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Abstract: The current global scenario of unequal access to water and electricity motivates the
search for solutions based on available resources, such as renewable energies and desalination.
Additionally, adequate sizing of renewables requires extensive and reliable time series, which are
usually unavailable. Reanalysis models are an option to consider, but only after evaluating their local
accuracy, generally through performance metrics. This study evaluated the performance of the solar
radiation, temperature, and wind speed products from MERRA2 and ERA5-Land in comparison to
ground data, as well as their influence on the optimal initial configuration of a renewable energy
system for desalination in La Guajira, Colombia. HOMER Pro was the software tool employed to
establish the best arrangements for the resulting renewable power systems, and the study included
a sensitivity analysis considering different annual capacity shortages, operating hours, and energy
needs for desalting. ERA5-Land performed better than MERRA2 in matching the time series from the
local station. The relative error of the cost of electricity of systems dimensioned from reanalysis was
less than 3% compared to systems from ground measurements, with a renewable fraction above 98%.
For the study area, ERA5-Land reanalysis represents a reliable alternative to address the scarcity of
solar resource records, but both reanalyses failed to reproduce the wind speed regime.

Keywords: reanalysis; performance metrics; HOMER Energy; desalting; solar PV

1. Introduction

The long-term planning of cities and their public services, such as energy and water
supply, requires considering current world challenges related to sustainability and min-
imizing the effects of global warming. In the present-day scenario of increasing energy
demands, using renewable energy sources is essential to mitigate the harmful effects of
anthropogenic global climate change [1–4]. Because of the intrinsic variability in renewable
sources such as solar and wind, efficiently determining the feasibility of these projects is
directly related to the available datasets and their reliability [5–7]. However, high-quality
ground measurements are usually unavailable in the target areas, especially in developing
countries, increasing the uncertainty regarding the likely performance of wind and solar
farm projects [8,9].

Datasets produced by reanalysis models are among the alternatives that researchers
and planners use to overcome this scarcity of reliable data, mainly because of their large-
scale spatiotemporal coverage and availability at low or no cost [5,10–13]. However, these
models have limitations, and the accuracy of climate variable estimation varies depending

Sustainability 2024, 16, 4862. https://doi.org/10.3390/su16114862 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16114862
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3659-7406
https://orcid.org/0000-0003-4874-0254
https://orcid.org/0000-0003-1507-9519
https://orcid.org/0000-0002-6858-1855
https://doi.org/10.3390/su16114862
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16114862?type=check_update&version=1


Sustainability 2024, 16, 4862 2 of 21

on each reanalysis dataset’s data assimilation technique and the study area’s location and
topography [14]. Therefore, they should not be considered direct measurements but a result
of a model subject to bias [9,11,15]. Reanalyses can commonly replicate the general seasonal
patterns of meteorological variables, but they are usually less successful in accurately
reproducing magnitudes and spatial variability [9,16].

The evaluation through performance metrics of the accuracy of reanalysis products
based on weather station records is a current research topic aimed at reducing uncertainty
and improving understanding of the behavior of weather variables worldwide. For instance,
recent studies include the paper by Aliana et al. [17], who evaluated the performance of solar
data radiation models for three large-scale solar thermal systems in Denmark and assessed
the economic impact of using inaccurate models. By employing the root mean square error
(RMSE) and the mean biased error, they found that satellite-based models perform better
than reanalysis and that the latter is more accurate than the reference year provided by the
Danish Meteorological Institute. Doddy Clarke et al. [14] used four skill scores to evaluate
the performance of two global (MERRA2 and ERA5) and one high-resolution regional
reanalysis for renewable energy planning purposes, comparing them with observations at
seven meteorological stations across Ireland. Their conclusions highlight that results vary
on a case-by-case basis, depending on the meteorological variable, spatial characteristics of
the study area, and the timescale.

Gruber et al. [18] evaluated the quality of MERRA2 and ERA5 reanalyses through
correlation coefficients and error metrics of multiple locations with wind potential in both
inland and coastal regions in Brazil, the United States, New Zealand, and South Africa.
Their findings indicate that ERA5 performed better than MERRA2, especially considering
aggregated time scales. These results regarding the better performance of ERA5 over
MERRA2 when modeling wind farms are also supported by Olauson [19], as he compared
the performance of these two reanalysis datasets in Germany, Denmark, France, Sweden,
and the Northwestern USA.

In Latin America, studies evaluating the performance of reanalysis sets for renewable
energy sources include that of Thomas et al. [20]. They determined that the higher spatial
resolution of ERA5 allows it to present a better accuracy than its predecessor ERA5-Interim
and MERRA2 for representing wind speed time series in Mexico. However, even if ERA5
exhibits the highest correlations, it also presents higher biases. In Chile, Ramírez Camargo
et al. [21] employed Pearson correlation and error metrics to validate the feasibility of
employing ERA5-Land and MERRA2 to generate one-hour resolution time series for its
use in solar projects compared with individual data from 23 large PV plants.

Because of its vast solar and wind power potential, the Guajira, in the northern
Caribbean region of Colombia, has been the subject of many studies on renewable en-
ergies [22,23]. Regarding the assessment of reanalysis datasets, the works by Gil-Ruiz
et al. [24,25] evaluate the performance of ERA5 to reproduce the behavior of wind time
series recorded at meteorological stations in the region. Their key findings point out
that ERA5 performs better in areas directly subjected to trade winds and that accuracy
diminishes in areas of complex topography.

