
graphical environment, the more similar the geographical features,” this study utilized
Equation (7) to measure the reliability of negative samples. The reliability of negative
samples is within the range of [0, 1], where higher values indicate higher reliability.

Reliabilityi,j = 1 − Si,j (7)

Here, Si,j represents the geographical environment similarity between the raster point
at location (i, j) and landslide points, and Reliabilityi,j represents the reliability of this raster
point being selected as a negative sample.

3.3. Landslide Knowledge Fusion Cell (LKF-Cell)

To enhance the model’s understanding of landslide domain knowledge, an LKF-Cell
was designed with the aim of integrating external knowledge with landslide subgraphs,
as a basis for subsequent knowledge-guided landslide susceptibility prediction. Detailed
information of the LKF-Cell is illustrated in Figure 5. A contrastive learning framework
was employed to learn representations of landslide event subgraphs. Notably, a knowledge-
guided graph augmentation method was proposed to construct positive pairs in the con-
trastive learning stage, which enabled the model to capture not only the deep features of
landslide event subgraphs but also the knowledge structure and semantic relationships
of landslides. The input to the LKF-Cell consists of knowledge embeddings from Land-
slideKG and true landslide event subgraphs, with the landslide event subgraph G being
composed of selected influencing factors. The output is the updated features of landslide
subgraphs fused with external knowledge, denoted as x ∈ X.
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As shown in Figure 5, the types of influencing factors present in the original landslide
graph G (e.g., NDVI, slope angle, and road density) were first identified, and their corre-
sponding entities and relationships were retrieved from the KG embedding (e.g., slope,
influences, NDVI). This formed a subgraph of landslide influencing factors. The influencing
factor entity nodes in the subgraph were then connected to the corresponding influencing
factor nodes in the original landslide event graph, in order to create an augmented landslide
event graph that integrates fundamental domain knowledge.

Based on this foundation, a contrastive learning framework was employed to train the
graph encoder through maximizing the consistency between the original landslide graph G

and the augmented landslide graph
∼
G. Indiscriminate embedding of the knowledge of the

influence factors into the augmented graph was avoided throughout this process. Initially,
N randomly sampled batches of landslide event graphs were given, and knowledge-guided
graph augmentation techniques were utilized to transform the original landslide graph

{Gi}N
i=1 into the augmented graph

{ ∼
Gi

}N

i=1
, resulting in 2N graphs. Among these, apart

from the positive pairs consisting of the original landslide graph {Gi} and its augmented

counterpart
{∼

Gi

}
, 2(N − 1), graphs in the same batch were considered as negative pairs.

Subsequently, a graph encoder f(·) was employed to extract graph embeddings
{

hGi

}N
i=1

and
{

h∼
Gi

}N

i=1
from the two views and, through a non-linear projection network g(·), these

embeddings were mapped into a space where contrastive loss is applied, yielding two

new representations:
{

zGi

}N
i=1 and

{
z∼

Gi

}N

i=1
. Finally, the contrastive loss was leveraged

to maximize the consistency between positive pairs while simultaneously minimizing the
consistency between negative pairs.

3.4. Knowledge-Guided LSM

Addressing the insufficient consideration of landslide mechanisms in existing LSMs,
this study incorporated landslide event features fused with external knowledge as inputs to
a CNN model. This approach facilitates quantitative prediction of landslide susceptibility
in a manner constrained by landslide knowledge. The landslide models were evaluated
using Receiver Operating Characteristic (ROC) curves and statistical methods. Finally, a
landslide susceptibility zoning map was generated.

3.4.1. CNN Architecture

CNNs are among the most widely used deep learning algorithms. In this section, the
CNN model serves directly as a classifier for LSM. First, a one-dimensional factor vector
was input and, after undergoing convolution and pooling operations in the hidden layers,
the extracted high-dimensional landslide information was mapped to a low-dimensional
feature space through fully connected layers. Finally, through applying a non-linear
activation function, the information was mapped to the sample label space, outputting
landslide and non-landslide labels along with their corresponding probability values. With
filters = 10, kernel_size = 3, learning_rate = 0.001, pool_size = 2, and activation = “tanh”,
Figure 6 illustrates the architecture of the used 1D-CNN.

