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Abstract: The global proliferation of electric vehicles (EVs) has brought forth new challenges in
electric vehicle (EV) charging infrastructure. This paper utilizes operational data from the 5G real-
time system of EV and traffic platforms (5gRTS-ET) in China, encompassing 12,597,109 cases and
32,259 EVs. By employing frequency density analysis, a dynamic charging behavior model is devised
to address the limitations of static models in accommodating the diverse roles of EV users. Analysis
reveals distinct charging behavior preferences among three urban EV operation modes, paving the
way for an adaptive model for integrating charging points into networked operations on the platform.

Keywords: 5G; charging point; charging behavior; EV

1. Introduction

Currently, the majority of research on charging behavior has focused on charger
demand [1,2], a crucial aspect to consider prior to the installation of charging infrastructure.
The prediction of charging behavior for these charging points is typically made during the
site selection process for their construction [1]. However, the rapid evolution of electric
vehicle (EV) operation modes [3], particularly with the widespread adoption of the 5G real-
time system of EV and traffic platforms (5gRTS-ET), necessitates a deeper understanding
of charging behavior using empirical data from 5gRTS-ET. This study proposes a method
with which to infer real-time charging behavior based on empirical data derived from
5gRTS-ET, thereby establishing a dynamic model for charging behavior. Through this
approach, the 5gRTS-ET platform can continuously monitor the shifting EV operation
modes in real time, driven by the increasing popularity of EV operation platforms like Uber
and Didi. The ability to identify EV operation modes and charging behavior in real time
is essential for charging points to adapt their business strategies promptly, especially as
individual EVs increasingly switch to operational modes during off-peak hours. This trend
underscores the importance of real-time monitoring and adaptation in optimizing charging
point operations.

The majority of research in the area of charging behavior has focused on the planning of
charging point layouts [1,2], a crucial step prior to the installation of charging infrastructure.
Predictions regarding charging behavior at various charging points are typically made
during the site selection process [1]. However, with the widespread adoption of 5gRTS-ET
technology, the operational landscape of EVs is evolving rapidly [3]. The significant growth
of EVs further underscores the need for updated models (IEA, 2021). The introduction of
shared platforms has introduced the possibility for EV users to assume multiple roles [4].
Despite this advancement, limited studies have explored charging behavior in relation to
variable user roles or utilized actual operational data from connected vehicle platforms.
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Data from the China EV Charging Infrastructure Promotion Alliance shows that, by
September 2021, there were 5.52 million EVs on the road in China, which is nearly 0.2 percent
of the total vehicle population (EVCIPA, 2022). The research indicates that approximately
24.2% of current EVs are private models, while 34.9% are utilized by ride-hailing services such
as Uber and Didi, with the roles of these vehicles often interchangeable [3]. However, the lack
of studies focusing on the dynamic role of EVs significantly diminishes the user experience
and the efficiency of charging infrastructure utilization.

This research leverages operational data from 5gRTS-ET to deduce the live charging
behaviors of EV users at charging stations. Employing frequency density analysis, a
dynamic charging behavior model is developed to accurately depict EV users’ behaviors.
The model enables the 5gRTS-ET platform to monitor and analyze the evolving operational
patterns of EV users in real time. As platforms for EV operations gain popularity, private
EV users are increasingly transitioning to operation modes during non-working hours.
This shift represents a growing trend, facilitated by platforms like Uber and Didi [5]. By
addressing gaps in previous research, this study offers insights into the real-time fluctuating
charging behaviors of EV operation modes and presents a mathematical model for real-
time adjustments to business strategies at charging points. The results show that the
performance gap of the three typical business modes (private EV, passenger operating EV,
logistic distribution EV) is very heterogeneous [3].

The rest of the paper proceeds as follows: Part 2 reviews previous research, Part 3 is
research design, Part 4 presents findings, Part 5 discusses conclusion and limitations.

2. Literature Review

Looking back at the literature on charging behavior, a lot of research has been under-
taken on the influencing factors of charging behavior [6].