Drinkable water scarcity is another characteristic of La Guajira [26,27]. This paper
assesses how ERA5-Land and MERRA2 reanalysis datasets impact the optimal preliminary
configuration of a renewable power system for potable water production, considering a
desalting plant in this Colombian region, conducting a sensitivity analysis on the energy
consumption for water desalination and allowable annual capacity shortage. One of the
contributions of this research to filling the literature gap is that it uses inferential statistics
to test the hypothesis that a good fit in terms of performance metrics between reanalysis
products and ground measurements results in an equivalent sizing and performance of
renewable energy systems based on these time series.

The motivation for conducting this study is linked to two critical challenges facing
cities: sustainable development and access to essential services like energy and water. There
is a pressing need to explore renewable energy sources to serve increasing energy demands
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and to fight global warming. However, obtaining reliable data for planning renewable
energy projects, especially in regions with limited ground measurements, poses a significant
challenge. By evaluating reanalysis datasets offering large-scale spatiotemporal coverage,
this study aims to assess their value as tools to overcome data scarcity and uncertainty,
particularly in planning renewable energy systems for water desalination, using La Guajira,
Colombia, as a relevant case study.

This research employs the HOMER Pro Microgrid Analysis Tool [28] to determine the
optimal power systems configurations in terms of the cost of electricity, while it also allows
performing sensitivity analyses subject to constraints. The results obtained in the software
model are mostly considered a first approximation to see future projects’ economic and
technical feasibility. Because of the software’s maturity, versatility, and easy-to-use interface,
this model has been employed in diverse assessments that include integrating renewable
energy systems into the grid [29,30], providing energy to isolated rural communities and
small grids [31–34], or supplying energy to public service facilities, such as desalting plants
and water supply [35–37].

2. Materials and Methods
2.1. Study Area

This paper uses La Guajira, the northernmost Department of Colombia, to assess
the MERRA2 and ERA5-Land datasets’ performance and impact on optimal renewable
power system configuration. As shown in Figure 1, its geographic location is between
latitudes 10◦20′ N and 12◦30′ N and longitudes 71◦00′ W and 74◦00′ W, with an extension of
20,848 km2 [38]. Its capital is Riohacha, with an average altitude of 5 m above sea level [39].
The Department is divided into Upper Guajira (a semi-desertic region), Middle Guajira
(semi-arid with agricultural potential but scarce groundwater resources), and Lower Guajira
(dry tropical forest) [26,40]. In general, the region presents arid-zone characteristics, with a
low average annual precipitation (<500 mm/year) and high average temperatures (between
35 ◦C and 42 ◦C) [26,41].
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By 2020, the population of La Guajira was over one million inhabitants [42], with
the Wayúu indigenous group comprising approximately 46% of this total. La Guajira
has several socioeconomic issues, including corruption, child malnourishment, and deep
poverty [41]. According to the literature, 53.7% of the population lives below the poverty
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line, and 26.7% live in extreme poverty [40]. The combination of these climate and so-
cioeconomic issues leads to a problem of drinkable water scarcity, a persistent problem
previously identified in the newspapers and scientific literature [26,27,43,44]. Additionally,
some initiatives to mitigate water scarcity in this region have failed or achieved only partial
or limited success [45–48]. Previous studies have identified that renewable sources in this
region might be able to supply Colombia’s load demands [23].

2.2. Datasets

Figure 2 shows the boxplots for solar radiation, wind speed, and temperature accord-
ing to IDEAM records and ERA5-Land and MERRA2 reanalysis of 2016 at Aeropuerto
Almirante Padilla Station [Id: 15065180].
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Figure 2. Boxplots for solar radiation, wind speed, and temperature from IDEAM records from 2016 
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Figure 2. Boxplots for solar radiation, wind speed, and temperature from IDEAM records from 2016
and ERA5-Land and MERRA2 reanalysis at Aeropuerto Almirante Padilla Station. The extremes of
the box encompass values between quartiles Q1 and Q3; the bar denotes the median; the whiskers
correspond to Q1-1.5 IQR (interquartile range) and Q3 + 1.5 IQR. The points are potential outliers.
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2.2.1. Ground Measurements

The wind speed, solar radiation, and temperature time series correspond to station
Aeropuerto Almirante Padilla’s hourly records for 2016. This information is available at the
Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM) site [49]. This
year was selected because it presented the fewest data gaps over the last decade for the
variables mentioned above, required in the HOMER Software version 3.11 simulations, and
used to generate this study’s baseline case.

2.2.2. MERRA2

Introduced in 2016 to replace the original Modern-Era Retrospective Analysis for
Research and Applications (MERRA) dataset, MERRA Version 2 (MERRA2) estimates
historic climate variables datasets from 1980 to the present, with a temporal resolution
of one hour or lower. It employs the Goddard Earth Observing System (GEOS) model
to estimate the historical time series based on the parameterization of initial conditions
conducted from ground measurements at hydrometeorological stations worldwide, satellite
observations, and general circulation models [50–52]. MERRA2 is a product of NASA’s
Global Modeling and Assimilation Office (GMAO), and the datasets were obtained from
the Soda-Pro website [53].

2.2.3. ERA5-Land

With a spatial resolution of 9 km × 9 km, the ERA5-Land reanalysis dataset was
introduced in July 2019 by the Copernicus Climate Change Service (C3S) [21]. While it
shares most parameterizations with ERA5, the ERA5-Land simulation uses atmospheric
forcing based on ERA5 atmospheric variables and a “lapse rate correction” to improve
accuracy on water and energy cycles [54], making it helpful in assessing land surface
phenomena such as floods or droughts. It provides hourly estimates for over 50 land
variables from 1950 to the present, and these datasets are available for download at the
Copernicus Climate Data Store (CDS) [55].