3.4.2. Evaluation of Model Performance

In this study, the performance of the model on the test data set was evaluated using
statistical methods and ROC curves. Accuracy (ACC) is defined as the percentage of
correctly classified samples relative to the total number of samples selected for validation.
The Kappa index primarily reflects the proportion of reduced errors compared to random
classification [38,39]. The mathematical expressions for these metrics are provided below.
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The Receiver Operating Characteristic (ROC) curve is considered an effective metric for
evaluating the performance of predictive models [30]. The ROC curve plots “1-specificity”
against “sensitivity” and illustrates the classifier’s performance at different thresholds. The
specificity represents the proportion of non-landslide pixels that are correctly classified as
non-landslide pixels, while the sensitivity represents the proportion of landslide pixels that
are correctly classified as landslide occurrences. The Area Under the Curve (AUC) value
represents the area under the ROC curve, with values typically ranging from 0.5 to 1. A
higher AUC value generally indicates better performance of the corresponding model.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Speci f icity =
TN

TN + FP
(10)

Kappa =
Pobs − Pexp

1 − Pexp
(11)

Pobs =
TP + TN

TS
(12)

Pexp =
(TP + FP)× (TP + FN) + (FN + TN)× (FP + TN)

TS
(13)

3.4.3. Landslide Susceptibility Maps

To construct the landslide susceptibility map, two main steps were followed: (1) all
pixels within the study area were input into the trained model to generate landslide
susceptibility indices (LSIs) using landslide models, and (2) the LSIs were re-classified [40].

However, the obstacle of transforming continuous data into some classes remains
uncertain in the context of landslide susceptibility mapping, as susceptible zones are often
determined according to expert knowledge and opinion [41]. For the current study, the
natural breaks (Jenks) classification method [42], equal intervals method [43], and standard
deviations method [41] were primarily employed. The natural breaks method categorizes
data through analyzing distribution patterns and clustering tendencies, thereby dividing
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the data into several categories. It does not rely on a pre-defined number of classes but
instead utilizes inherent distribution characteristics to determine categories. The equal
intervals method is a straightforward approach that evenly divides the data range into
several equally sized intervals. However, this method emphasizes the sensitivity of one
class, which is not applicable. The standard deviations method determines classification
boundaries through analyzing the standard deviation of the data. It considers data vari-
ability and determines classification positions based on data dispersion. However, this
method requires the prior specification of multiples of the standard deviation to determine
classification boundaries, rendering it unsuitable for susceptibility studies.

Among these methods, the natural breaks method is the most widely applied. The
natural breaks method was utilized to divide the LSI into five sensitivity levels, including
very low (VLS), low (LS), medium (MS), high (HS), and very high (VHS) [44].

4. Results and Discussion
4.1. Optimal Selection of Non-Landslide Samples

The similarity between the calculated values for the landslide influencing factors from
Section 3.2.1 and their typical values associated with landslide occurrences is illustrated
in Figure 7. The landslide susceptibility rules obtained from Section 3.1.2 are presented
in Table 1. As per Rule 1, a high NDVI index indicates rock damage, thus affecting slope
stability. However, this rule contradicts the findings shown in Figure 7a. According to
Rule 10, land-use types such as cropland, forest land, grassland, and shrub land are prone
to landslides. However, Figure 7o indicates that landslides mainly occur on bare land,
which contradicts this rule. Therefore, given the insignificance of NDVI and land-use types
as factors, and to reduce model over-fitting caused by limited training data, their weights
should be reduced when calculating the confidence of non-landslide samples.

Table 1. Landslide susceptibility rules derived from LandslideKG.

# Landslide Susceptibility Rules

1 Dense vegetation cover can reduce the negative impact of rainwater on slopes; however, the growth of vegetation exerts
pressure on rocks, leading to their damage and increasing water infiltration, thereby affecting the stability of the slope.