Lee et al. undertook a study regarding the choice of charging location [7], while
Bi et al. undertook an analysis of three charging behaviors. These studies have shown
that a more evenly distributed charging infrastructure with a grid-based approach is
less effective than one with charging station placement at existing petrol stations and
residential car park locations [8]. Chakraborty et al. analyzed the preference data of more
than 3000 PEV drivers on charging infrastructure choices in order to understand how
socioeconomic and demographic factors affect these choices [9–11]. The research results
of Monios and Bergqvist also show that charging on the way is not considered in logistics
operation vehicles [12]. Sadeghianpourhamami et al. undertook a quantitative analysis of
EV flexibility that was data driven [13]. A path model of the process of selecting a charging
point for a destination was studied using the Poisson arrival process [14]. Kang et al. have
shown that private parking spaces are more in demand for charging than small community
spaces [15]. The study results also show that travel charging needs should be considered.
Subway stations, which are highly related to EV, are intensive charging demand points [15].
Zhang et al. analyzed the development potential of charging at the workplace [16].

With regard to the impact of charging prices, Kim et al. analyzed charging transactions
for four years, finding unobserved heterogeneity and the effects of time-varying covariates [9].
Bayram et al. conducted research on price-driven charging behavior from high and low peak
pricing [17], while another random dynamic pricing method is proposed by [18]. There are
also research articles based on the factors of price, detour distance and waiting time [19,20].

With regard to the impact of charging type when the data time span is long enough and
the amount of data is large enough, J. R. Helmus et al. used 4.9 million charging transactions
and find a surprising result, wherein none of the user types displayed stereotypical behavior
and the range of behaviors was more varied and subtle [21]. While the availability of home
charging is the most important factor in deciding to adopt an EV, residential areas are those
that are most in demand for charging, regardless of the type of charging demand or time
period [5,22,23]. However, most EV owners do not have the conditions to install home
charging piles. J. R. Helmus et al. expect that shifts to charging portfolios will be observed
in the future [21], while the types of charging remain stable.
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With regard to the impact of an EV’s state of charge (SOC), one article studied charging
behavior based on EV SOC initial state distribution [19], with data that were mostly
obtained from charging pile operators or EV manufacturers during the period of EV
development from 2018 to 2020. However, data labels are not complete enough to study
charging behavior. Complete data labels generally include charging start and end time,
charging duration, battery SOC, charging speed, location information and charging cost
(only available on charging pile data) [19,24,25].

With regard to research on the modeling of charging behavior, charging behavior is
conceptualized as a decision model combining electric energy supplement and parking
behavior [26–29]. D. Sun et al. considered the charging process as “space-time charging”
and they used the latest simulation to predict EV charging behavior [30]. Modeling the
charging behavior of electric taxis using a dataset of 39,372 charging events revealed that
charging dynamics can be represented by the distributions of daily charging frequency, start
time, and duration [31]. It is important to identify the charging behavior of EVs through the
timeline of real-world data [13], and the technology acceptance model (TMA) of cognitive
drive theory is studied for use in charging behavior decision-making feasibility [32]. Re-
garding the prediction of charging behavior, the authors gave the latest and most effective
prediction scheme [30,33,34]. Y. Yang et al. used the Manhattan distance index to simulate
detour distance [23] and applied a real-world road network to measure detour distance in
order to improve the practicality of the proposed modeling framework. The authors addi-
tionally proposed that different user types have different preferences for time [7,14,22,25],
charge amount and location, which shows heterogeneity in charging behavior. Luo et al.,
2018 conducted modeling based on user behavior results [20]. The mixed logic model is
appropriate when there is unobserved heterogeneity, preference difference between users
or when panel data are used [19].

In summary, prior research has extensively examined charging behavior with con-
siderations towards charging location choices, pricing, types of charging, and the initial
state of an electric vehicle’s SOC [35,36]. Predictive models have also been developed to
understand charging patterns. The complexity of charging behavior suggests that it is
challenging to accurately predict based solely on influencing factors. Furthermore, existing
studies often emphasize the role of EV users [35], which may not align with the changing
landscape of charging demands and behaviors due to evolving user roles, like the transition
from individual ownership to shared mobility through emerging platforms [4].

3. Research Design

In this paper, probability density function forecasting, nonlinear regression, discrete
selection theory, numerical modeling, numerical analysis methods, and constraint analysis
research method are used to analyze the big data generated by the 5gRTS-ET platform [37,38].