2.2.4. Load Data

The water demand was estimated assuming a design population of 10,000 persons
and based on the Colombian technical norms related to potable water and sanitation [56].
Based on the technical norms, the residential water supply equals 140 L per person per
day, losses were considered 25% of the supply, and safety factors K1 and K2 were set as 1.2.
After that, the monthly consumption was scaled based on long-term data records provided
by VEOLIA [57], a water supply network operator in the Colombian Caribbean, as shown
in Figure 3. This paper evaluates two operational regimes (8 h and 24 h), with the daily
water demand evenly distributed during the working hours.
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Access to potable water is one of the main issues in the La Guajira region and other
coastal regions of Latin America [58]. Even if this paper does not explicitly present the
design of a reverse osmosis desalination plant, it helps to explore the feasibility of using
reanalysis data to overcome the scarcity of ground measurement records in these regions
aiming at effectively dimensioning large-scale utility infrastructure powered by renewables.
Based on the recent review by Feria-Diaz et al. [59], this study considers three energy
consumption values for reverse osmosis seawater desalination (SWRO): 2.5 kWh/m3,
4.0 kWh/m3, and 8.5 kWh/m3.

2.3. Method
2.3.1. Performance Metrics

This paper employs the four statistical metrics used by Vega-Durán et al. [9] to assess
the performance of MERRA2 and ERA5-Land to match the time series of wind speed, solar
radiation, and temperature recorded by the IDEAM station in 2016. These metrics are the
normalized root mean square error (NRMSE), bias (BIAS), Spearman correlation coefficient
(ρS), and Nash–Sutcliffe efficiency coefficient (NSE), and their selection is supported by
similar previous studies on the performance of reanalysis datasets [60–64]. Table 1 presents
the formulas for calculating these performance metrics and their ranges and optimal values.

Table 1. Details of the performance metrics employed, where O indicates reference data (IDEAM), E
indicates the reanalysis dataset (MERRA2 or ERA5-Land), and N is the available data.

Performance Metric Formula Value Range Optimal Value

NRMSE NRMSE =

√
1
N ∑N

i=1(Oi−Ei)
2

O
0 to ∞ 0.00

BIAS BIAS = ∑N
i=1(Ei−Oi)

∑N
i=1 Oi

−∞ to ∞ 0.00

ρS
ρS =

∑N
i=1 [Rank(Ei)−RankE]·[Rank(Oi)−RankO](

∑N
i=1 [Rank(Ei)−RankE]

2·∑N
i=1[Rank(Oi)−RankO]

2
)1/2

−1.00 to 1.00 1.00

NSE NSE = 1 − ∑N
i=1(Ei−Oi)

2

∑N
i=1(Oi−O)

2
−∞ to 1.00 1.00

2.3.2. Optimal Configuration of the Renewable Energy-Based Power System

This research employed the HOMER Pro Microgrid Analysis Tool to determine the
optimal configuration of the renewable energy-based power system described by the
schematic in Figure 4. This software is considered an adequate and versatile tool for
microgrid optimization in all sectors, providing a first approximation of future projects’
economic and technical feasibility [33]. The optimization process involves using the avail-
able technologies and considering the various constraints to model and simulate a series of
hybrid renewable energy system alternatives. Then, each option is validated by examining
whether the load is satisfied, and the model performs an energy–economy–ecology simula-
tion/optimization analysis to obtain the optimal size of each element. The optimization
results include the overall and categorized rankings of the least-cost feasible systems [37].
HOMER Pro incorporates an optimizer consisting of a proprietary derivative-free algorithm
that searches for the least costly system, automatically finding the optimal size for the
converter, storage, fuel-based generator, PV, and wind turbine components [28].
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Based on the existing literature, Table 2 presents the technical and economic speci-
fications of the components used in HOMER to conduct the simulations. Table 2 shows
that besides comparing the optimal configuration based on ground measurements and
reanalysis datasets, this study includes three energy consumption values for obtaining one
cubic meter of potable water from desalination and three annual capacity shortage (ACS)
values. This capacity shortage is the shortfall between the required operating capacity and
available operating capacity [28]. As the system is not designed to provide baseload elec-
tricity, relaxing this constraint allows for the observation of the impact of this variable on
project costs [65], as excess energy periods inherent to renewable-based systems can be used
to offset water production deficits. Furthermore, based on this consideration, the design
constraints in HOMER for this study employ the HOMER defaults for the operating reserve
as a percentage of load [66] and as 25% of the renewable output for both solar and wind
power [67]. This assumption is conservative compared to other studies, such as Dawoud
et al. [32]. Besides the information in Table 2, it is worth providing additional clarifications
regarding the model setup. There are no constraints for the renewable fraction; however,
considering a relatively high diesel fuel cost aims to maximize renewables’ penetration.
HOMER estimates the lifetime throughput of the battery based on the information entered
in the lifetime curve, and the suggested value is equal to the average value of the lifetime
throughput values that fall within the allowable range of depth of discharge [68]. The
Nordex N60-1300 wind turbine was selected for the case study as it is employed in Jepirachi
Wind Park, in the same coastal line and approximately 120 km northeast of Aeropuerto
Almirante Padilla station [69]. The default slope (11.5◦) and azimuth angles (0◦) were
adopted for Trina Solar250TSM-250PA05A PV panels.
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Table 2. Technical and economic specification of hybrid system elements.