2 Faults cause damage to the surrounding rock masses, thereby affecting the stability of slopes. Typically, landslide
concentration areas are within a range of 1 km from the fault.

3 In areas with relatively low relative altitudes, landslides are more prone to occur due to frequent human engineering
activities, especially within the range below 2000 m above sea level.

4
The development and usage of roads can alter the geological structure and hydrogeological characteristics of slopes,
potentially leading to soil erosion, increased surface water runoff, vegetation destruction, and, consequently, increased
landslide risks.

5
Minor rainfall can infiltrate underground, increasing groundwater content, thereby altering the stress state of the slope,
affecting its stability. Intense rainfall can heavily erode the slope surface, directly leading to landslides. Typically,
landslide-prone areas are concentrated in regions with annual rainfall between 500 mm and 2000 mm.

6 The degree of distortion and deformation on the slope surface directly affects the stress distribution within the slope,
thereby influencing landslide occurrences to varying extents.

7
In environments of heavy rainfall, gently sloping surfaces are susceptible to strong surface erosion, resulting in deeper
water infiltration and, consequently, structural damage within the slope, ultimately triggering landslides. Generally,
landslides occur more frequently in regions with slope angles between 10◦ and 40◦.

8
Different slope aspects receive varying intensities of solar radiation, leading to differences in vegetation cover and
surface moisture content. Typically, landslide concentration areas lie within slope aspects ranging from 100◦ to 200◦ and
250◦ to 330◦.

9 The physical and mechanical properties of rock masses, as well as their interlayer structures, directly influence stress
distribution within the rock–soil mass, with predominantly clastic and metamorphic rocks being prone to landslides.
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Table 1. Cont.

# Landslide Susceptibility Rules

10 Land-use types most susceptible to landslides include cultivated land, forest land, grassland, and shrubland.

11 Different soil types have varying densities, pore structures, and moisture contents, thus exhibiting different responses to
external forces. Soil types prone to landslides mainly include loess and black soil.

12 River infiltration softens the slope’s weathering layer, reducing its shear strength. The closer the proximity to rivers, the
higher the risk of landslides occurring.
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The spatial distribution of randomly selected negative samples (non-landslide disaster
points) is shown in Figure 8a. The spatial distribution of negative samples guided by the
determined rules is illustrated in Figure 8b. Combining the quantity of negative samples in
various elevation categories, as shown in Figure 9, it can be observed that the number of
samples obtained using the rule-guided selection method was significantly higher in the
elevation range of 1500–2000 m, compared to the random selection method. As indicated by
Figure 8b and Rule 3, the elevation range of 1500–2000 m is a high-risk area for landslides.
Therefore, the selected samples demonstrate stronger robustness.
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4.2. Model Comparison

To quantify the robustness of the sensitivity model, the performances of CNN, CNN
optimized with sample enhancement (CNNS), CNN optimized with landslide knowledge
fusion (LKF-CNN), and CNN optimized with landslide knowledge fusion and sample
enhancement (LKF-CNNS) models on the landslide inventory were compared, based on
the test data set, AUC, and statistical measures. The results are shown in Figure 10a. It can
be observed that the AUC values for the Yunnan Province region ranged from 81% to 93%.
Among them, the LKF-CNNS model had the highest AUC value (94%), followed by the
LKF-CNN model (91%), CNNS model (88%), and CNN model (82%). It is worth noting that
the AUC values of the sample-optimized models were 3–6% higher than those of the models
without sample optimization, and the AUC values of the knowledge-guided models were
6–11% higher than those without knowledge guidance. As shown in Table 2, except for the
CNN model, the ACC, sensitivity, and specificity of the other three models were all greater
than 0.8, indicating a certain level of credibility in the model evaluation results. The Kappa
coefficients of the four models ranged from 0.47 to 0.71, meeting the consistency strength.
The precision evaluation indicators of CNNS, LKF-CNN, and LKF-CNNS were generally
higher than those of the independent model CNN, with LKF-CNNS having the highest
overall accuracy, sensitivity, specificity, and Kappa coefficient values. This suggests that the
LKF-CNNS model has better accuracy and predictive power.
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Table 2. Model evaluation and comparison on the testing data sets.