3.1. Data Interpretation

According to the China EV Charging Infrastructure Promotion Alliance, the cumula-
tive count of charging infrastructure in China reached 2.385 million units by November
2021. This total comprises 1.293 million dedicated charging piles, 1.092 million public
charging piles, 450,000 direct current (DC) charging piles, 646,000 alternating current (AC)
charging piles, and 406 AC/DC integrated charging piles. Over the period from December
2020 to November 2021, an average of 33,000 new public charging piles were installed
every month. The Jiangsu Province New Energy Vehicle Operating Company Information
Integrated Management Platform, 5gRTS-ET, was established in 2019, leading to the de-
ployment of 874 charging stations and 12,242 charging piles by 2020, including 8618 DC
charging piles and 3624 AC charging piles. The platform records crucial charging data,
such as start and end times, duration, remaining state of charge, pricing, location, and
frequency. Zhang et al. employed unsupervised methods to collect real operational data
and conducted iterative calculations and optimizations [16].
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According to the six-month data of the Nanjing downtown area from 1 March 2021 to
31 August, derived from the 5gRTS-ET operation platform, 12,597,109 cases were extracted,
including charging duration, charging initiation time, EVID, charging quantity and other
variables. The instructions of key parameters are shown as follows in Table 1:

Table 1. The instructions of variables from 5gRTS-ET platform data.

Related Parameters Description Unit

EVID EV Identity piece
Date Charging service date yyyy.mm.dd

Waiting_time Wait time before charging minute
Start_time Charging start time hh:mm:ss
End_time Charging end time hh:mm:ss

Charging_amount The amount of charge during a single charge KWh
Charging_fare Charging paid with a fee RMB
fast_low model 1 = fast, 2 = low 1, 2

Referring to the data processing method [16], SPSS Statistics software was used to
conduct case validity identification on data such as charging speed, charging duration,
charging duration, and waiting time, and 685,928 anomaly cases were identified. The
effective data were 11,911,181 cases and 32,259 EVs, and the data quality met the research
needs of this paper. Sampling and identification techniques are shown in Figure 1. The
green star in the figure shows the real-time position of the EV, which shows that the number
of EVs in the sampling area is very dense, which ensures the diversity of users in this study.

In order to meet the needs of the study, the calculation formula and description of the
variables have been added, see Table 2.

Typical EV operating mode. See Table 3 [3].
Correlation analysis was conducted using the defined key variables from Tables 1 and 2,

the results of which are presented in Table 4.

Table 2. Descriptions of the new variables.

Related Parameters Calculation Formula Description Unit

Charging_time Start time—end time The length of the charging time of the EV minute

Charging_frequency Count EVID The number of times the EV is charged in
6 months times

Charging_speed Charging Amount/charging time * 60 Average charge for one hour kw/h
Class 1-private EV 1–4

Table 3. Classification Table of EV typical operating model.

EV Operation Model % of Total EV Number

Private 24.2% 7816
Uber and Didi 34.9% 11,256

Taxi 36.5% 11,762
Logistic distribution 4.4% 1425

Total 100.0% 32,259

Table 4. Correlation analysis of charging point key variables.

Variable Date Start_
Time

Charging_
Time

Charging_
Fare

Charging_
Frequency

Charging_
Amount

Date 1 0.007 ** 0.000 0.006 ** −0.013 ** 0.011 **
Start_
time 1 0.020 ** −0.010 ** 0.017 ** −0.033 **
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Table 4. Cont.

Variable Date Start_
Time

Charging_
Time

Charging_
Fare

Charging_
Frequency

Charging_
Amount

Charging_
time 1 0.813 ** −0.085 ** 0.743 **

Charging_fare 1 −0.090 ** 0.892 **
Charging_
frequency 1 −0.090 **

Charging_
amount 1

**. Correlation is significant at the 0.01 level (2 tailed).
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3.2. Research Models

The correlation analysis in Table 4 indicates no correlation between charging time
and date. Date had a positive correlation with start time, charging fare, and charging
amount, while it was negatively correlated with charging frequency. Start time showed a
positive correlation with charging time and charging amount, but a negative correlation
with charging fare and charging amount charging time had a negative correlation with
charging frequency, and a positive correlation with charging fare and charging amount.

This paper utilizes real-time data to analyze and model the EV chargeable capacity,
based on the calculation formula proposed by Sheng and Xiao in 2015 [39].

