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Abstract: The seriousness of vessel air pollution has forced the International Maritime Organization
(IMO) to introduce a series of relevant laws and regulations. This paper proposes a monitoring scheme
based on the synergistic operation of motherships and UAVs. This scheme innovatively adopts a
harbor sea patrol vessel or the other official vessel (mothership) as the mobile power supply base for
UAVs and realizes efficient and accurate monitoring of vessel air pollution in the pre-monitored area
at sea by carrying multiple UAVs. The focus of this paper is on the path optimization problem for
multi-UAV collaboration with mothership (MUCWM) monitoring, where the objective is to minimize
the total monitoring time for MUCWM. The following three main aspects are studied in this paper:
(1) multi-UAV monitoring path optimization; (2) the collaboration mechanism between the moth-
ership and multiple UAVs; and (3) mothership traveling path optimization. In order to effectively
solve the above problems, this thesis constructs a path optimization model for multi-UAV collabo-
rative mothership monitoring of air pollution from vessels in port waters; solves the model using
the improved adaptive differential evolution (IADE) algorithm; and verifies the effectiveness of
the model and the algorithm by using the position data in the Automatic Identification System
(AIS) of vessels in Ningbo Zhoushan Port. Through the performance comparison and sensitivity
analysis of the algorithm, it is confirmed that the algorithm can effectively solve the path planning
problem of the collaborative operation between the mothership and multiple UAVs. The research
results in this paper not only help to reduce the air pollution level of harbor vessels and improve the
efficiency of sea cruising but also play an important supporting role in the enforcement of relevant
emission regulations.

Keywords: vessel atmospheric pollution; UAVs; path optimization; collaborative mechanism; differential
evolution algorithm

1. Introduction

In recent years, international shipping has rapidly expanded as a low-cost way to
transport bulk commodities [1], accounting for over 90% of global trade [2]. According to
the United Nations’ 2023 Review of Maritime Transport report, maritime trade is expected
to grow by 2.4% in the post-pandemic era [3]. However, as the shipping industry flourishes,
the environmental issues associated with marine fuels are becoming more apparent [1].
Vessel air pollution is now recognized as the third primary source of pollution, after vehicle
exhaust and industrial emissions. [4]. Vessels emit significant pollutants such as carbon
dioxide (CO2), nitrogen oxides (NOX), sulfur oxides (SOX), and particulate matter (PM)
while navigating. Global data indicate that SOX emissions from vessels make up 10–15% of
total human activity emissions [5]. These pollutants not only lead to ocean acidification [1,6]
but also cause various respiratory diseases in humans. Studies show that vessel pollution
has become a major source of air pollution in port cities, particularly from container vessels
powered by high-sulfur fuels exceeding 3.50% sulfur content, which severely pollute nearby
waters and air [7].
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Serious environmental and health concerns have compelled the International Maritime
Organization (IMO) to take decisive actions. Since 2015, the IMO has established four
Emission Control Areas (ECAs) in the Baltic Sea, the North Sea, North America, and the U.S.
Caribbean. The organization intends to establish additional Emission Control Areas (ECAs)
in various regions to minimize pollution from vessels [8]. The International Maritime
Organization (IMO) now mandates that vessels entering these ECAs utilize fuel containing
less than 0.1% m/m sulfur content [9]. In 2020, the IMO’s Marine Environment Protection
Committee (MEPC) set a global limit on sulfur content in marine fuels at 0.50% m/m [10]. In
the same year, the Maritime Safety Administration under China’s Ministry of Transportation
declared the “2020 Global Marine Fuel Sulfur Restriction Implementation Plan” along with
the “Guidelines for the Supervision and Management of Air Pollutant Emissions from
Ships”. According to these guidelines, the sulfur content of fuel used by vessels in inland
waterway emission control areas must be no more than 0.1% m/m. Additionally, the sulfur
content in the fuel used by ships operating within coastal air pollution control areas and on
international journeys in non-emission control areas should not surpass 0.5% m/m [11].
Despite these regulations, the extra costs of purchasing gas purification devices or using
low-sulfur fuels lead some shipping companies to violate these rules to cut costs. Methods
include using cheaper, high-sulfur fuels, shutting down pollution control equipment in
ECAs, and falsifying vessel logs and fuel consumption records [1]. Historical data indicate
that non-compliance rates can reach as high as 12.3% [11].

There are two main traditional methods for monitoring air pollution from vessels. The
first is manual boarding, which includes taking oil samples, checking oil change records
in the logbook, and using a rapid sulfur detector for marine fuel oil. The second method
involves real-time tracking of air quality using land-based environmental monitoring
stations. However, both methods have drawbacks. They are inefficient, susceptible to
environmental influences, and offer limited monitoring coverage. This is particularly
problematic during emergencies such as epidemics, when manual boarding and testing
become almost impossible.

UAVs are characterized by high flexibility, no geographical restrictions, and high
operability [12]. As UAV technology continues to develop, its use in the shipping industry
is becoming increasingly widespread. UAVs are now used for port infrastructure security
inspections, maritime oil spill monitoring, ship piloting, maritime smuggling detection,
and hazardous chemical inspections at ports [13–17]. Additionally, UAVs have started to
be employed in vessel air pollution monitoring. For instance, on 20 May 2020, a DJI M210
UAV, named “Rhinoceros V2” and equipped with a system for detecting air pollution,
carried out exhaust gas measurements close to the Ganjiang Marine Office of the Yangzhou
Maritime Bureau in China [18]. On 5 January 2021, Zhangjiagang Maritime Bureau used a
UAV-mounted gas detector to detect a vessel with excessive sulfur emissions [19]; on 26
June 2022, Changshu Maritime Bureau used a UAV to monitor air pollution from vessels
and inspected and found a vessel with an exhaust sulfur value of 3.0% m/m or more [20];
on 20 October 2022, the Port of Rotterdam Authority attempted to apply the new Aera3
UAV for monitoring air pollution emissions from vessels [21]. These instances show that
UAVs are a feasible and promising tool for monitoring air pollution from vessels [7].

However, the above-mentioned studies are still nascent, with several critical issues
needing resolution:

(1) The energy constraints of UAVs [22].
(2) The limitation of the size of the sea area that can be monitored [8].
(3) The limitation on the number of vessels that can be monitored [8].

To further optimize the research on monitoring air pollution from vessels using UAVs,
it is essential to thoroughly explore and address these issues. This paper proposes a
monitoring scheme involving a mothership and multiple UAVs working in concert. In
this case, the mothership could be a port sea patrol ship or the other official ship. We
have developed a path optimization model for MUCWM monitoring of air pollution from
vessels in port waters, aiming to minimize the total monitoring time.
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The core focus of this paper is the path planning problem for UAVs collaborating
with a mothership to monitor air pollution from vessels. This involves three main aspects:
(1) optimizing the monitoring paths for multiple UAVs, (2) developing a synergy mecha-
nism between the mothership and multiple UAVs, and (3) optimizing the travel path of the
mothership. We have created a path planning model for MUCWM monitoring designed to
minimize the total time needed to complete the monitoring task.