Model ACC Sensitivity Specificity Kappa

RF 0.68 0.63 0.75 0.37
SVM 0.65 0.65 0.76 0.4
CNN 0.73 0.71 0.76 0.47
CNNS 0.81 0.81 0.81 0.62

LKF-CNN 0.84 0.86 0.82 0.68
LKF-RFS 0.83 0.84 0.81 0.65

LKF-SVMS 0.79 0.79 0.84 0.62
LKF-CNNS 0.86 0.88 0.83 0.71

To compare the performance of different classification algorithms, this study also
employed RF, RF optimized with landslide knowledge fusion and sample enhancement
(LKF- RFS), SVM, and SVM optimized with landslide knowledge fusion and sample
enhancement (LKF-SVMS) methods for slope stability classification. The model prediction
results are presented in Figure 10b and Table 2. The AUC values for RF, SVM, and CNN
were 0.77, 0.78, and 0.82, respectively. Compared to the RF and SVM models, CNN exhibited
the highest overall accuracy, sensitivity, specificity, and Kappa coefficient values. It can
be concluded that the CNN-based model demonstrated better performance in predicting
landslide susceptibility, when compared to the two traditional ML models. The AUC
values of the models optimized with sample enhancement and knowledge guidance were
12–15% higher than those of the original models. Among them, LKF-CNNS achieved the
highest AUC value, indicating that the optimized structure possesses stronger predictive
capabilities. Similar patterns were observed in accuracy, Kappa coefficient, sensitivity, and
specificity, indicating a reasonable agreement between the predicted and actual landslides.

4.3. Landslide Susceptibility Map

This study utilized CNN, CNNS, LKF-CNN, LKF-CNNS, RF, LKF-RFS, SVM, and LKF-
SVMS models to generate landslide susceptibility maps for Yunnan Province (Figure 11).
The study area was divided into five levels (VLS, LS, MS, HS, and VHS), based on the
natural breakpoints’ method. The susceptibility assessment results of the eight models
indicated that VHS and HS areas are mainly located in the high mountain gorges of the
Three Rivers Region in western Yunnan Province, the plateau gorges in the northeast of
Yunnan Province, and the Ailao Mountains and Wuliang Mountains in central Yunnan
Province. Meanwhile, the low hills and ridges in the eastern and southeastern parts of
Yunnan Province exhibited extensive LS and VLS areas.
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Figure 11. Landslide susceptibility maps generated using (a) CNN, (b) CNNS, (c) LKF-CNN, (d) LKF-
CNNS, (e) RF, (f) LKF-RFS, (g) SVM, and (h) LKF-SVMS.
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As shown in Figure 12a, the VLS area increased by 2–8% after sample optimization,
reflecting the effective reduction in model uncertainty when using a high-confidence sample
set. Models optimized with landslide knowledge guidance showed significant changes,
mainly reflected in the reduction in the HS, MS, and LS areas and an increase in VLS areas.
Guiding landslide susceptibility with landslide knowledge ensures correct classification,
thus avoiding unnecessary expenditure of manpower, materials, and financial resources.
Figure 12b illustrates that the spatial distribution of VHS, HS, and MS areas was similar
with the two traditional ML methods, while RF had the most LS areas and the fewest
VLS areas. The optimized models LKF-RFS and LKF-SVMS produced more reasonable
distribution patterns for susceptibility zones. In flat terrain such as river valleys and plains,
they predominantly exhibited very low and low susceptibility. Compared to LKF-CNNS,
the VHS and HS regions were relatively smaller for both coupled models, at 11.47%, 18.89%,
8.78%, and 12.47%, respectively.
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From Figure 13, it is evident that the locations of the existing landslide events matched
the distribution results of the assessment well, with most of the locations falling within the
VHS and HS ranges. Figure 13a is located in the Hengduan Mountains’ transverse valley
zone in the northwest of Yunnan Province. This area has complex geological structures with
active north–south trending major faults and fragmented rock masses, leading to landslides
distributed along the Hengduan Mountains. Figure 13b is situated in the northeast of
Yunnan Province, belonging to the high and middle mountain gorge geomorphic region
of the middle and lower reaches of the Jinsha River. This area experiences active tectonic
movements and has a mixed composition of hard and soft rocks with numerous cliffs,
making it prone to landslides. Figure 13c is in the central–northern part of Yunnan Province,
within the high and middle mountain gorge region of the upper and middle reaches of the
Jinsha River. The area has intense tectonic activities and frequent seismic events, indicating
a high landslide risk zone. Figure 13d is located in the western high mountain gorge
geomorphic region of Yunnan Province, characterized by complex geological structures,
active fault development, widespread distribution of weak rock masses, intense human
engineering activities, and frequent landslide occurrences.