Parameters Values Units References

LOAD
Energy consumption for desalination 2.5; 4.0; 8.5 kWh/m3 [59]

ECONOMICS
Discount rate 8.20 % [70]
Inflation rate 4.21 % [71]

Annual capacity shortage (ACS) 0.0; 2.5; 5.0 %
Project lifetime 25 Years [72,73]

PHOTOVOLTAIC
CAPEX 800 EUR/kW [73]
Lifetime 25 Years [73]

Annual O&M 1.70 % of CAPEX [74]
Temperature coefficient −0.43 %/◦C [75]

Derating factor 90 % [76]
Tracking system No tracking

WIND TURBINE—Nordex N60-1300
Rated power 1300 kW [77]

CAPEX 1350 EUR/kW [73]
Lifetime 25 Years [73]

Annual O&M 2.40 % of CAPEX [73]
Cut-in speed 3.25 m/s [77]

Cut-out speed 25.00 m/s [77]
Hub height 46 m [77]

BATTERY
Nominal capacity 100 kWh

CAPEX 250 EUR/kW [74]
Lifetime 10 Years [73]

Replacement cost 205 EUR/kW [74]
Annual O&M 1.71 % of CAPEX [74]

Round trip efficiency 90 % [73]
Minimum state of charge 20 % [78]

Lifetime throughput 300,000 kWh [68]

DIESEL GENERATOR
CAPEX 500 EUR/kW [33]
Lifetime 25,000 hours [33]

Replacement cost 500 EUR/kW [33]
Annual O&M 1.05 EUR/h [33]

Minimum load ratio 75 % [33]
Minimum runtime 1 hour [33]

Fuel price 1 EUR/L

CONVERTER
CAPEX 300 EUR/kW [74]
Lifetime 15 Years [74]

Replacement cost 250 EUR/kW [74]
Annual O&M 5 % of CAPEX [79]

Inverter efficiency 95 % [74,76]
Rectifier inputs’ relative capacity 75 % [76]

Rectifier inputs’ efficiency 85 % [76]

3. Results
3.1. Performance Metrics Results

Table 3 presents the performance results for the ERA5-Land and MERRA2 reanalysis
products to match the time series of wind speed, solar radiation, and temperature recorded
by the IDEAM station in 2016.
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Table 3. Performance results for the ERA5-Land and MERRA2 reanalysis products for solar radiation,
wind speed, and temperature estimations at station Aeropuerto Almirante Padilla for 2016.

Variable
OBSERVED: IDEAM vs. ESTIMATES: ERA5-Land OBSERVED: IDEAM vs. ESTIMATES: MERRA2

ρS NRMSE BIAS NSE ρS NRMSE BIAS NSE

Solar Radiation 0.9068 0.3310 −0.1320 0.7749 0.8409 0.4127 −0.0480 0.6500
Wind Speed 0.6063 0.5242 0.2330 −0.0441 0.4208 0.6603 0.4110 −0.6567
Temperature 0.7636 0.0688 −0.0330 0.3571 0.2160 0.1076 −0.0290 −0.5706

According to the literature, both ERA5-Land and MERRA2 indicate a good fit for
solar radiation based on the performance metrics comparing reanalysis products with the
IDEAM station, with relatively small biases. It is worth mentioning that night hours were
excluded when quantifying the solar resource metrics. Spearman correlations above 0.8
are considered strong [21,80], NRMSEs below 0.5 are deemed reliable, as they indicate
less residual variance [60], and NSE values greater or equal to 0.65 can be defined as very
good [63]. On the other hand, Table 3 shows a different outcome for wind speed at 10 m
and temperature. For instance, ERA5-Land presents moderate-to-strong correlations [80]
and low biases, and the NRMSE suggests some reliability and capacity for representing
variations; however, the NSE values close to zero or negative indicate that the mean of the
observations might be a better predictor than the reanalysis model for these two variables.
The moderate to weak correlations and the negative NSE found for MERRA2 denote that
MERRA2 fails to accurately follow the overall behavior of the data series. These results
are consistent with the findings by Carvalho [81] for regions near the Intertropical Con-
vergence Zone, which indicates that MERRA2 faces issues like limitations in assimilating
observational data and model parameterization, leading to low accuracy and considerable
biases for these variables.

3.2. Homer Simulations

The time series of the three variables for 2016 from the three datasets were employed
as inputs in the HOMER model represented in Figure 4. As previously stated, the optimal
configurations obtained based on IDEAM records are considered the baseline cases. Table 4
summarizes the sensitivity analysis results for the optimal systems found by HOMER
for different operational regimes, energy consumptions (kWh/m3), and annual capacity
shortages (ACS) based on IDEAM data. The three datasets produced similar results
regarding included element types, with PV being the dominating renewable source. Even
when ACS is not allowed, the assumed generator’s fuel price and operational conditions
lead to optimal systems, with more than 98% of their generation coming from renewables.

For the simulation using IDEAM records, the 8 h operating regime results in signifi-
cantly lower COE than the 24 h regime for the same energy consumption per cubic meter
and ACS, with reductions between 27% and 46%. The different energy consumptions per
cubic meter of water had a practically linear impact on the sizing of the components (except
for the converter) and the net present cost (NPC) of the system, resulting in a similar COE
for the same operating regimes and especially when some ACS is allowed. Restricting ACS
to zero values leads to greater installed capacity requirements, with the corresponding
higher COE and electricity production excess or curtailment.