The formula for calculating the rechargeable amount when only the power of the
charging pile is considered as follows [40]:

E = min(Pt/BC, 100% − SOC) (1)

The conversion formula can be calculated as follows for the charging time:
When P < 11 kW, any remaining SOC status has the following:

t = BC ∗ (100% − SOC)/P (2)

When P > 11 kW and 80% > SOC > 10%, as follows:

t = BC ∗ (80% − SOC)/P (3)

where E indicates rechargeable amount, t indicates charging time (hours), BC represents
the total capacity of electric vehicles (kWh), SOC represents the remaining SOC (%), and P
represents charging pile power (kW).

The charging behavior of the three common operating modes is assumed as follows:

H1. Private EV’s choice preference is optimal for charging time periods.

H2. Passenger operating EV’s choice preference is optimal charging speed.

H3. Logistic distribution EV’s choice preference is the optimal charging price.

4. Result

The following sections summarize and analyze the charging behavior of three different
operating modes of urban EVs based on the 5gRTS-ET platform.

4.1. Research Charging Behavior of Private EV

Analysis of data from the 5gRTS-ET platform reveals the frequency distribution of
charging times for 957,392 privately owned EVs. The charging behavior of these vehicles
demonstrates a concentration on Fridays, Saturdays, Sundays, and the days preceding
holidays, as highlighted in Figure 2. This preference for charging EVs on holidays and the
eve of holidays over walking can be attributed to various factors.

(1) In EV instead of walking mode, the weekly charging frequency can meet the power
needs of an EV. It is more convenient to charge on holidays.

(2) The charging concentration on the day before the holiday is to meet the need of
holiday travel.

(3) The increase in the travel distance will also increase the frequency of holiday charging.

We also analyzed the date frequency density of 10,953,789 non-private EV charging
data, and there was no bias toward holiday date periods, as shown in the following Figure 3.
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Chi-square testing is used to enable comparison of two types: goodness-of-fit tests
and independence tests s [5,12,41,42]. We use chi-square tests here to test the independence
(correlation) between two sets of private cases and other cases to determine the charging
preference of the private cases group. According to the data and test requirements, the date
data for the two groups are calculated in Table 5.

Table 5. Group and date type crosstabulation.

Date Type
Total

Holiday and Day before
Holiday of Total %Weekdays Holiday and Eve

Group Other cases 6,102,083 5,809,098 11,911,181 48.77%
Private cases 304,114 653,278 957,392 68.24%

Total 6,406,197 6,462,376 12,868,573

Assuming that the private cases group of H0 and the other cases group variables are
independent of each other, it can be seen from the test results in Table 6 that p = 0.000 < 0.05,
accepting the null hypothesis. We can also see from the Figure 4 frequency bar chart of
private and other cases that the holiday and the day before a holiday in the private cases
group accounted for 68.24%, which is significantly greater than the 48.77% in the other
cases group.

Table 6. Result of Chi-Square tests.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson chi-square 134,305.252 a 1 0.000
Continuity Correction b 134,304.473 1 0.000

Likelihood ratio 137,288.194 1 0.000
Fisher’s exact test 0.000 0.000

Linear-by-linear Association 134,305.241 1 0.000
N of valid Cases 12,868,573

a. 0 cells (0.0%) have an expected count that is less than 5. The minimum expected count is 476,606.21. b. Computed
only for a 2 × 2 table.
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Conversely, the analysis of Figure 5 reveals that, among the different EV operating
models considered, the private EV model exhibits a notably higher average daily charge,
indicating an effort to fully charge the EV each time, and with an average of 80–90 kWh.
However, Figure 6, which illustrates the cumulative charging amounts over a month,
indicates that the total charging amount for a private EV is comparatively minimal when
compared with the three other EV operating models.
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In summary, the charging preference for a private EV is the charging date period and
full charge.

4.2. Research Charging Behavior of Passenger Operating EV

Frequency density of EV charging frequency has been analyzed in 6 months of 5gETS-
ET data.
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It can be seen in Figure 7 that the overall data is in an approximately normal distribu-
tion and that p = 0.000 < 0.05 is obtained by K–S test. The 0 hypothesis is not accepted, so it
is not a normal distribution. A separate K–S test was conducted for a passenger operating
EV and p = 0.200 > 0.05 was obtained, which is in line with normal distribution. The
comparison of the test data is in Table 7, as follows:

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 
Figure 7. Frequency density distribution of EV charging frequency. 

Table 7. EV charging frequency K–S Test. 