The purpose of this study is to explore how the mothership and UAVs can monitor
air pollution from port vessels in a collaborative manner. Based on the self-constructed
path optimization model for the joint operation of the mothership and UAVs to monitor
the air pollution from port vessels and solved by using the improved adaptive differential
evolution (IADE) algorithm, the optimization of the monitoring paths of the UAVs, the
collaborative work between the mothership and the UAVs, and the optimization of the
travel paths of the mothership are implemented. In the case study, the effectiveness of
the proposed model and algorithm is verified by using the vessel position data from the
Automatic Identification System (AIS) of Ningbo Zhoushan Port. The experimental results
show that our algorithm can effectively plan the traveling paths of the mothership and
UAVs in collaborative operations, which is of great theoretical significance and application
value for the study of UAVs monitoring air pollution from vessels in port.

The contributions of this study are significant: (1) We propose a novel path planning
model for UAV collaborative mothership monitoring of air pollution from vessels. This
model optimizes paths for both UAVs and the mothership working together. (2) We employ
the IADE algorithm to solve the model. We have verified the superiority of this algorithm
through performance comparisons and sensitivity analysis. (3) We conducted numerical
experiments using vessels in the sea area around Zhoushan Port in Ningbo, China. We
gathered position data for 100 ships from the Automatic Identification System (AIS) to
validate the feasibility of our algorithm.

The innovations of this paper are as follows: (1) Model innovation: This study pro-
poses a path optimization model for multi-UAV collaborative with mothership (MUCWM)
surveillance. The model also optimizes the collaborative monitoring routes of the moth-
ership and multiple UAVs, and this method can effectively reduce the overall operation
time and improve monitoring efficiency. Therefore, the solution strategy of path planning
in this paper can provide a useful reference for other scholars engaged in related research.
(2) Algorithm innovation: In this paper, we propose an improved adaptive differential
evolution (IADE) algorithm based on the collaborative operation of the mothership and
multiple UAVs, which successfully solves the path planning problem of UAVs collaborating
with the mothership to monitor the air pollution of port vessels. After comparative analysis,
the algorithm demonstrates strong search capability and convergence speed, which sig-
nificantly improves the efficiency and performance of the problem, and thus better meets
the requirements of practical applications. The algorithm is especially suitable for harbor
environments, where fast problem-solving is required.

The remaining sections of this paper are structured as follows: Section 2 outlines the
related literature. The methodology for establishing the MUCWM model and implementing
the algorithm is detailed in Sections 3 and 4, respectively. Section 5 presents the experiments
and the results, with the conclusion following in Section 6.

2. Literature Review
2.1. Vehicle-Mounted Drone Scheduling

The vehicle-mounted drone scheduling problem is typically modeled as a variant of
the Traveler Problem (TSP) or the Vehicle Path Problem (VRP), with the choice depending
on the number of vehicles involved. The Traveling Salesman Problem with Drones (TSP-
D) addresses scenarios where one vehicle and one or more drones are collaboratively
optimized for operation. In contrast, the Vehicle Routing Problem with Drones (VRP-D)
applies to cases involving multiple vehicles and multiple drones, all optimized together.
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The primary optimization objectives include minimizing the total time, reducing the joint
routing costs, and decreasing the customer’s waiting time.

In the problem presented in this paper, the mothership can be viewed as a truck for
joint distribution with multiple UAVs, and the decision objective is also to minimize the
total time for mothership and multi-UAV monitoring, which can be viewed as a variant
form of the TSP-D scientific problem.

2.1.1. Vehicle-Mounted Drone Scheduling (TSP-D)

The TSP-D draws inspiration from Murray and Chu [23], who introduced two related
problems: the Flight Side Kick Traveling Salesman Problem (FSTSP) and the Parallel Drone
Scheduling Traveling Salesman Problem (PDSTSP). These aim to minimize the total delivery
time for a single vehicle and drone. They proposed two Mixed Integer Programming (MIP)
formulations and two simple heuristics, tested on scenarios with up to 10 customers. Agatz
et al. [24] explored a similar problem called TSP-D, which differs from FSTSP by allowing
the return to previously visited nodes and waiting to receive drones at the launch site. It
also considers the drones’ maximum flight distance and uses an Integer Linear Program
(ILP) to choose the best sequence of operations to minimize completion time.

Bouman et al. [25] developed a dynamic programming-based exact approach to TSP-D,
capable of solving much larger instances. Ha et al. [26] introduced a Minimum-Cost TSP-D,
aimed at reducing the total transportation cost through two algorithms: a local search-
based TSP-LS and a Greedy Random Adaptive Search Procedure (GRASP). Yurek and
Ozmutlu [27] devised an iterative optimization algorithm for TSP-D that breaks down the
problem into finding truck routes and then optimizing these routes using a mixed-integer
linear program. Tu et al. [28] extended the TSP-D to include multiple UAVs traveling with
the truck, creating a new variant called “TSP-mD”.

2.1.2. Vehicle-Mounted Drone Scheduling (VRP-D)

The VRP-D extends the classic Vehicle Routing Problem (VRP) by allowing both
trucks and drones to independently serve customers, creating a many-to-many relationship
between these vehicles. Wang et al. [29] first proposed the VRP-D, which focuses on
delivering goods using multiple vehicles and drones. The objective is to minimize the
total task duration, assigning multiple customers to each drone per dispatch. The model
tests several worst-case scenarios to explore the potential time savings from integrating
trucks with drones compared to using trucks alone. Poikonen et al. [30] extended this
work by considering the battery life of drones and expanding the range of the worst-case
scenarios examined. Kitjacharoenchai et al. [31] developed a model that coordinates trucks
and multiple drones to synchronize package delivery, aiming to minimize the time it takes
for both vehicle types to reach the warehouse. Dayarian et al. [32] introduced a “drone
resupply” model, termed the “Vehicle Route Problem for Drone Resupply” (VRPDR). This
model involves a collaboration between a group of drones and vehicles to deliver online
orders from a fulfillment center to a home. Karak and Abdelghany [33] introduced the
“Hybrid Vehicle Drone Routing Problem” (HVDRP), in which several drones are deployed
from a central mother ship to execute numerous pickups and deliveries at the same time.
Poikonen and Golden [34] recently developed the “k-Multi-visit Drone Routing Problem”
(k-MVDRP), which considers tandem connections between trucks and k drones, allowing
drones to deliver one or more packages to customers.

Another significant research direction in the VRP-D is the Vehicle Routing Problem
with Time Window and Drones (VRPTWD). Guerriero et al. [35] proposed a VRPTWD
model that considers a soft time window and focuses on customer satisfaction. Phan and
Suzuki [36] investigated a variant of this problem that includes simultaneous receiving
and sending constraints with a multi-objective optimization approach. Schermer et al. [37],
Wang et al. [38], and Sacramento et al. [39] have also proposed variant forms of the VRP-D.
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2.2. Research Status of UAV Electric Energy Mobile Supply

