Impacts of Different Tourism Models on Rural Ecosystem Service Value in Ziquejie Terraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geographic Location
2.1.2. Tourism Models
2.2. Data Sources
2.3. Land Use Change Calculation
2.4. Ecosystem Service Value Evaluation Method
3. Results
3.1. Land Use Changes
3.1.1. Land Use Dynamic Analysis
3.1.2. Land Use Transfer Matrix Analysis
3.2. Total ESV Changes
3.3. Single ESV Changes
3.4. Welfare of Villagers from ESs
4. Discussion
4.1. The Impact of Tourism Model on Rural ESV
4.2. Policy Implications
4.3. Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wheeler, T.; Braun, J.V. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Li, X.D.; Min, Q.W. How to balance the relationship between conservation of Important Agricultural Heritage Systems (IAHS) and socio-economic development? A theoretical framework of sustainable industrial integration development. J. Clean. Prod. 2018, 204, 553–563. [Google Scholar] [CrossRef]
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.G.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.P.; Pinto-Correia, T.; Plieninger, T.; et al. Back to the future: Rethinking socio-ecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2020, 18, 36–42. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Carmona, A.; Laterra, P.; Barrena, J.; Aguayo, M. A mapping approach to assess intangible cultural ecosystem services: The case of agriculture heritage in Southern Chile. Ecol. Ind. 2014, 40, 90–101. [Google Scholar] [CrossRef]
- Tilliger, B.; Rodríguez-Labajos, B.; Bustamante, J.V.; Settele, J. Disentangling values in the interrelations between cultural ecosystem services and landscape conservation—A case study of the ifugao rice terraces in the Philippines. Land 2015, 4, 888–913. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.H.; Zhou, Z.X. Landscape pattern optimization approach to protect rice terrace Agroecosystem: Case of GIAHS site Jiache Valley, Guizhou, southwest China. Ecol. Ind. 2021, 129, 107958. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Agricultural Heritage: A Legacy for the Future. Available online: https://www.fao.org/giahs/background/en/ (accessed on 15 May 2023).
- Kajihara, H.; Zhang, S.; You, W.H.; Min, Q.W. Concerns and Opportunities around Cultural Heritage in East Asian Globally Important Agricultural Heritage Systems (GIAHS). Sustainability 2018, 10, 1235. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Chen, H.; Liang, X.Y.; Zhang, H.; Liu, D. Cultural ecosystem services valuation and its multilevel drivers: A case study of Gaoqu Township in Shaanxi Province, China. Ecosyst. Serv. 2020, 41, 101052. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, B.; Takemoto, K. Conservation of terraced paddy fields engaged with multiple stakeholders: The case of the Noto GIAHS site in Japan. Paddy. Water. Environ. 2014, 12, 275–283. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, Z.; Nakamura, K. Tourist preferences for agricultural landscapes: A case study of terraced paddy fields in Noto Peninsula, Japan. J. Mt. Sci. 2016, 13, 1880–1892. [Google Scholar] [CrossRef]
- Deng, C.X.; Wang, S.Y.; Liu, Y.J.; Li, Z.; Zhang, G.; Li, W.; Liu, C. Evolution of livelihood vulnerability in rice terrace systems: Evidence from households in the Ziquejie terrace system in China. Front. Sustain. Food. Syst. 2023, 7, 1031504. [Google Scholar] [CrossRef]
- Soriano, M.A.; Herath, S. Quantifying the role of traditional rice terraces in regulating water resources: Implications for management and conservation efforts. Agroecol. Sust. Food. 2018, 42, 885–910. [Google Scholar] [CrossRef]
- Castonguay, A.C.; Burkhard, B.; Müller, F.; Horgan, F.G.; Settele, J. Resilience and adaptability of rice terrace social-ecological systems: A case study of a local community’s perception in Banaue, Philippines. Ecol. Soc. 2016, 21, 15. [Google Scholar] [CrossRef]
- Mei, R.; Han, L.R. Evaluation System of Rural Sustainable Tourism Land Based on Ecosystem Service Value. Ecol. Chem. Eng. S 2022, 29, 347–369. [Google Scholar] [CrossRef]