Although Figure 13c displays extensive areas of high susceptibility zones, the num-
ber of positive landslide sample points in this area is relatively low, possibly due to
incompleteness of the landslide inventory, necessitating further field investigations for
supplementation. Additionally, while most positive landslide samples were located within
high susceptibility zones, Figure 13d indicates that a small number of landslide points were
situated in low susceptibility zones. After analysis, two possible scenarios emerged: (1) Al-
though the geographical environment where the landslide event occurred may not typically
lead to landslides, extreme weather conditions (e.g., short-term heavy rainfall, snowfall)
and human engineering activities (e.g., excavation at the foot of the slope, reservoir im-
poundment) could trigger the occurrence of landslides. (2) Despite the favorable geological
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environment for landslide formation in the area where the landslide event occurred, limited
data and the atypical mechanisms of landslide formation, combined with the challenge of
utilizing general landslide knowledge, may hinder the accurate identification of landslides
by the model.
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5. Conclusions

In response to the mechanisms and uncertainties surrounding landslides, this study
proposed a knowledge-guided framework for LSM. The framework integrates existing
landslide inventories with 16 landslide evaluation factors and was used to assess the sus-
ceptibility of landslides in Yunnan Province, China. The main conclusions are summarized
as follows:

Effective Handling of Landslide Information: knowledge graphs were shown to be
effective in managing diverse sources of landslide information and uncovering the causal
mechanisms behind landslides, thereby providing comprehensive knowledge management
and decision support for landslide disasters.

Reliability of Derived Landslide Rules: The landslide rules inferred from the knowl-
edge graph exhibited high reliability and certainty. Through combining these rules with
geographic similarity calculations between landslide and non-landslide samples, high-
confidence non-landslide samples were obtained. This approach helps to mitigate the
tendency of statistical models to over-estimate landslide hazard. The experimental results
demonstrated that, after sample optimization, the model’s AUC was improved by 3–6%.

Enhanced Performance through LKF-Cell: The LKF-Cell aids in capturing hidden
semantic information and inherent knowledge connections in the data, thus providing
landslide susceptibility models with richer and more informative landslide event charac-
teristics. The experimental results indicated that the AUC of models based on knowledge
guidance was 6–11% higher than that of those without knowledge guidance.

Model Fusion for Improved Accuracy and Robustness: The fusion of CNN, RF, and
SVM models through sample optimization and LKF-Cell led to models with higher accuracy
and robustness. The AUC of these models was improved by 12–15% compared to the base
classifiers, and the ACC was increased by 13~15%. The CNN-based models demonstrated
optimal predictive performance, in terms of both base classifiers and coupled models.

While this study provided a preliminary framework for integrating landslide knowl-
edge and CNN models for landslide susceptibility mapping with promising results, there
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are still areas for improvement. Given the vast and complex terrain of Yunnan Province,
which encompasses diverse mechanisms for landslide formation, the utilization of general-
ized landslide knowledge in model training imposes certain limitations. Future research
should aim to apply the proposed framework to smaller regions, employing more fine-
grained knowledge guidance for landslide susceptibility prediction, thereby offering more
scientifically guided recommendations for disaster prevention, land-use policies, and
guidance for local governments and disaster management authorities.
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