Typical approaches to tackle the UAV charging problem involve the use of station-
ary charging stations and mobile charging vehicles (MCVs) [40]. Recently, significant
research has focused on mobile replenishment strategies for UAVs [41]. Yu et al. [42]
utilized unmanned ground vehicles (UGVs) to replenish UAVs. Their goal was to allow
energy-restricted UAVs to visit a series of stations in the least amount of time, introducing
an autonomous UAV charging model grounded in the generalized traveling salesman prob-
lem (GTSP). They categorized the problem into three types: Multiple Stationary Charging
Stations (MSCS), Single Mobile Charging Stations (SMCS), and Multiple Mobile Charging
Stations (MMCS). Inspired by aerial refueling, Zhu et al. [43] introduced a novel concept
for aerial charging of UAVs on missions through wireless power transmission. They cate-
gorized UAVs into charging UAVs (CUAVs) and mission-performing UAVs (MUAVs) and
developed a Deep Reinforcement Learning (DRL)-based scheduling algorithm to optimize
the flight paths of both UAV types. Zhou et al. [44] showcased a collaborative network
involving UAVs and ground vehicles. In this arrangement, a sub-network of UAVs in the air
assists a sub-network of ground vehicles via air-to-air and ground interactions. The ground
vehicles function as energy supervisors and chargers for the UAVs. This network structure
has been effective in areas like pollution monitoring, disaster response, and information
distribution. Luo et al. [45] investigated a two-echelon cooperative routing issue involving
ground vehicles (GVs) and their onboard unmanned aerial vehicles (UAVs). In this config-
uration, the GVs function as mobile support units for the UAVs. They formulated a novel
0–1 integer planning model that accounts for the spatio-temporal cooperative constraints
affecting the routes of both GVs and UAVs. To address the model, they introduced two
heuristic methods: the first creates a comprehensive route covering all targets, while the
second devises a travel path for the GVs and synchronizes the flight paths of the UAVs.

2.3. A Study of Path Planning for Monitoring Air Pollution from Vessels with UAVs

The use of unmanned aerial vehicles (UAVs) to monitor air pollution from vessels has
attracted considerable academic interest. Scholars have conducted research in this area:
Xia et al. [8] solved the path planning problem for UAV monitoring of air pollution from
vessels in emission control areas (ECAs). They proposed a mixed-integer linear program-
ming model based on time-expanded networks and developed a solution method using
Lagrangian relaxation techniques. Shen et al. [46] addressed the path planning problem
of multiple UAVs for collaborative monitoring of marine air pollution in harbors. They
constructed a dynamic multi-objective path planning model and proposed a UAV path
planning algorithm for dynamic environments. Yuan et al. [47] developed an enhanced
tracking algorithm for UAV gas sensor systems to monitor marine vessel emissions. Sun
et al. [1] improved the ACO algorithm to solve the UAV path planning problem for mon-
itoring vessel air pollution. They introduced a hierarchical pheromone update strategy
and a partition-based pheromone management mechanism to enhance the traditional ACO
algorithm. Luo et al. [48] also developed an improved ACO algorithm for scenarios involv-
ing a large number of vessels and UAV base stations. Table 1 summarizes the studies on
UAV path planning for monitoring air pollution from vessels. Sun et al. [7] introduced a
dynamic scheduling strategy based on reinforcement learning (RL) that takes into account
the fluctuations in the speed and direction of ships at sea and thus significantly reduces the
flight speed of the UAV.

Currently, most of the research on UAV monitoring of air pollution from vessels focuses
on the shore-based replenishment method. This method limits the monitoring range of the
UAV, and in this mode, the UAV needs to return to shore frequently to recharge, consuming
a large amount of electrical energy for the round trip. This reduces the efficiency of energy
utilization and increases the time required for the UAV to complete the monitoring task. To
address this current problem, Shen et al.’s study [12] explored the use of a ship as a mobile
supply station for UAVs. However, the problems not addressed in this study include the
following: (1) the possibility of releasing the UAVs prematurely; (2) the charging time of
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the UAV is not considered; (3) the travel route of the loaded ship is determined at the initial
stage, and the paths of the loaded ship and the UAVs are not planned at the same time; and
(4) the simulated annealing artificial swarm algorithm, which is designed to be influenced
by the initial solution, is highly affected by the initial solution.

Table 1. Summary of research on UAV monitoring of air pollution from vessels.

Literature Collaboration
Object

Electricity Supply
Method UAV Routing Carrier Routing Collaborative

Approach

Xia et al. [8] N Shore-based Y N N
Shen et al. [22] N Shore-based Y N N
Yuan et al. [23] N N N N N

Sun et al. [1] N Shore-based Y N N
Luo et al. [24] N Shore-based Y N N
Sun et al. [7] N N Y N N

Shen et al. [12] Ship Mobile supply Y Y Step by step
This study Mothership Mobile supply Y Y Synchronize

Y: Yes; N: No

2.4. Literature Summary

Currently, research on using UAVs to monitor vessel air pollution is still in the early
stages. Although there have been several related studies, challenges such as UAV electrical
energy constraints remain. This paper utilizes the mothership as the mobile electric energy
supply base for UAVs to address the issue of monitoring vessel air pollution. This approach
has relevance to research on vehicle-mounted drone scheduling and UAV mobile resupply.
Section 2.1 indicates that the vehicle-mounted UAV scheduling problem typically represents
a variant of the Traveling Salesman Problem with Drones (TSP-D) or the Vehicle Routing
Problem with Drones (VRP-D). Section 2.2 indicates that most existing studies on mobile
supply bases for UAV electrical energy are based on shore, with only a few attempts to
utilize a loading ship as a mobile supply base for UAVs. Optimization was carried out to
address the possible problems in the only article proposing the study of mobile resupply
bases, Shen et al. [12]. In the model of this paper, (1) the release and recovery operations
of the UAVs are not synchronized, but are carried out independently according to the
actual monitoring needs; (2) the UAV charging time is taken into account for the modeling;
(3) the collaborative monitoring routes of the mothership and multiple UAVs are optimized
simultaneously, which can minimize the overall operation time; (4) the improved adaptive
differential evolution (IADE) algorithm is applied to this problem scenario, the search
performance and convergence ability of the algorithm are enhanced by the improved
strategy, and finally, the effectiveness of the IADE algorithm is verified by an algorithm
performance comparison and sensitivity analysis. The monitoring scheme in this paper
provides a more ideal solution for multi-UAV collaborative monitoring of air pollution from
vessels in a harbor and improves the monitoring efficiency of air pollution from vessels in
harbor waters. Table 1 provides a summary of research on UAV monitoring of air pollution
from vessels.

3. Construction of MUCWM Model

In this section, we established a path optimization model for multiple UAVs to collab-
orate with a mothership to monitor vessel air pollution in the port.

3.1. Problem Description

The workflow of the monitoring of air pollution from vessels in the harbor imple-
mented by the mothership in collaboration with multiple shipborne UAVs is shown in
Figure 1, where M denotes the mothership, v1-v10 denote the monitored ships, u1–u3 denote
the UAVs, c1–c9 denote the candidate supply bases, the blue solid line in the figure denotes
the traveling path of the mothership, the solid lines of other colors denote the sailing path
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of the UAVs, and the dashed lines denote the paths of the UAVs flying to the supply points.
First, the mothership carries the UAVs from the harbor shore to cruise along the prede-
termined monitoring route. The shipborne UAVs take off from the mothership, fly to the
location of the vessel to be monitored in the harbor waters, monitor the concentration of its
emissions in the vessel’s plume, and fly to the location of the next vessel immediately after
the monitoring until the energy is not enough to maintain the subsequent monitoring tasks;
then they return to the mothership to replenish the electric power and continue to perform
the monitoring tasks when all of the monitoring tasks are completed. After completing the
monitoring tasks of all the vessels, the UAVs will be recovered and carried away from the
harbor area by the mothership and return to the departure point of the harbor.
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The main decision problem for the above monitoring effort is how to plan the cruise
paths of the mothership and the multiple shipborne UAVs in such a way as to minimize
the time of the total monitoring mission. Issues to be considered in this problem include
the following:

(1) How to allocate and optimize the UAV monitoring sequence, that is, the collection of
vessels monitored by UAVs and the monitoring sequence.