- Wang, B.; Hu, C.; Li, J. Coupling and Coordination Relationship between the Tourism Economy and Ecosystem Service Value in Southern Jiangsu, China. Int. J. Environ. Res. Pub. Health 2022, 19, 16136. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Laurans, Y.; Rankovic, A.; Bille, R.; Pirard, R.; Mermet, L. Use of ecosystem services economic valuation for decision making: Questioning a literature blindspot. J. Environ. Manag. 2013, 119, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Droste, N.; D’Amato, D.; Goddard, J.J. Where communities intermingle, diversity grows—The evolution of topics in ecosystem service research. PLoS ONE 2018, 13, e0204749. [Google Scholar] [CrossRef] [PubMed]
- Riensche, M.; Castillo, A.; Flores-Díaz, A.; Maass, M. Tourism at Costalegre, Mexico: An ecosystem services-based exploration of current challenges and alternative futures. Futures 2015, 66, 70–84. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Zhang, D.; Min, Q.W.; Liu, M.C.; Cheng, S.K. Ecosystem service trade off between traditional and modern agriculture: A case study in Congjiang County, Guizhou Province, China. Front. Environ. Sci. Eng. 2012, 6, 743–752. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, G.C.; Shen, N.N.; Nie, Z.; Li, H.; Zhang, L.; Gong, Y.; He, Y.; Ma, X.; Zhang, H.; et al. Valuation of Ecosystem Services for the Sustainable Development of Hani Terraces: A Rice–Fish–Duck Integrated Farming Model. Int. J. Environ. Res. Pub. Health 2022, 19, 8549. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, R.C.; Xie, J.; Tian, J.J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China. Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Su, B.R.; Liu, M.C. Study on extra services of integrated agricultural landscapes: A case study conducted on the Coastal Bench Terrace System. Ecol. Ind. 2022, 145, 109634. [Google Scholar] [CrossRef]
- Bai, Y.Y.; Min, Q.W.; Zuo, Z.F. Ziquejie Terraces in Xinhua County, Hunan; China Agriculture Press: Beijing, China, 2017; pp. 30–32. [Google Scholar]
- Zhang, S.M.; Zhong, L.S.; Wang, L.E. Research on the development model of rural tourism in China based on tourism system theory. Geogr. Res. 2012, 31, 2094–2103. (In Chinese) [Google Scholar]
- Li, Q.S. Development Modes and Cases Analysis of Rural Tourism in Japan. Contemp. Econ. Jan. 2020, 2, 72–80. (In Chinese) [Google Scholar]
- Li, D.M.; Chen, J.M. An investigation into the patterns and strategies of mutual sustainable development of rural tourism and economy. Hum. Geogr. 2005, 3, 84–87. (In Chinese) [Google Scholar]
- Wang, Y.C. The new form and model of rural tourism development in China. Tour. Trib. 2006, 4, 8. (In Chinese) [Google Scholar]
- Lu, Y.J. The mechanism and model of deep integration of culture and tourism based on decoding cultural genes. Soc. Sci. 2023, 8, 64–69. (In Chinese) [Google Scholar]
- Ma, X.; Ren, Z.; Sun, G. The calculation and assessment to the values of air purification by vegetation in Xi’an City. Chin. J. Ecol. Agric. 2004, 12, 180–182. (In Chinese) [Google Scholar]
- Zhao, T.Q.; Ouyang, Z.Y.; Zheng, H. Forest ecosystem service function and its value evaluation in China. J. Nat. Resour. 2004, 4, 480–491. (In Chinese) [Google Scholar]
- Kang, W.X.; Tian, D.L. Economic evaluation of forest public welfare efficiency in Hunan Province. J. C. S. Univ. For. Technol. 2001, 4, 1–4. (In Chinese) [Google Scholar]
- Wang, J.G. Evaluation of climatic ecological services of Ebi Lake wetland. Wetl. Sci. Manag. 2007, 2, 38–41. (In Chinese) [Google Scholar]
- Yin, D.Y.; Zhang, Q.J.; Zhai, T.T. Land use change and its impact on ecosystem service value in Shandong Province. Bull. Soil. Water. Conserv. 2018, 38, 134–143. (In Chinese) [Google Scholar]
- Yang, J.; Guo, A.D.; Xi, J.C.; Ge, Q.; Li, X. Spatial-temporal differentiation of three-dimensional urban landscape pattern:A case study of Zhongshan District in Dalian. Acta. Geogr. Sin. 2017, 72, 646–656. (In Chinese) [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 3 April 2023).