The radar plots in Figure 5 (24 h regime of operation) and Figure 6 (8 h regime of
operation) present the relative error of the main variables from the optimal systems dimen-
sioned based on reanalysis using as baseline the optimum based on ground measurements.
For each condition evaluated in the sensitivity analysis, COE did not exceed 3% of the
absolute relative error for ERA5-Land and 10% for MERRA2. Analogous to Table 4, the
renewable fraction surpasses 98% in all the optimal systems, with the subsequent absence
of diesel generators in the arrangements.
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Table 4. Results of the sensitivity analysis for the optimal system design for different operational
regimes, energy consumption (kWh/m3), and annual capacity shortage (ACS) based on IDEAM
data. Abbreviations: COE—cost of electricity, PV—PV installed capacity, Excess—excess electricity,
NPC—net present cost.

kWh/m3 ACS
[%]

COE
[EUR/kWh]

PV
[MW]

Battery
[MWh]

Converter
[MW]

Renewable
Fraction [%]

Generation
[MWh/Year]

Excess
[%]

NPC
[Million EUR]

24 h operation

2.5
0.0 A 0.199 2.701 5.700 1.099 99.10 4184.21 33.17 7.29
2.5 0.159 2.153 5.400 1.142 100.00 3319.04 17.40 5.71
5.0 0.152 2.003 5.200 0.983 100.00 3086.59 12.90 5.35

4.0
0.0 A 0.194 4.259 9.300 1.697 99.17 6594.39 32.18 11.38
2.5 0.161 3.686 8.800 1.486 100.00 5681.87 22.90 9.25
5.0 0.155 3.148 8.300 1.958 100.00 4851.37 11.13 8.75

8.5
0.0 A 0.187 8.722 19.400 3.507 99.12 13,511.68 29.71 23.32
2.5 0.160 7.669 18.500 3.317 100.00 11,821.10 21.20 19.48
5.0 0.152 6.833 17.700 3.333 100.00 10,531.92 13.16 18.23

8 h operation

2.5
0.0 0.146 2.895 3.600 0.826 100.00 4462.63 47.41 5.33
2.5 0.093 2.006 1.900 0.527 100.00 3091.99 23.53 3.36
5.0 0.082 1.905 1.300 0.523 100.00 2935.90 20.47 2.95

4.0
0.0 B 0.139 3.349 4.400 1.205 99.14 5193.97 26.45 8.15
2.5 0.092 3.274 2.700 0.979 100.00 5046.95 25.14 5.35
5.0 0.082 3.109 2.000 0.781 100.00 4791.42 22.11 4.70

8.5
0.0 B 0.125 7.321 7.200 2.561 99.09 11,355.42 28.74 15.58
2.5 0.092 7.164 5.500 1.964 100.00 11,042.73 27.43 11.39
5.0 0.082 6.629 4.300 1.591 100.00 10,216.96 22.37 9.99

A: the optimum system includes a 1.1 MW diesel generator. B: the optimum system includes a 2.8 MW diesel
generator.

The good match based on the performance metrics between ERA5-Land and IDEAM
records for solar radiation seems to translate into a relatively accurate sizing of the main
components of the system: PV panels, batteries, and converter, with none of the variables
exceeding a relative error of 50%. The relative error associated with the converter is below
35% for all the examined conditions in the sensitivity analysis. Because of its size, this
component does not impact the COE as much as the other two principal components (see
Table 4).

For a desalting plant operating continuously, the relative error regarding the PV
plant size corresponds to an overestimation ranging between 4% and 16% for systems
calculated with ERA5-Land records and 20% and 30% for those based on MERRA2. For
a plant operating only during daylight, these ranges are between 7% and 29% for ERA5-
Land records and 14% and 57% for MERRA2. In contrast, these systems modeled based
on reanalysis tend to underestimate the energy storage requirements compared to those
from optimal systems based on IDEAM time series. The relative error for the batteries of
systems operating 24 h is under 5% for both reanalysis datasets, but this number drastically
increases to a range between 16% and 50% for an 8 h operation regime. An additional
inspection found no strong correlation between PV and batteries’ relative errors. This
behavior could be due to moderate NRMSEs and negative biases in solar radiation and
temperature, which causes considerable differences in the PV panel area. Future studies
could focus on evaluating the effect that possible corrections using methods described in
the literature [15,18,81] would have on these estimates and the precision of these corrected
series. The highest relative errors among all variables correspond to the electricity excess of
optimal system configurations based on MERRA2, especially for the 24 h operation regime
and relaxed ACS conditions.
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orange: ERA5-Land, gray: MERRA2. Variables: COE—cost of electricity, PV—PV installed capacity,
ES—energy storage capacity, CC—converter size, RF—renewable fraction of electricity production,
TG—total generation from the system, Ex—excess electricity.
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Figure 6. Relative error of variables from the optimal systems dimensioned based on ground
measurements and reanalysis under the 8 h regime of operation. Blue: IDEAM (baseline scenario),
orange: ERA5-Land, gray: MERRA2. Variables: COE—cost of electricity, PV—PV installed capacity,
ES—energy storage capacity, CC—converter size, RF—renewable fraction of electricity production,
TG—total generation from the system, Ex—excess electricity.

The sensitivity analysis found no wind turbines as part of any optimal configuration.
However, HOMER calculates the feasible systems comprising at least one N60-1300 turbine,
and Table 5 displays the COE results for these arrangements based on the records from the
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three datasets under consideration. Based on the average minimum COE in Table 5, when
the system includes at least one N60-1300 turbine, the kWh is 23% more expensive for a
continuous operation and 37% for the 8 h regime when compared with those of the COE
column in Table 4.

Table 5. Cost of energy (COE) in EUR/kWh for feasible systems that include Nordex N60-1300 wind
turbines. Abbreviations: Avg.—average, SD—standard deviation.