(2) How to optimize the driving path of the mothership. This problem involves the
selection of the UAV energy supply location.

(3) How to realize the cooperation between the mothership and UAV. The goal to be
achieved in this problem is to achieve collaboration between multiple UAVs and the
mothership to minimize the total monitoring time.

3.2. Model Assumptions

In the real port environment, it is very complicated to use UAVs to monitor the air
pollution of vessels. This paper mainly considers non-environmental factors and the path
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optimization problem of vessel air pollution monitoring under relatively ideal conditions.
Therefore, the following hypotheses are put forward:

(1) Both the mothership and the UAV can move freely in R2 (Euclidean plane) (that is,
within the port sea area).

(2) Both the mothership and the UAV sail in a straight line.
(3) The UAV travels at maximum speed.
(4) The charging time of each UAV and the time for monitoring the vessel to be monitored

are fixed.
(5) Each UAV can monitor multiple vessels, and each vessel can only be monitored once.
(6) The position of the vessel to be monitored is considered unchanged.
(7) The speed of the UAV > the speed of the mothership.
(8) Ignore the flight distance of the UAV during the take-off and landing phases.
(9) The mothership’s fuel and the power to replenish the UAV are unlimited.

3.3. Symbol Description

The following lists the definitions and expressions of parameters and variables used
in constructing a multi-UAV collaborative mothership monitoring port vessel air pollution
path optimization model:

The auxiliary variables are shown in Table 2.

Table 2. Model symbol description.

Symbol Meaning

NC Number of supply points (equal area grids).
NU Number of UAVs.
NV Number of vessels to be monitored.
C C = {c1, c2, · · · , cC} is a set of NC supply points, ci is the ith supply point, i ∈ {1, 2, 3, · · · , NC}, ci ∈ C.
U U = {u1, u2, · · · , uNU} is a set of NU UAVs, ui is the ith UAV, i ∈ {1, 2, 3, · · · , NU}, ui ∈ U.

V V = {v1, v2, · · · , vNV} is the set of NV vessels to be monitored, vi is the ith vessel to be monitored,
i ∈ {1, 2, 3, · · · , NV}, vi ∈ V.

Sta Initial point.

d(mi ,nj)
The distance between mi node and nj node, where mi and nj can be the location of the vessel to be monitored
or the location of the supply point, mi, nj ∈ {V ∪ C}.(

vi, vj

)
∈ EV

(
vi, vj

)
represents the arc connecting the vessel nodes vi, vj to be monitored, vi, vj ∈ V; EV is the set of arcs

between the vessels to be monitored.(
ci, cj

)
∈ EC

(
ci, cj

)
represents the arc connecting supply points ci, cj, ci, cj ∈ C; EC is the set of arcs between supply points.

TU Charging time of UAV.
Tmax Maximum endurance of UAV.
TV Time for the UAV monitoring of the vessel.

t(ui ,cj) The time when UAV ui arrives at supply point cj, ui ∈ U, cj ∈ C.
tM
(ui ,cj)

The time when the mothership arrives at the supply point cj to serve the UAV ui, ui ∈ U, cj ∈ C.

lM The last supply node passes by mothership, lM ∈ C.
lui The last supply node passes by UAV u, lui ∈ C, ui ∈ U.
SM The speed of the mothership.
SU The speed of the UAV.

p(ui ,vj) The previous supply point when UAV ui travels to vessel node vj, ui ∈ U, vj ∈ V.

L(ui ,qj)
The distance traveled by the UAV ui when it is fully charged and travels to qj, ui ∈ U, where qj can be the
location of the supply point or the location of the vessel qj ∈ {V ∪ C}.

NV
(ui ,qj)

The number of vessels monitored when UAV ui is fully charged and travels to qj, ui ∈ U, where qj can be the
location of the supply point or the location of the vessel qj ∈ {V ∪ C}.

xui
(vj ,vk)

=

{
1
0

A value of 1 means that the UAV ui passes through the arc
(

vj, vk

)
between vessel nodes, 0 means no.

yui
(vj ,vk)

=

{
1
0

A value of 1 means that the UAV ui needs to insert a supply point between vessel nodes vj, vk, 0 means no.
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Table 2. Cont.

Symbol Meaning

z(ci ,cj) =

{
1
0

A value of 1 means that the mothership passes through the arc
(

ci, cj

)
between supply point nodes, 0

means no.

w(ui ,vj) =

{
1
0

A value of 1 means that the vessel node vj is monitored by the UAV ui, 0 means no.

3.4. MUCWM Path Optimization Model

This paper chooses to construct the objective function based on the travel time of the
mothership. The total time to complete the monitoring task consists of three parts:

(1) The time spent by the mothership while traveling. (2) The time spent by the
mothership waiting for the UAV. (3) The time spent by the mothership charging the UAV.
Based on this, a path optimization model for UAVs to collaborate with the mothership to
monitor air pollution from vessels in ports is constructed:

Obj:

minTtotal =
∑(ci ,cj)∈EC

(
d(ci ,cj)

× z(ci ,cj)

)
+ d(lM ,Sta)

SM
+ ∑

ui∈U
∑

cj∈C

(
t(ui ,cj)

− tM
(ui ,cj)

)
+ ∑

ui∈U
∑

(vj ,vk)∈EV

yui
(vj ,vk)

× TU (1)

The muti-UAV path optimization model constraints are as follows:

∑
ui∈U

∑
(vj ,vk)∈EV

xui
(vj ,vk)

= NU , i = 1, 2, . . . , NU , j, k = 1, 2, . . . , NV (2)

∑
ui∈U

∑
vj∈V

xui
(Sta,vj)

= 1, i = 1, 2, . . . , NU , j = 1, 2, . . . , NV (3)

∑
ui∈U

∑
vj∈V

xui
(vj ,lui )

= 1, i = 1, 2, . . . , NU , j = 1, 2, . . . , NV (4)

∑
ui∈U

xui
(vj ,vk)

= ∑
ui∈U

xui
(vk ,vj)

, i = 1, 2, . . . , NU , j, k = 1, 2, . . . , NV , j ̸= k, ∀
(
vj, vk

)
∈ EV (5)

∑
ui∈U

w(ui ,vj)
= 1, j = 1, 2, . . . , NV (6)

The muti-UAV collaborative with mothership optimization model constraints are
as follows:

0 < d(vj ,cn) × yui
(vj ,vk)

× z(cm ,cn) < Tmax − L(ui ,vj)
/Su − NV

(ui ,vj)
× TV and cm = p(ui ,vj)

,

∀ui ∈ U, i = 1, 2, . . . , NU , ∀
(
vj, vk

)
∈ EV , j, k = 1, 2, . . . , NC, ∀(cm, cn) ∈ EC, m, n = 1, 2, . . . , NV

(7)

z(cj ,ck)
×

[
t(ui ,cj)

− tM
(ui ,cj)