- Li, G.; Chen, W.; Zhang, X.; Yang, Z.; Bi, P.; Wang, Z. Ecosystem Service Values in the Dongting Lake Eco-Economic Zone and the Synergistic Impact of Its Driving Factors. Int. J. Environ. Res. Public Health 2022, 19, 3121. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. The economic and environmental performances of rural districts in Italy: Are competitiveness and sustainability compatible targets? Ecol. Econ. 2011, 70, 2446–2453. [Google Scholar] [CrossRef]
- Li, J.H.; Bai, Y.; Alatalo, J.M. Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Ding, B.; Li, X.M.; Sun, X.H.; Wang, R.Q.; Zhang, S.P. Impacts of economic development models on ecosystem service values: A case study of three mountain villages in Middle Shandong, China. Acta. Ecol. Sin. 2016, 36, 3042–3052. (In Chinese) [Google Scholar]
- Wang, X.C.; Dong, X.B.; Liu, H.M.; Wei, H.J.; Fan, W.G.; Lu, N.C.; Xu, Z.H.; Ren, J.H.; Xing, K.X. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, F.; Jiao, Y.M.; Liu, C.J.; Zhao, D.M.; Liu, Z.L.; Xu, Q.; Qiu, Y.M. Impacts of village land use change on ecosystem services and human well-being under different tourism models in Hani Rice Terrace. Acta. Ecol. Sin. 2020, 40, 5179–5189. (In Chinese) [Google Scholar]
- Fisher, J.A.; Patenaude, G.; Giri, K.; Lewis, K.; Meir, P.; Pinho, P.; Rounsevell, M.D.A.; Williams, M. Understanding the relationships between ecosystem services and poverty alleviation: A conceptual framework. Ecosyst. Serv. 2014, 7, 34–45. [Google Scholar] [CrossRef]
- Heubach, K.; Wittig, R.; Nuppenau, E.A.; Hahn, K. The economic importance of non-timber forest products (NTFPs) for livelihood maintenance of rural west African communities: A case study from northern Benin. Ecol. Econ. 2011, 70, 1991–2001. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Yan, H.M.; Zhang, F.; Wei, X.Q. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Ind. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Martínez-Sastre, R.; Ravera, F.; González, J.A.; López Santiago, C.; Bidegain, I.; Munda, G. Mediterranean landscapes under change: Combining social multicriteria evaluation and the ecosystem services framework for land use planning. Land. Use. Pol. 2017, 67, 472–486. [Google Scholar] [CrossRef]
- Liu, J.; Yue, M.T.; Liu, Y.M.; Wen, D.; Tong, Y. The Impact of Tourism on Ecosystem Services Value: A Spatio-Temporal Analysis Based on BRT and GWR Modeling. Sustainability 2022, 14, 2587. [Google Scholar] [CrossRef]
Zhenglong | Ziquejie | Jizhai | |
---|---|---|---|
Tourism models | Cultural and tourism integration | Farmstay type | Sightseeing type |
Main tourism projects | Sightseeing, photography, tourism reception, and cultural experience | Sightseeing, photography, tourism reception | Sightseeing, photography |
Experience content | Enjoy the terraced scenery and experience Meishan culture | Enjoy the terraced scenery, farm accommodation | Enjoy the terraced scenery |
Participation degree of villagers | High | Medium | Low |
Degree of cultural inheritance | High | Low | Low |
Degree of cultural resources utilization | High | Low | Low |
Data Type | Data Description | Data Sources |
---|---|---|
Land use data | High-resolution satellite images with a resolution of 5 m | Google Earth |
Meteorological data | The number of hot days in summer | Meteorological Department of Xinhua County |