One-Sample Kolmogorov–Smirnov Test 
Project All Data Passenger Operating EV Data 

N 984 441 

Normal parameters a,b 
Mean 25,603.88 19,922.88 

Std. deviation 401,340.611 4711.837 

Most extreme differences 
Absolute 0.483 0.061 
Positive 0.483 0.060 
Negative −0.475 −0.061 

Test statistic 0.483 0.061 
Asymp. Sig. (2 tailed) 0.000 c 0.200 c,d 

a. The test results are normally distributed.    b. Calculated based on data. 

We analyzed the charging duration over a period of 6 months and examined the re-
lationship between charging frequency and charging duration, revealing a positive linear 
correlation. To handle the large dataset, nonlinear regression of discrete selection theory 
and constraint analysis were applied to generate the scatter diagram depicted in Figure 8, 
demonstrating that increased charging frequency is associated with longer charging 
times. 

Figure 7. Frequency density distribution of EV charging frequency.

Table 7. EV charging frequency K–S Test.

One-Sample Kolmogorov–Smirnov Test
Project All Data Passenger Operating EV Data

N 984 441

Normal parameters a,b Mean 25,603.88 19,922.88
Std. deviation 401,340.611 4711.837

Most extreme differences
Absolute 0.483 0.061
Positive 0.483 0.060

Negative −0.475 −0.061
Test statistic 0.483 0.061

Asymp. Sig. (2 tailed) 0.000 c 0.200 c,d

a. The test results are normally distributed. b. Calculated based on data. c. Lilliefors significance correction.
d. This is a lower bound of the true significance.

We analyzed the charging duration over a period of 6 months and examined the
relationship between charging frequency and charging duration, revealing a positive linear
correlation. To handle the large dataset, nonlinear regression of discrete selection theory
and constraint analysis were applied to generate the scatter diagram depicted in Figure 8,
demonstrating that increased charging frequency is associated with longer charging times.

We summarized six months of data based on the charge amount and examined the
correlation between charge frequency and charge amount. The analysis revealed a positive
linear correlation. By employing nonlinear regression techniques, such as discrete selection
theory and constraint analysis, Figure 9 was obtained, which illustrates that an increase in
charging frequency is associated with a higher charging amount.
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Figure 9. Scatter plot of charge frequency and charge amount.

Frequency density analysis was performed on the charging duration of passenger-
operating EVs in fast charging mode, excluding cases where, due to instances where the
charging plug-in was not uninstalled post-charging, there is a charging duration exceeding
120 min. The analysis indicates that the timeframe between 20 min and 90 min accounted
for the highest proportion of charging durations in this mode, refer to Figure 10. For a
detailed summary of the analysis results, refer to Table 8.

Frequency density analysis was performed on the charging capacity of a passenger
operating EV mode in Figure 11. For this analysis, only fast charging data were considered,
and instances where the charging capacity exceeded 200 kWh were excluded. The results
indicate that the range between 10 kWh and 40 kWh comprised more than fifty percent
of the total charging capacity for this mode, as shown in Table 9 regarding the frequency
density distribution of charging amount.
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Table 9. Frequency density distribution of charging amount.

Charging Amount (kWh) Charging Amount Frequency
Sum % of Total Sum

<10 35,243 0.4%
10–20 1,416,372 15.0%
20–40 3,896,355 41.4%
40–60 1,707,807 18.1%
60–90 1,173,346 12.5%
>90 1,185,219 12.6%

Total 9,414,342 100.0%

4.3. Research Charging Behavior of Logistics Distribution EV

Refer to Table 10 for the time segment pricing model of charging unit price in order to
determine the pricing model for charging points.

Table 10. Time segment pricing model of charging unit price.

No Time Electricity
CNY/kWh

Service Charge
CNY/kWh

Charging Price
CNY/kWh

1 00:00–8:00 0.35 0.6 0.95
2 8:00–12:00 0.88 0.52 1.4
3 12:00–15:00 0.6 0.6 1.2
4 15:00–21:00 0.88 0.52 1.4
5 21:00–24:00 0.6 0.6 1.2

It is evident that there was a 47% variation in the price of kWh charging between
the lowest of the initial time segments and the highest of the subsequent time segments.
Additionally, there was a 17% difference in the kWh charging price between the highest of
the subsequent time segments and the middle of the following time segments.