DATASET IDEAM ERA5-Land MERRA2

kWh/m3 ACS
[%]

Min.
COE

Avg.
COE

SD
COE

Min.
COE

Avg.
COE

SD
COE

Min.
COE

Avg.
COE

SD
COE

24 h operation

2.5
0.0 0.256 1.736 1.500 0.261 1.502 1.204 0.263 1.080 0.799
2.5 0.214 1.636 1.499 0.218 1.369 1.062 0.221 0.907 0.655
5.0 0.213 1.581 1.509 0.209 1.306 1.011 0.204 0.874 0.653

4.0
0.0 0.228 1.342 1.021 0.229 1.517 1.593 0.234 0.848 0.567
2.5 0.191 1.238 0.975 0.192 1.138 0.868 0.199 0.761 0.494
5.0 0.190 1.192 0.965 0.183 1.079 0.787 0.181 0.725 0.481

8.5
0.0 0.203 0.743 0.528 0.203 0.644 0.411 0.209 0.528 0.309
2.5 0.179 0.867 0.583 0.203 0.649 0.404 0.183 0.608 0.360
5.0 0.184 0.815 0.520 0.170 0.631 0.428 0.174 0.573 0.320

8 h operation

2.5
0.0 0.203 1.012 0.881 0.216 1.096 1.181 0.194 0.916 0.922
2.5 0.150 0.843 0.868 0.151 0.980 1.084 0.161 0.757 0.809
5.0 0.143 0.794 0.849 0.143 0.923 1.026 0.151 0.722 0.798

4.0
0.0 0.176 0.910 0.754 0.178 0.962 1.047 0.171 0.742 0.692
2.5 0.127 0.736 0.714 0.129 0.839 0.901 0.135 0.667 0.659
5.0 0.118 0.682 0.682 0.121 0.787 0.829 0.128 0.621 0.626

8.5
0.0 0.142 0.760 0.718 0.141 0.491 0.436 0.145 0.463 0.418
2.5 0.110 0.605 0.563 0.106 0.452 0.462 0.115 0.528 0.481
5.0 0.099 0.551 0.507 0.099 0.662 0.711 0.106 0.496 0.451

Regarding these findings on the absence of wind turbines in the optimal configuration,
it is worth noting that the data series considered are limited to the location of the meteo-
rological station used. Additionally, the calculations are based on a wind turbine model
previously utilized in the region, which could be replaced with another model that could
offer a higher capacity factor. Conducting more comprehensive studies could pinpoint
sites with a higher wind potential or explore alternative and more efficient technologies.
However, these efforts would be contingent upon the availability and quality of data, which
is the primary focus of this research.

3.3. Hypothesis Testing Comparing Simulation Results

For a further assessment of the feasibility of using the one-hour resolution time series
of MERRA2 and ERA5-Land to substitute ground measurements, the paired t-test and
its nonparametric version (Wilcoxon test) allow testing the null hypothesis that the use
of reanalysis does not produce statistically significant differences in system costs and
configurations [82,83]. The included variables for the 18 optimal systems according to
the conditions evaluated in the sensitivity analysis were the scaled values of COE, PV
size, energy storage requirements, and electricity excess. Other variables, such as total
generation and NPC, were deemed redundant as they directly correlate with some other set
variables. Table 6 presents the results of these statistical hypothesis tests. The p-values in
Table 6 indicate that we cannot reject the null hypothesis that ERA5-Land produced similar
system configurations to those from IDEAM. On the other hand, the results suggest that
arrangements obtained from MERRA2 are statistically significantly different from those
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obtained based on IDEAM records. In simpler words, the results from paired comparisons
showed that ERA5-Land produced similar outcomes to IDEAM, while MERRA2 produced
considerably different outcomes, indicating a significant difference between the two data
sources.

Table 6. Paired t-test and Wilcoxon signed-rank test results, comparing optimal systems from IDEAM
records and reanalysis products.

Dataset1 Dataset2 Test Statistic z df p-Value Effect Size

IDEAM ERA5-Land Student 1.127 71 0.264 0.133
Wilcoxon 1361.000 0.476 0.636 0.065

IDEAM MERRA2 Student −4.034 71 <0.001 −0.475
Wilcoxon 606.000 −3.850 <0.001 −0.526

Note: Cohen’s d gives the effect size for the Student t-test. For the Wilcoxon test, the matched rank biserial
correlation gives the effect size [84].

4. Discussion

Using alternative datasets to address the lack of ground measurements, such as
reanalysis products, is only possible after establishing the reliability and goodness of fit
with field observations. For this purpose, performance metrics, such as those presented in
Table 1, have been extensively used in the literature. Previous research has already assessed
the performance of ERA5 and MERRA2 in different locations in Colombia, with varying
results. In terms of bias, Table 3 shows that for 2016, ERA5-Land slightly underestimates
solar radiation, contrary to Cano et al. [85] and Duarte et al. [39], who found that ERA5
tends to overestimate the observations in Colombian coastal and inland regions. Similarly,
the NRMSE values suggest that ERA5-Land is deemed reliable for solar radiation in the
study area, whereas Cano et al. [85] found that ERA5 was unreliable for this variable in
an area far from the coast, with NRMSE values greater than 50%. Both ERA5-Land and
MERRA2 overestimate wind speed, and the literature shows that this variable exhibits a
wide range of positive and negative biases in various locations in the Colombian Caribbean,
with correlations between IDEAM records and reanalysis as low as 0.23 [24,25]. In general
terms, the results in Table 3 show that ERA5-Land is more reliable than MERRA2, similar
to findings in previous studies for Colombia and other coastal areas of the world [7,9].
Especially for wind estimations, some authors suggest that this might be explained due to
the higher spatial model resolution and the larger amount of observed data employed in
the data assimilation process [18].

According to criteria from the literature [60,63,80], performance metrics in Table 3
indicate adequate goodness of fit for solar radiation both for ERA5-Land and MERRA2,
similar to results from previous studies [12,21,86]. However, this does not automatically
translate into a good fit for the optimal configuration of the renewable energy system
derived from using these datasets, as observed from the results shown in Table 6 corre-
sponding to the paired t-test and Wilcoxon test. Although the specific accuracy of reanalysis
products varies significantly depending on the dataset, geographical characteristics, or
across seasons, the spatiotemporal resolution, multiplicity of variables, and consistency
of the models used to generate the time series motivate their application in research re-
lated to renewable energies, especially regarding large spatial [13,87,88] and temporal
scales [12,89,90]. In general terms, reanalysis datasets reproduce the temporal patterns of
climatological variables, making them a valuable asset for long-term planning [2], though
with reduced application in small-scale and short-term studies without proper statistical
validation [9,14,91] or calibration [17,89].