The average daily water evaporation in the farmland | ||
Mean annual precipitation | ||
Annual average temperature | ||
Soil data | SOM, N, P, K contents in the soil | The Third Land Survey of Xinhua County |
Soil bulk density | ||
Erosion modulus of wasteland | Water Resources Department of Xinhua County | |
Actual erosion modulus | ||
Other ecological parameters | The average emission flux of CH4, N2O, CO2 in farmland | Agricultural Technology Station of Shuiche Town |
The soil water infiltration rate in farmland | ||
The carbon content of rice root system and straw | ||
The moisture content of rice | ||
The number of days of standing water period of rice | Field survey | |
The number of days of growth period of rice | ||
The average ridge height of rice field | ||
The depth of standing water in rice field | ||
The average fluxes of SO2, NOx, HF, and dust absorbed by the farmland, woodland, and water | Published literature [33,34,35,36] | |
The amount of nutrient elements from forest litter returned to forest land | ||
The transpiration coefficient of woodland | ||
Statistical data | The purification cost of SO2, NOx, HF, and dust | Ecology and Environment Department of Hunan (http://sthjt.hunan.gov.cn (accessed on 2 May 2024)) |
The cost of industrial oxygen production | ||
The Swedish carbon tax rate | http://www.tanjiaoyi.com/ (accessed on 2 May 2024) | |
The unit price of reservoir engineering fee usage | Water Resources Department of Xinhua County | |
The yield and price of agricultural and forestry products | Field survey | |
The price of coal and fertilizer | ||
The pesticide costs | ||
The number of visitors | ||
Total tourism revenue |
Section | Division | ES | Farmland Ecosystem | Woodland Ecosystem | Water Ecosystem | Evaluation Method |
---|---|---|---|---|---|---|
Provisioning | Biomass | Providing primary product | √ | √ | Market price method | |
Water | Surface water for drinking | √ | Market price method | |||
Regulation & Maintenance | Transformation of biochemical or physical inputs to ecosystems | Air purification | √ | √ | √ | Protection cost method |
Water purification | √ | Protection cost method | ||||
Regulation of physical, chemical, and biological conditions | Control of erosion rates | √ | √ | Opportunity cost method and shadow project method | ||
Water resources storage | √ | Shadow project method | ||||
Groundwater recharge | √ | √ | Shadow project method | |||
Flood control | √ | √ | Shadow project method | |||
Increase of fauna diversity and micro-organisms | √ | √ | √ | Ecological value method, Shannon–Wiener index evaluation method | ||
Reducing pesticides and herbicides | √ | Substitute cost method | ||||
Maintaining soil nutrients | √ | √ | Substitute cost method | |||
Regulation of chemical composition of atmosphere | √ | √ | √ | Carbon tax method and industrial oxygen method | ||
Temperature regulation | √ | √ | √ | Substitute cost methods and outcome parameter method | ||
Cultural | Direct, in situ, and outdoor interactions with living systems that depend on presence in the environmental setting | Development of tourism | √ | Travel cost method | ||
Cultural inheritance | √ | Substitute cost method |
Land Types | Zhenglong Village | Ziquejie Village | Jizhai Village | ||||||