]
> 0, ∀ui ∈ U, i = 1, 2, . . . , NU , ∀

(
cj, ck

)
∈ EC, j, k = 1, 2, . . . , NC (8)

z(cj ,ck)
×

[(
t(M,ck)

− t(ui ,cj)

)
× SU

]
− d(cj ,ck)

> 0, ∀ui ∈ U, i = 1, 2, . . . , NU , ∀
(
cj, ck

)
∈ EC, j, k = 1, 2, . . . , NC (9)

xui
(vj ,vk)

∈ {0, 1}, ∀ui ∈ U, i = 1, 2, . . . , NU , ∀
(
vj, vk

)
∈ EV , j, k = 1, 2, . . . , NC (10)

yui
(vj ,vk)

=

1 0 <
(

Tmax − L(ui ,vj)
/Su − NV

(ui ,vj)
× TV − d(vj ,vk)

)
× xui

(vj ,vk)
< d(vk ,p(ui ,vj)

)

0
(

Tmax − L(ui ,vj)
/Su − NV

(ui ,vj)
× TV − d(vj ,vk)

)
× xui

(vj ,vk)
≥ d(vk ,p(ui ,vj)

)

,

∀
(
vj, vk

)
∈ EV , j, k = 1, 2, . . . , NC, ∀ui ∈ U, i = 1, 2, . . . , NU

(11)

z(ci ,cj)
∈ {0, 1}, ∀

(
ci, cj

)
∈ EC, i, j = 1, 2, . . . , NC (12)
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w(ui ,vj)
∈ {0, 1}, ∀ui ∈ U, i = 1, 2, . . . , NU , ∀vj ∈ V, j = 1, 2, . . . , NV (13)

Constraint (2) means that there are NV UAVs in total that start from the port’s ini-
tial point at the same time to monitor the air pollution of vessels in the port sea area.
Constraint (3) is the starting route constraint of each UAV, which means that each UAV can
only start from the starting point of the port once. Constraint (4) is the constraint that each
UAV passes through the last supply point, which means that each UAV can only reach
the last supply node once. Constraints (3) and (4) simultaneously constrain each UAV to
have only one flight path. Constraint (5) is used to ensure the continuity of the flight path
of each UAV; that is, each monitored vessel node has the same degree of entry and exit
for its monitoring UAV. Constraint (6) is used to ensure that each monitored vessel can
be monitored by a UAV and can only be monitored once. Constraint (7) is the optional
supply point constraint and the service sequence constraint provided by the mothership
for UAV charging. Constraint (8) is the time window constraint for the mothership to
arrive at the supply point m, which is used to ensure that the mothership must arrive at the
target supply point to replenish power for the UAV before the UAV’s power is consumed.
Constraint (9) is used to determine whether the mothership can reach the target supply
node at its maximum speed within the remaining endurance of the UAV. Constraints
(10)–(13) are {0, 1} variable constraints, indicating the value range of the decision variable.

4. Model Solution Based on Improved Adaptive Differential Evolution Algorithm

In this paper, an improved DE algorithm is utilized to solve the model. In order to
make the DE algorithm more applicable to the problem scenarios in this paper, adaptive
and arithmetic improvements are made on the basis of the inherent advantages of the
original DE algorithm to increase its performance and ability to solve the problems in this
paper, and the improved algorithm is referred to as the improved adaptive differential
evolution (IADE) algorithm.

4.1. Adaptive Parameter Settings

(1) Adopt the lifespan mechanism and extinction mechanism for population NP.

This mechanism regulates population size and maintains diversity. The lifespan
mechanism operates as follows: Initially, the age of all individuals is set to zero, aligning
with the number of iterations. In each generation, when a new individual is created, its
lifespan is assigned based on the value of its fitness function. An individual is removed
from the population once its age exceeds its predetermined lifespan. The formula for
calculating lifespan is as follows:LFmin + η × f (xi)− fmin

favg− fmin
favg ≥ f (xi)

1
2 × (LFmin + LFmax) + η × f (xi)− favg

fmax− favg
favg < f (xi)

(14)

Among them, favg represents the average value of the fitness function value of the
current population and fmin and fmax represent the minimum value and maximum value
of the fitness function in the current population, respectively. The fitness function value
of the algorithm in this article is the minimum value of the total time consumption of
the monitoring task. That is, f = Ttotal . LFmaz represents the maximum value that the
life span can reach, that is, the maximum number of iterations, and LFmin represents the
minimum value that the life span can reach. At the same time, η = 1

2 × (LFmax − LFmin).
The extinction mechanism strategy is as follows: When the population fitness function
value does not change for p×NP times in a row, it means that the population in the current
iteration may fall into a local optimum. At this time, the extinction mechanism strategy
can be used to increase the diversity of the population. The parameter p is the extinction
coefficient. Generally, the larger the extinction coefficient, the higher the probability of
an individual being eliminated or reset; the smaller the extinction coefficient, the higher
the probability of an individual being retained. This article sets the extinction coefficient
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p = 0.3 to ensure the timely generation of new individuals. After an individual becomes
extinct, a new population of individuals needs to be generated. Here, elite individual
replication is used to generate a new population of individuals. The specific formula is
as follows:

num = ζ · (NPmax − NPG) (15)

ζ is the replication rate. This article sets the replication rate ζ = 0.9 to ensure the
majority of elite individuals. NPmax is the maximum value of the population size, and NPG
is the current population size.

When the lifespan mechanism comes into play, the diversity of the population may
decline sharply, which increases the risk of the population falling into a local extreme. Once
this situation occurs, the extinction mechanism will be activated to enhance the diversity
of the population by eliminating some individuals and using the replication strategy of
elite individuals. This mechanism helps prevent premature convergence of the population,
thereby improving the search efficiency and convergence of the algorithm. Therefore, the
lifespan mechanism and the extinction mechanism collaborate with each other to realize
the adaptive adjustment of NP at different stages.

(2) Introducing an adaptive parameter adjustment strategy of Beta distribution for scaling
factor F and crossover probability CR.

Beta distribution is a common continuous probability distribution in the field of
probability statistics, and its value range is limited to the [0, 1] interval. The Beta distribution
is often used to describe the probability distribution characteristics of random variables,
such as describing the prior distribution of probability, proportion, or parameters. In many
fields, such as machine learning and mathematical statistics, Beta distribution plays an
important role. The specific form of the Beta distribution is given by its probability density
function, which describes the probability distribution characteristics of the Beta distribution
in detail. The probability density function of the Beta distribution is as follows:

f (x|a, b) =
xα−1(1− x)β−1

B(a, b)
(16)

where x is the value of the random variable, α and β are the two shape parameters of the
Beta distribution, and B(a, b) is the Beta function: B(a, b) =

∫ 1
0 xα−1(1− x)β−1dx. When

α = β = 1, the Beta distribution degenerates into a uniform distribution. When α and β are
large, the Beta distribution presents a bell-shaped shape concentrated in the middle. When
α and β are small, the Beta distribution presents a long-tail shape.