It is worth mentioning that the literature indicates the possibility of correcting sys-
tematic errors and biases in reanalysis models, thus improving their accuracy. These site
adaptation measures include bias correction based on ground measurements, downscaling
to finer spatial resolution, spatial interpolation, and variable-specific adjustments through
physically based methods, regression models, or Measure–Correlate–Predict methods [6].
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In any case, they require quality control and validation against independent observa-
tions. Additionally, the accuracy of the data series estimated through reanalysis can be
influenced by local conditions like elevation and wind regimes, as discussed in detail by
Muñoz-Sabater et al. [92] for ERA5-Land.

Similar to previous studies [8,13], reanalysis products exhibited positive biases of
up to 40% (in the case of MERRA2) for wind speeds. Nevertheless, considering slight
underestimations for solar radiation, the optimal configurations were consistent with those
from IDEAM by not including wind turbines, with a relative error for COE below 10%.
Follow-up studies in regions with higher wind power potential and performing a sensitivity
analysis on the initial cost of renewable energy technologies would provide further insight
regarding the impact and the applicability of global and regional reanalysis products on
the optimal system configuration.

The COE range between 83 EUR/MWh and 199 EUR/MWh observed in Table 4 for
both operational regimes is consistent with the results reported in recent studies eval-
uating renewable generation in Colombia. For instance, Villada et al. [93] found that
the levelized COE for solar panel technologies in Colombia was around 121 EUR/MWh
without considering government incentives; a similar approach is followed in this paper.
Castillo-Ramírez et al. [94] presented their computational tool, GeoLCOE, and geospatially
analyzed the LCOE for renewable projects in Colombia. Their findings indicate LCOE
values above 150 EUR/MWh for small PV projects in the La Guajira region. Contrary
to our findings related to those least-cost systems that include wind turbines, shown in
Table 5, Villada et al. [93] and Castillo-Ramírez et al. [94] indicate that wind power might be
a more attractive option in terms of COE than PV for utility-scale projects in coastal areas
of Colombia.

Based on the information in Table 2 and the COE results in Table 4, the cost of one
cubic meter of desalted water ranges between 0.40 EUR/m3 and 1.60 EUR/m3 considering
a continuous operating regime and between 0.20 EUR/m3 and 1.10 EUR/m3 for the 8 h
regime, with lower prices corresponding to higher ACS. To provide some perspective from
recent studies, the review by Bhojwani et al. [95] assessed small and utility-scale projects
for SWRO desalting plants, and they found that based on the electrical energy required
to produce water, these costs can be between 0.20 EUR/m3 and 0.40 EUR/m3. Saleh
and Mezher [96] used the information from fourteen projects to determine that, without
considering externalities, the operational cost of producing potable water using SWRO
ranges between 0.50 EUR/m3 and 2.00 EUR/m3. The review by Feria-Díaz et al. [59], who
indicates a range from approximately 0.20 EUR/m3 to 1.70 EUR/m3, highlights that the
cost of freshwater from SWRO is a function of the temperature and water source quality,
process scale, and, as evidenced by the results in Table 4, also the operating conditions and
energy source.

In Colombia, the cost of drinking water for homes in cities with full access to public
services ranges between approximately 0.20 EUR/m3 and 1.20 EUR/m3, depending on the
socioeconomic stratum [97]. However, this is not the situation in many areas of La Guajira,
where residents often have to rely on alternative water sources, such as water tanker trucks,
due to scarcity, with prices above 6 EUR/m3 [43,44]. In some cases, due to high demand,
each family can buy a maximum of 80 L [43]. Non-conventional solutions such as the one
evaluated in this paper are options to be considered to solve this social problem in the
study region [41,98].

According to Ong et al. [99], the total area of a small PV project with fixed panels,
similar to the configuration considered for the present study, corresponds to approximately
3 Ha/MW. Therefore, the optimal systems of the present study would require an area of
between 6 and 27 hectares for the solar park. To provide some context within La Guajira,
the Jepirachi wind farm, with an installed capacity of 19.5 MW from 15 NORDEX N60-
1300 turbines, covers an area of approximately 120 Ha (1 km wide and 1.2 km along the
coastline) [69]. The Potreritos PV project, approved in December 2021 by the National
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Environmental Licensing Authority, is planned to have an installed capacity of 168 MW,
covering an area of 278 Ha.

The excess of energy for all optimal configurations from IDEAM data was at least
10%, with higher proportions corresponding to more restrictive ACS levels. Figures 5 and 6
show clear differences between the two reanalyses concerning this variable, with MERRA2
exhibiting pronounced overestimations in all cases and ERA5-Land presenting a better fit
with the IDEAM baseline. This surplus from isolated systems is a common discussion topic
in this type of research, as minimizing the curtailment is a critical strategy for integrating
renewable resources into the power grids, improving economic performance, and reducing
greenhouse gas emissions. Besides selling this surplus from stand-alone systems to the
interconnected grid, other options include energy storage, electric vehicle charging, hy-
drogen fuel, and renewable gas production [1,78]. The quality of the data sources might
directly impact the accuracy and feasibility of these spin-off projects.