Based on the analysis of time period variables through frequency density, the data
indicate that the highest charging frequency within a 24 h period occurs between 6:00
pm and 12:00 am, during the 4th and 5th time segments. Both charging prices of 1.4 and
1.3 show no preference in price during these time periods.

A total of 1,039,602 cases of EV usage in logistics distribution were analyzed for time
period variables. The analysis revealed that the highest charging frequency occurs between
0:00 and 7:00 in Figure 12, with the first time period having the lowest charging price of 0.95.
This indicates a distinct preference for pricing during specific time periods in Figure 13.

Table 11 presents a summary of the frequency of single-price charging periods by
categorizing and consolidating the data. The analysis shows that a majority (52.1%) of
charging activities take place during the period with the lowest price of 0.95.

Table 11. Summary table of single price frequency in charging period.

Time Period
Price N % of Total N Frequency Sum % of Total Sum

0.95 539,723 51.9% 7,684,891.44 52.1%
1.2 187,706 18.1% 2,619,382.24 17.8%
1.4 312,173 30.0% 4,451,317.88 30.2%

Total 1,039,602 100.0% 14,755,591.56 100.0%

We examine the interrelationships between fare amount, charging time, and charg-
ing amount across four distinct classes of EVs. Analysis of the test results depicted in
Figures 14–16 reveals evident heterogeneity in the logistic distribution EV model, with
these variations ultimately manifesting in pricing decisions.



Sustainability 2024, 16, 4842 14 of 18Sustainability 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 
Figure 12. Frequency density of charging time periods for all cases. 

 
Figure 13. Logistic distribution EV cases distribution of 24h. 

Table 11 presents a summary of the frequency of single-price charging periods by 
categorizing and consolidating the data. The analysis shows that a majority (52.1%) of 
charging activities take place during the period with the lowest price of 0.95. 

Table 11. Summary table of single price frequency in charging period. 

Time Period 
Price 

N % of Total N Frequency Sum % of Total Sum 

0.95 539,723 51.9% 7,684,891.44 52.1% 
1.2 187,706 18.1% 2,619,382.24 17.8% 
1.4 312,173 30.0% 4,451,317.88 30.2% 

Total 1,039,602 100.0% 14,755,591.56 100.0% 

We examine the interrelationships between fare amount, charging time, and charging 
amount across four distinct classes of EVs. Analysis of the test results depicted in Figures 

Figure 12. Frequency density of charging time periods for all cases.

Sustainability 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 
Figure 12. Frequency density of charging time periods for all cases. 

 
Figure 13. Logistic distribution EV cases distribution of 24h. 

Table 11 presents a summary of the frequency of single-price charging periods by 
categorizing and consolidating the data. The analysis shows that a majority (52.1%) of 
charging activities take place during the period with the lowest price of 0.95. 

Table 11. Summary table of single price frequency in charging period. 

Time Period 
Price 

N % of Total N Frequency Sum % of Total Sum 

0.95 539,723 51.9% 7,684,891.44 52.1% 
1.2 187,706 18.1% 2,619,382.24 17.8% 
1.4 312,173 30.0% 4,451,317.88 30.2% 

Total 1,039,602 100.0% 14,755,591.56 100.0% 

We examine the interrelationships between fare amount, charging time, and charging 
amount across four distinct classes of EVs. Analysis of the test results depicted in Figures 

Figure 13. Logistic distribution EV cases distribution of 24h.

Sustainability 2024, 16, x FOR PEER REVIEW 17 of 21 
 

14–16 reveals evident heterogeneity in the logistic distribution EV model, with these var-
iations ultimately manifesting in pricing decisions. 

 
Figure 14. Mean fare amount over 24 h. 

 
Figure 15. Mean charging time over 24 h. 

Figure 14. Mean fare amount over 24 h.



Sustainability 2024, 16, 4842 15 of 18

Sustainability 2024, 16, x FOR PEER REVIEW 17 of 21 
 

14–16 reveals evident heterogeneity in the logistic distribution EV model, with these var-
iations ultimately manifesting in pricing decisions. 

 
Figure 14. Mean fare amount over 24 h. 

 
Figure 15. Mean charging time over 24 h. Figure 15. Mean charging time over 24 h.

Sustainability 2024, 16, x FOR PEER REVIEW 18 of 21 
 

 
Figure 16. Mean charging amount over 24 h. 