---|---|---|---|---|---|---|---|---|---|
2006–2014 | 2014–2022 | 2006–2022 | 2006–2014 | 2014–2022 | 2006–2022 | 2006–2014 | 2014–2022 | 2006–2022 | |
Farmland | −0.51 | −0.20 | −0.35 | −0.70 | −0.16 | −0.43 | −0.51 | −0.74 | −0.61 |
Woodland | 0.19 | 0.06 | 0.13 | 0.37 | −0.11 | 0.13 | 0.1 | 0.65 | 0.38 |
Water area | −0.14 | −0.75 | −0.44 | 1.14 | −0.37 | 0.37 | 2.4 | 0.00 | 1.21 |
Built-up area | 2.73 | 1.14 | 2.06 | 2.71 | 2.42 | 2.83 | 5.72 | 2.02 | 4.33 |
Section | ES | Zhenglong Village | Ziquejie Village | Jizhai Village | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2014 | 2022 | 2006 | 2014 | 2022 | 2006 | 2014 | 2022 | ||
Provisioning | Providing primary product | 268.34 | 683.57 | 717.40 | 366.91 | 922.18 | 857.17 | 154.08 | 390.97 | 340.23 |
Surface water for drinking | 15.10 | 17.54 | 17.42 | 22.59 | 26.24 | 26.07 | 10.00 | 11.62 | 11.54 | |
Regulation & Maintenance | Air purification | 256.85 | 183.39 | 581.33 | 304.01 | 219.86 | 687.57 | 87.65 | 62.10 | 205.16 |
Water purification | 0.10 | 0.10 | 0.08 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | |
Control of erosion rates | 377.51 | 317.00 | 300.91 | 397.43 | 339.51 | 321.41 | 137.97 | 114.64 | 109.88 | |
Water resources storage | 34.45 | 30.90 | 26.71 | 12.72 | 12.59 | 11.23 | 12.12 | 13.12 | 12.06 | |
Groundwater recharge | 1806.50 | 1578.90 | 1430.21 | 2463.03 | 2120.08 | 1923.86 | 1011.63 | 882.41 | 767.08 | |
Flood control | 364.44 | 317.98 | 286.54 | 473.08 | 406.37 | 368.49 | 203.86 | 179.58 | 155.90 | |
Increase in fauna diversity and micro-organisms | 1733.62 | 1826.87 | 3168.17 | 2077.54 | 2079.39 | 3487.99 | 629.55 | 639.50 | 1248.59 | |
Reducing pesticides and herbicides | 15.39 | 18.57 | 17.29 | 21.19 | 25.15 | 23.50 | 8.88 | 10.71 | 9.54 | |
Maintaining soil nutrients | 91.08 | 72.30 | 68.92 | 119.26 | 93.66 | 88.29 | 45.01 | 35.16 | 31.96 | |
Gas regulation | 793.53 | 639.97 | 737.36 | 875.98 | 736.84 | 408.81 | 195.74 | 172.01 | 101.27 | |
Climate regulation | 1720.24 | 1273.77 | 2450.03 | 1590.77 | 1245.58 | 2933.82 | 793.92 | 620.54 | 1269.34 | |
Cultural | Development of tourism | 0.00 | 20.95 | 283.94 | 43.22 | 150.82 | 304.26 | 0.00 | 14.08 | 16.67 |
Cultural inheritance | 0.00 | 12.32 | 38.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Total | 7477.15 | 6994.13 | 10,125.21 | 8767.77 | 8378.31 | 11,442.50 | 3290.44 | 3146.48 | 4279.27 | |
Per unit area | 8.26 | 7.72 | 11.18 | 7.67 | 7.33 | 10.01 | 8.32 | 7.96 | 10.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Mo, M.; Xie, Y.; Liao, Q. Impacts of Different Tourism Models on Rural Ecosystem Service Value in Ziquejie Terraces. Sustainability 2024, 16, 4945. https://doi.org/10.3390/su16124945
Shi J, Mo M, Xie Y, Liao Q. Impacts of Different Tourism Models on Rural Ecosystem Service Value in Ziquejie Terraces. Sustainability. 2024; 16(12):4945. https://doi.org/10.3390/su16124945
Chicago/Turabian StyleShi, Juan, Ming Mo, Yimin Xie, and Qianying Liao. 2024. "Impacts of Different Tourism Models on Rural Ecosystem Service Value in Ziquejie Terraces" Sustainability 16, no. 12: 4945. https://doi.org/10.3390/su16124945
APA StyleShi, J., Mo, M., Xie, Y., & Liao, Q. (2024). Impacts of Different Tourism Models on Rural Ecosystem Service Value in Ziquejie Terraces. Sustainability, 16(12), 4945. https://doi.org/10.3390/su16124945