This article introduces a method of dynamically adjusting F and CR; that is, the
dynamic adaptive adjustment method of Beta distribution is introduced to improve the
performance of the algorithm. Specifically, the Beta distribution is used to generate random
numbers, and then the generated random numbers are mapped to the value ranges of
F and CR. Through this dynamic adjustment method, the DE algorithm is able to select
appropriate values of F and CR at different stages. In the initial state, we set α1 = β1 = 1
so that the probability distribution function presents a (0, 1) uniform distribution. During
the population evolution process, the parameters F and CR change based on the following
Beta probability distribution formula:

f (x|αG, βG) =
xαG−1(1− x)βG−1

B(αG, βG)
(17)

where αG is the number of individuals with better performance in the current F (or CR)
(such as successful evolution or better fitness function value), and βG is the number of
individuals with poorer performance in the current F (or CR) (such as failure to evolve
successfully or making the fitness function value better, which does not make the fitness
function value more optimal). We substitute the number of individuals with better perfor-
mance αG and the number of individuals with poor performance βG in the G generation
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population into Equation (16), respectively, to calculate the values of CR and F in generation
G + 1, and make constraint boundaries for F and CR (F ∈ [0, 2], CR ∈ [0, 1]), so that F
and CR can change adaptively according to the iteration results, effectively improving the
convergence speed of the algorithm and the diversity of the population. The calculation
process of adaptive F and CR is shown in Figure 2.
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4.2. Hybrid Mutation Improvement Strategy

The traditional differential evolution algorithm has limitations in mutation improve-
ment strategies, which limits its versatility. To address this problem, this paper proposes a
mutation strategy based on “DE-BB” (differential evolution bare bones) to optimize muta-
tion operations. This strategy is an innovative combination of the backbone particle swarm
algorithm and the differential evolution algorithm. Experimental results show that this
strategy effectively utilizes the advantages of the backbone particle swarm optimization
algorithm in the local depth search, thereby improving the convergence accuracy of the
differential evolution algorithm. In the strategy, we incorporate elements of the classic
differential mutation and combine them with the adaptive improvement strategy of the
F-value to generate individual trial vectors. The specific mutation improvement strategy
formula is as follows:

ui,j,G =

{
pi,j,G + rand×

(
xr1,j,G − xr2,j,G

)
i f rand(0, 1) ≤ CR

xi,best,G + F×
(

xr1,j,G − xr2,j,G
)
+ F×

(
xr3,j,G − xr4,j,G

)
otherwise

(18)

In the formula, r1 ∼ r4 are random integers that are different from each other and
randomly selected from the population set {1, 2, . . . , NP}, and F is the scaling factor, where
pi,j,G = rj × pbesti,j,G + (1 − rj) × NPbestj,G, where rj is also a random decimal in the
interval [0, 1]. pbesti,j,G is the historical local optimal value of the individual, and NPbestj,G
is the optimal individual value of the current population.

4.3. Hybrid Cross Improvement Strategy

In traditional differential evolution algorithms, the binomial crossover method (bino-
mial) is often used to cross the contribution vector v generated by the mutation operation
with the current target vector x to generate a test vector u. Subsequently, the algorithm
competes between the trial vector u and the target direction x through a greedy selection
mechanism, and only the solution vector with better fitness is retained to enter the next
round of iteration, while the worse solution vector is eliminated. However, when the
contribution vector v is already very close to the global optimal position, the crossover
operation may destroy its complete solution structure. If the test vector u can fully absorb
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the information of vector v, it will help increase the diversity of potential solutions and
reduce the risk of the algorithm falling into a local optimum. To this end, this article
quotes the crossover strategy uui,t of the multi-selection mechanism and combines it with
the adaptive improvement strategy of CR to obtain the crossover improvement strategy
formula as follows:

uui,j,G+1 =

{
ui,j,G i f rand ≤ θ and rand ≤ CR
vi,j,G otherwise

(19)

where θ represents the mixed crossover probability threshold; ui,j,G represents the value of
the j dimension of individual i, calculated by the traditional binomial crossover method. θ
represents the choice probability of performing a binomial crossover or a fully absorbing
crossover. According to the experiment of the proposer of this strategy, when the value of
parameter θ is set in the range of [0.4, 0.6], the average convergence speed and convergence
accuracy of the algorithm are better than those in other intervals. Therefore, this article sets
the parameter θ to 0.5.

4.4. IADE Algorithm Solution Steps
4.4.1. Codec Strategy

The encoding method used in this article is natural number encoding. Each individ-
ual is composed of two chromosomes. The natural number xk in the first chromosome
represents the serial number of the UAV, that is,

(
x1, x2, . . . , xk, . . . , xNV

)
, where NV repre-

sents the number of monitored vessels; the natural number yk in the second chromosome
represents the serial number of the monitored vessel; that is,

(
y1, y2, . . . , yk, . . . , yNV

)
also

represents the number of monitored vessels. Among them, the upper and lower corre-
spondence between chromosomes represents the vessel to be monitored by the UAV. The
chromosome encoding strategy is shown in Figure 3. The UAV with serial number 1 cor-
responds to the serial number of the monitored vessel {3, 8, 1, 10}, which means that the
order of the vessels monitored by UAV No. 1 is {3→8→1→10}.
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Decoding requires designing an appropriate decoding solution based on the character-
istics of the problem and converting the encoding after the algorithm is executed into the
solution to the problem. The specific steps are as follows:

Step 1: According to the order in which each UAV monitors the vessel, consider the
UAV endurance time Tendu. If, before the UAV goes to the location of the next monitored
vessel, Tendu < d(vnow , vnext)

+ d(vnext ,cpre) + TV , that is, the UAV cannot return to the supply
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point after monitoring the next vessel, it is necessary to insert a new supply point gene
after the gene of the current vessel position, as shown in Figure 4. Tendu represents the
remaining range of the UAV, d(x,y) represents the distance between the two positions x and
y, vnow represents the current location of the vessel being monitored by the UAV, and seqnext
represents the position of the next vessel that needs to be monitored, and cpre represents
the location of the previous charging point of the UAV; TV represents the monitoring time.
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Step 2: Select a charging point that meets the conditions for the UAV based on the
remaining power of the UAV. If Tendu > d(vnow , C) is satisfied, add the current charging point
to the gene sequence and add the feasible charging points to the UAV monitoring sequence
that is added to the UAV feasible monitoring sequence set ru, as shown in Figure 4. Finally,
a recovery and supply point need to be added at the end of the genetic sequence of each
UAV. After the UAV completes its monitoring mission, the mothership is used to recover it.

Step 3: According to the time window constraint in u_route, that is, tcnow > t +
d(cnow ,cpre), select the charging point driving path that meets the mothership speed con-
straint, as shown in 1⃝→ 2⃝→ 5⃝ in Figure 5 and the 1⃝→ 4⃝→ 5⃝ sequence. tc represents
the maximum time point when the UAV reaches supply point c and hovers above it, t
represents the current time point, and SM represents the speed of the mothership.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 34 
 

 
Figure 4. Replenishment point gene insertion strategy. 

 
Figure 5. Viable paths for UAV monitoring. 

Table 3. Solution form of MUCWM path planning. 