In summary, the charging preference of a logistic distribution EV is charging price. 

5. Conclusions and Limitations 
The purpose of this study is to establish a dynamic charging behavior model to ac-

commodate various roles of EV users. Real operational data from the 5gRTS-ET platform 
in China were utilized. The following different methods were used to conduct the study. 
The findings indicate that different roles of EV users show unique preferences in terms of 
charging behavior. 
(1) The charging behavior of a private EV was analyzed using the frequency density 

method, utilizing 5gRTS-ET data. This approach considered charging time as a pri-
mary factor. 

(2) The mathematical model was developed using nonlinear regression, discrete selec-
tion theory, and constraint analysis. The validity of the data was tested using K–S. 
Subsequently, the charging behavior of the passenger operating EV mode with a 
preference for charging speed was analyzed and addressed. 

(3) This study utilizes numerical modeling, numerical analysis methods, and constraint 
analysis to construct a model for analyzing and addressing the charging behavior in 
the logistics distribution EV mode, considering charging price preferences. 
In contrast with conventional research, this study examines EV charging behaviors 

through the lens of diverse user roles, moving beyond simplistic predictions based on 
factors like charging prices, station locations, and speeds. The insights, gleaned from ac-
tual EV operational data, provide a more realistic and precise depiction of user behaviors. 
The diverse charging preferences under various operational models enhance the adapta-
bility of EVs to the dynamic roles they play, particularly as current sharing platforms en-
compass EVs and their users globally. 

EV charging is a complex chicken-and-egg problem. While this study has achieved 
its research goals, the insightful findings can provide valuable guidance for practical ap-
plications. Nevertheless, it is crucial to acknowledge that both methods and models uti-
lized in this study are subject to certain limitations that warrant further investigation. 
(1) The model formulated in this study for the charging behavior of an EV during oper-

ation is established using important parameters and variables from the 5gRTS-ET 
platform. Future research opportunities include the conducting of cluster analysis by 

Figure 16. Mean charging amount over 24 h.

In summary, the charging preference of a logistic distribution EV is charging price.

5. Conclusions and Limitations

The purpose of this study is to establish a dynamic charging behavior model to
accommodate various roles of EV users. Real operational data from the 5gRTS-ET platform
in China were utilized. The following different methods were used to conduct the study.
The findings indicate that different roles of EV users show unique preferences in terms of
charging behavior.

(1) The charging behavior of a private EV was analyzed using the frequency density
method, utilizing 5gRTS-ET data. This approach considered charging time as a
primary factor.

(2) The mathematical model was developed using nonlinear regression, discrete selection
theory, and constraint analysis. The validity of the data was tested using K–S. Subse-
quently, the charging behavior of the passenger operating EV mode with a preference
for charging speed was analyzed and addressed.
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(3) This study utilizes numerical modeling, numerical analysis methods, and constraint
analysis to construct a model for analyzing and addressing the charging behavior in
the logistics distribution EV mode, considering charging price preferences.

In contrast with conventional research, this study examines EV charging behaviors
through the lens of diverse user roles, moving beyond simplistic predictions based on
factors like charging prices, station locations, and speeds. The insights, gleaned from actual
EV operational data, provide a more realistic and precise depiction of user behaviors. The
diverse charging preferences under various operational models enhance the adaptability of
EVs to the dynamic roles they play, particularly as current sharing platforms encompass
EVs and their users globally.

EV charging is a complex chicken-and-egg problem. While this study has achieved
its research goals, the insightful findings can provide valuable guidance for practical
applications. Nevertheless, it is crucial to acknowledge that both methods and models
utilized in this study are subject to certain limitations that warrant further investigation.

(1) The model formulated in this study for the charging behavior of an EV during op-
eration is established using important parameters and variables from the 5gRTS-ET
platform. Future research opportunities include the conducting of cluster analysis by
integrating subjective behavioral preferences and performing adjustment analysis of
the charging behavior model by incorporating urban traffic information variables.

(2) With the advancement and increasing economic viability of vehicle-to-grid (V2G)
technology, its adoption is expected to grow [43]. Consequently, the focus for future
research will be on establishing real-time interaction systems aligning 5G connec-
tivity among vehicles, charging stations, power grid, and transportation networks,
alongside an examination of the site selection and business models for new charging
stations incorporating updated technologies like V2G.
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