5. Conclusions

Using renewable energy sources is necessary to serve the growing electricity demand
and mitigate the effects of anthropogenic global warming caused by fossil fuels. In addi-
tion to the socioeconomic reality of developing countries, dealing with the possibility of
using renewable energy for potable water production systems and other basic needs is
of paramount importance to science and human societies’ well-being. The present article
assessed the performance of ERA5-Land and MERRA2 reanalysis data compared to ground
measurements in the preliminary optimization of a renewable energy-based water desali-
nation plant, seeking to improve understanding and decision making while contributing to
more sustainable and efficient energy planning for water production in data-scarce regions.

Based on performance metrics and results from a sensibility analysis conducted in
HOMER Pro, statistical analysis through hypothesis testing supports the feasibility of using
ERA5-Land data as an alternative solar resource input in the coastal zone of La Guajira,
Colombia, as it produced statistically similar optimal systems as those calculated from
IDEAM data. Considering this region’s water scarcity, the hypothetical system proposed for
sizing the load corresponds to a desalination plant, using representative energy and water
consumption data from the recent literature. Even if the performance metrics evaluating
MERRA2 produced relatively accurate results according to the literature, this failed to
translate into a system with no statistically significant differences from that sized from
IDEAM data. In addition, although both MERRA2 and ERA5-Land overestimate wind
speed by more than 20%, none of the optimal configurations in the sensitivity analysis
included wind turbines, even if the study area is in the vicinity of the Jepirachi Wind Farm,
indicating heterogeneity in the wind regime along the La Guajira coast.

Consequently, the 8 h operating regime produced lower electricity costs than the
continuous one. In addition, and considering that the system is not intended to serve
baseload, relaxing the ACS constraint to 5% allows the COE to be up to 40% lower than
in cases where no outages are allowed. While different nearby locations or wind turbine
models could result in different configurations with lower COE and curtailments, the
outcomes depend on data availability and quality, which is the focus of this research.

All optimal configurations of the sensitivity analysis resulted in renewable energy
fractions above 98%, with COE values close to those observed in the region. Although the
results indicate that the cost of producing water from SWRO in the region may be higher
than what is observed in other similar studies, they are significantly lower than the current
alternative for many people in the region who have to purchase water directly from water
tanker trucks.

The main limitation and cautionary note of this research is that it is based on records
from a single year due to the scarcity of data in the study area, which in turn was one
of the motivations of this work to assess the feasibility of using reanalysis data. Future
research directions might include considering a system for attending to the community’s
water production and electricity supply, employing longer time series in areas with higher
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wind power potential within the region, and employing correction methods to improve the
accuracy of reanalysis datasets.

Author Contributions: Conceptualization, F.A.C.; methodology, F.A.C. and A.B.; software, F.A.C.
and J.V.-B.; validation, F.A.C. and F.C.M.d.M.F.; formal analysis, F.A.C., J.V.-B. and F.C.M.d.M.F.;
investigation, J.V.-B., S.H.-C. and J.A.; writing—original draft preparation, F.A.C., J.V.-B., S.H.-C. and
F.C.M.d.M.F.; writing—review and editing, F.A.C. and A.B.; visualization, J.A.; supervision, A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available in
Mendeley Data at https://doi.org/10.17632/2kyf6yvsbh.1.

Acknowledgments: The authors are grateful for the support received by their institutions for the
research work that resulted in this paper. The corresponding author would like to acknowledge the
ideas of Daniela Ojeda and John Grimaldo from Universidad de la Costa that allowed setting the
direction of this research paper.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Wang, S.; Tarroja, B.; Schell, L.S.; Shaffer, B.; Samuelsen, S. Prioritizing among the End Uses of Excess Renewable Energy for

Cost-Effective Greenhouse Gas Emission Reductions. Appl. Energy 2019, 235, 284–298. [CrossRef]
2. Arribas, L.; Lechón, Y.; Perula, A.; Domínguez, J.; Ferres, M.; Navarro, J.; Zarzalejo, L.F.; Barquero, C.G.; Cruz, I. Review of Data

and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar Pv Power Plants Deployment, under a
Microgrid Scope. Energies 2021, 14, 7434. [CrossRef]

3. Mendoza-Fandiño, J.M.; Rhenals-Julio, J.D.; Ávila-Gómez, A.E.; Martínez-Guarín, A.R.; De la Vega González, T.D.; Durango-
Padilla, E.R. Heat Absorption Cooling with Renewable Energies: A Case Study with Photovoltaic Solar Energy and Biogas in
Cordoba, Colombia. Inge. Cuc. 2021, 17, 21–30.

4. Canales, F.A.; Jurasz, J.; Kies, A.; Beluco, A.; Arrieta-Castro, M.; Peralta-Cayón, A. Spatial Representation of Temporal Comple-
mentarity between Three Variable Energy Sources Using Correlation Coefficients and Compromise Programming. MethodsX 2020,
7, 100871. [CrossRef] [PubMed]

5. Wang, Y.-H.; Walter, R.K.; White, C.; Farr, H.; Ruttenberg, B.I. Assessment of Surface Wind Datasets for Estimating Offshore Wind
Energy along the Central California Coast. Renew. Energy 2019, 133, 343–353. [CrossRef]

6. Polo, J.; Wilbert, S.; Ruiz-Arias, J.A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; et al.
Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets. Sol. Energy
2016, 132, 25–37. [CrossRef]

7. Gualtieri, G. Analysing the Uncertainties of Reanalysis Data Used for Wind Resource Assessment: A Critical Review National
Centers for Environmental Prediction. Renew. Sustain. Energy Rev. 2022, 167, 112741. [CrossRef]

8. Chadee, X.T.; Clarke, R.M. Large-Scale Wind Energy Potential of the Caribbean Region Using near-Surface Reanalysis Data.
Renew. Sustain. Energy Rev. 2014, 30, 45–58. [CrossRef]

9. Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Kaźmierczak, B. Evaluation of Areal Monthly Average Precipitation
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