UAV monitoring sequence 
𝑢ଵ 𝑣ଷ → 𝑣଼ → 𝑐ଵ → 𝑣ଵ → 𝑣ଵ 𝑢ଶ 𝑣 → 𝑣ଶ → 𝑐ଶ → 𝑣 → 𝑐ସ → 𝑣ଽ 𝑢ଷ 𝑣ହ → 𝑣ସ 

Mothership sailing sequence 𝑀 𝑐ଶ → 𝑐ଵ → 𝑐ସ 
Minimum time consumption of monitoring tasks 𝑚𝑖𝑛𝑇௧௧  
4.4.2. Algorithm Process 

The process of implementing the IADE algorithm is as follows: 
Step 1: Initialize parameters, including population size 𝑁𝑃, extinction coefficient 𝑝, 

elite individual replication rate 𝜁, individual component value range 𝑏𝑜𝑢𝑛𝑑𝑠, mutation 
scaling factor 𝐹 , shape parameters 𝛼ଵ , 𝛽ଵ , crossover probability 𝐶𝑅 , mixed crossover 
probability threshold 𝜃, the maximum number of iterations 𝐺௫. 

Step 2: Generate an initial population, with each individual containing 10𝐷 param-
eters, and the value range of the parameters is 𝑏𝑜𝑢𝑛𝑑𝑠. 

Step 3: Decode the initial population, multiply the first dimension of the individual 
by 𝑁, and perform a rounding operation to determine the set of vessels monitored by 
the UAV. 𝑁 represents the number of UAVs and corresponds to the second-dimension 
parameters of the individual. Attach a set of sequences [1,2, … , 𝑁] to the position, sort 
the parameters from small to large, retain the attached serial number in the sorting, and 
use this sorting as the order of the UAV monitoring vessel collection; 𝑁 means the num-
ber of vessels to be monitored. 

Step 4: Let 𝐺 = 1 represent the first iteration. 
Step 5: Let 𝑖 = 1 represent the first individual. 
Step 6: Mutation operation: randomly select 4 individuals  𝑥భ, 𝑥మ, 𝑥య, and 𝑥ర in 

the population, and generate mutated individuals according to the mixed mutation im-
provement strategy of Formula (19) 𝑣,ீ. 

Figure 5. Viable paths for UAV monitoring.

Step 4: Calculate the total duration of the monitoring task based on the charging point
driving path of the mothership, return the fitness function value, and end.

Table 3 gives the solution form of MUCWM path optimization.

Table 3. Solution form of MUCWM path planning.

UAV monitoring sequence
u1 v3 → v8 → c1 → v1 → v10
u2 v6 → v2 → c2 → v7 → c4 → v9
u3 v5 → v4

Mothership sailing sequence M c2 → c1 → c4

Minimum time consumption of monitoring tasks minTtotal
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4.4.2. Algorithm Process

The process of implementing the IADE algorithm is as follows:
Step 1: Initialize parameters, including population size NP, extinction coefficient p,

elite individual replication rate ζ, individual component value range bounds, mutation
scaling factor F, shape parameters α1, β1, crossover probability CR, mixed crossover
probability threshold θ, the maximum number of iterations Gmax.

Step 2: Generate an initial population, with each individual containing 10D parameters,
and the value range of the parameters is bounds.

Step 3: Decode the initial population, multiply the first dimension of the individual
by NU , and perform a rounding operation to determine the set of vessels monitored by
the UAV. NU represents the number of UAVs and corresponds to the second-dimension
parameters of the individual. Attach a set of sequences [1, 2, . . . , NV ] to the position, sort
the parameters from small to large, retain the attached serial number in the sorting, and use
this sorting as the order of the UAV monitoring vessel collection; NV means the number of
vessels to be monitored.

Step 4: Let G = 1 represent the first iteration.
Step 5: Let i = 1 represent the first individual.
Step 6: Mutation operation: randomly select 4 individuals xr1 , xr2 , xr3 , and xr4 in the

population, and generate mutated individuals according to the mixed mutation improve-
ment strategy of Formula (19) vi,G.

Step 7: Crossover operation: according to the hybrid crossover improvement strategy
of Formula (19), generate new test individuals ui,G.

Step 8: Greedy selection: calculate the fitness function value (minimum value of
monitoring task completion time); if the fitness function value f (ui,G) < f (xi,G−1), update
the individual of the previous generation xi,G−1 = ui,G, otherwise the individual of the
previous generation is retained.

Step 9: If i < NP, let i = i + 1 and return to step 5, otherwise go to step 10.
Step 10: Adaptive parameter adjustment. According to the fitness function value, use

Formulas (15) and (16) to calculate the adjusted population; use Formula (18) to calculate
the adjusted mutation scaling factor F and crossover probability CR.

Step 11: If G < Gmax, G = G + 1, go to step 4, otherwise go to step 11.
Step 12: Output the historical optimal solution f and the algorithm ends.
The pseudo-code of the improved adaptive differential evolution algorithm is shown

in Algorithm 1.

Algorithm 1: Improved adaptive differential evolution algorithm

1 Begin
2 Initialize related parameters: NP, p, ζ, bounds, F, α1, β1, CR, θ, Gmax
3 Generate initial population
4 Decoding
5 for G in Gmax
6 for i in NP
7 vi,G = The optimal individual and four random individuals generate mutant individuals

through Formula (17)
8 Boundary constraint check after mutation
9 ui,G = Generate new test individuals through crossover using Formula (18)
10 if f (ui,G) < f (xi,G−1) then
11 xi,G−1 = ui,G
12 end if
13 end for
14 NP = Calculate the adjusted population by Formulas (14) and (15)
15 F, CR = scaling factor and crossover probability adaptively adjusted through Formula (16)
16 end for
17 Output the optimal solution f , the optimal individual NPbest, the algorithm execution time

and the algorithm convergence chart
18 Finish

The flow chart of the algorithm is shown in Figure 6.
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4.5. Algorithm Design for MUCWM Path Optimization Problem

This section mainly describes the basic ideas for solving the MUCWM path opti-
mization problem in three aspects: optimization of UAV monitoring paths, collaboration
between motherships and UAVs, and optimization of mothership monitoring paths.

4.5.1. UAV Monitoring Path Optimization

First, the mothership carries multiple UAVs and sets off from the port starting point
Sta at the same time. The UAVs will take off from the mothership at the beginning to
perform monitoring tasks. At this time, monitoring needs to be planned for multiple UAVs.
To achieve this goal, two problems need to be solved: (1) How to determine the collection
of UAVs to monitor vessels; (2) how to determine the order of UAVs to monitor vessels.

Ignoring the power constraints of the UAV, that is, treating the UAV power as infinite,
we randomly assign vessel collections and monitoring sequences to the UAV. The specific
strategy is as follows: First, add an extra dimension [1, 2, . . . , NV ] sequence to the test
individual ui,G. Secondly, after multiplying the values of the first dimensional elements
of the test individual ui,G by NU − 1, respectively, since the value range of the individual
elements belongs to [0, 1], and after rounding off the elements and adding 1, the value
range of the first dimension element value of ui,G will become [1, NU ], q, where NU is the
number of UAVs, and then we sort the second-dimensional elements of ui,G from large to
small. During the sorting process, the corresponding positions of the additional sequences
remain unchanged. Through the above two strategies, the random allocation of the UAV
monitoring vessel collection and monitoring sequence is achieved. The random allocation
algorithm for UAV monitoring is shown in Algorithm 2.



Sustainability 2024, 16, 4948 17 of 33

Algorithm 2: Random allocation algorithm for UAV monitoring

1 ui,G(1) = np.round(NU − 1)
2 seq = np.arange(NV).reshape(1, NV) Generate additional sequences
3 ui,G = The trial individual formed by appending seq to the third dimension of ui,G
4 Count different values in ui,G(1)

5 unique = np.unique
(

ui,G(1)

)
6 for k in enumerate(unique)
7 ui,G = Split unique_values according to the value of unique_values
8 end for
9 Sequential allocation strategy for UAV monitoring of vessels:
10 for ui,G(2)(m) in ui,G(2)
11 ui,G = Sort according to the value of ui,G(2)(m)
12 end for

Figure 7 shows a random allocation strategy in a scenario with 2 UAVs and 5 mon-
itored vessels. The sequence of UAV monitoring vessels is divided into the following:
u1 : v2 → v4 → v1 , u2 : v5 → v3 .
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4.5.2. Collaboration between the Mothership and UAVs

Since, in the MUCWM path optimization problem, the mothership plays the role of
mobile resupplying for UAVs, this means that the mothership needs to meet the UAVs at
the supply point and replenish power for the UAVs in time. Therefore, the mothership
and the UAVs need to face the problem of human–machine collaboration, which will be
realized based on the selection of UAV power supply points.

First, divide the monitored sea area into equal-area grids, and use the midpoints of
all grids as the set of candidate power supply points for UAVs: C = [1, 2, . . . , NC], where
NC is the divided grid quantity. Based on the value of the individual ui,G after the random
allocation strategy is executed, and based on the maximum endurance time of the UAV
Tmax, it is judged whether it is necessary to insert a power supply point for the UAV
between the two vessels to be monitored during the monitoring process. Take the UAV
u1 in Figure 8 as an example to describe the supply point selection strategy, taking into
account the UAV power constraints during the UAV monitoring of vessels.
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In the initial case, set f lag = 1 as the flag that shows that the UAV is fully charged and
starts to perform monitoring tasks, and loop through each UAV ui, ui ∈ U,
i ∈ {1, 2, 3, . . . , NU} in sequence; then select the supply points it needs to pass during
its voyage. Let Tcost = 0; Tcost represents the time consumed by the current UAV to perform
the task, loop through the vessel nodes vj, vj ∈ V, j ∈ {1, 2, 3, . . . , NV} that the UAV needs
to monitor, and judge whether it requires the insertion of feasible supply points between
two consecutive monitored vessels. The specific strategies are as follows:

(1) Determine whether the vessel node is the first node monitored by the UAV when it
departs from the port, that is, whether it meets f lag = 1 and j == 1 at the same time. If the
conditions are met, it is judged that the UAV flies to the first node. The vessel node to be
monitored will return to the port Sta after monitoring it, that is, Tmax will be greater than
or equal to 2d(Sta,vj)

/SU + TV , where SU represents the UAV flight speed; if the conditions
are met, the UAV will fly to the location of vj and monitor it, as shown in Figure 8, the
process of UAV u1 flying to v2. In the algorithm, it is necessary to record the remaining
endurance time of the UAV Tendu, the UAV monitoring sequence rui and Tcost and set the
flag to 0, indicating that the next vessel node is not the first vessel in the UAV monitoring
sequence. It is worth mentioning that since the UAV may have multiple candidate power
supply points that meet the conditions in subsequent monitoring tasks, the latter node will
be calculated from the previous supply point. Therefore, the solution space is an unmanned
power supply point. The first monitored vessel node in the UAV monitoring path is a tree
structure array with the root as the root. Therefore, the current vessel node vj is assigned to
ru1 as the root node of the UAV monitoring path ru1 .

(2) Determine whether the next vessel node is the last vessel node in the UAV mon-
itoring sequence. If not, we need to determine whether the UAV can return to the UAV
after flying to the next node and monitoring the vessel. Then we determine the last power
supply point of the machine, that is, determine whether Tendu is greater than or equal to[

d(vj ,vj+1)
+ d(vj+1,cpre)

]
/SU + TV ; if it can, the UAV will fly to the next supply point. In

Figure 8, the UAV u1 flies from the location of v4 to the location of v1 for monitoring. The
reason for using the above strategy to determine whether the UAV needs to replenish
electrical energy is that it must ensure that the UAV has a candidate supply point where
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it can land. Even if the UAV reaches the next vessel node and completes the monitoring
task, the UAV’s remaining power is not satisfied. The recharge point with electric energy
constraint can also be returned to the previous recharge point for charging. This strategy
ensures that the UAV can land and charge at any point in time and will not run out of power
and have nowhere to land during the monitoring mission. If it is not satisfied, it means
that the remaining range of the UAV is not enough to support its subsequent monitoring
tasks. At this time, all electric energy supply points ck, ck ∈ C, k ∈ {1, 2, 3, . . . , NC} are
traversed, and the unmanned machine selects feasible power supply points. If Tendu is
greater than or equal to d(vj+1,ck)

, then ck is added to the solution of the tree structure, and
branches may appear, as shown in Figure 8. The area in Q1, the supply point in the area,
represents the position of the supply point that can be reached from the location of the
vessel v2 to be monitored under the constraints of UAV endurance. Then we update Tendu
and Tcost. At this time, Tcost = Tcost + Tu, where Tu represents the charging time of the UAV,
and we let flag = 1. Finally, the time consumption Tendu from each time the UAV passes
through the power supply point is added to the time window set at twindow in order to
solve the path planning of the mothership. In Figure 8, the UAV u1 is traveling from the
location of the vessel v2 to the vessel v4. Between the locations, the c1 supply point needs
to be inserted. At this time, the next node is the first vessel node monitored by the UAV
after it is fully charged and takes off from the mothership; that is, it satisfies flag = = 1
and j > 1. Then it is judged whether the UAV can return to the location of the current
supply point after flying to the first vessel node to be monitored and monitoring it, that is,
Tmax ≥ 2d(cnow ,vj)

/SU + TV ; if satisfied, then we update Tendu and Tcost, and set the flag to 0.
As shown in Figure 8, the UAV u1 flies from c1 to the vessel node v4 to be monitored.

(3) If the next node is the last node in the UAV monitoring sequence, select an electric
energy supply point for the UAV that satisfies the remaining power constraint (recovery
point: the UAV will be recovered by the mothership at this node, and the mothership
returns to the port together and ends the monitoring task), then ck is added to the solution
of the tree structure, branches may appear, and then Tendu, Tcost, and twindow are updated.
At this time, Tcost = Tcost + d(vj ,ck)

/SU .
The algorithm for selecting UAV power supply points is shown in Algorithm 3 (the

first node time monitored when the UAV takes off from the port).

Algorithm 3: The algorithm for selecting UAV power supply points

1 Begin
2 flag = 1
3 for i in NU
4 Tcost = 0
5 for j in NV
6 The first node monitored when the UAV takes off from the port
7 if flag = =1 and j = =1
8 if Tmax ≥ 2d(Sta,vj)/SU + TV
9 Tendu = EU − 2d(start, vj)/su − tD
10 Tcost = Tcost + Tendu
11 f lag = 0
12 ru1 ← vj Add to solution structure
13 end if
14 end if
15 end for
16 end for
17 Output ru, Tendu, twindow
18 Finish

4.5.3. Mothership Traveling Path Optimization

The results in Section 4.5.2 are used as parameters and input into the optimization algo-
rithm of the mothership monitoring path, which is illustrated in Figure 9. The optimization
strategy of the mothership monitoring path is as follows:
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(1) First, select one of the feasible monitoring paths of each UAV for calculation.
Sort ru in time order according to twindow to get seqM, which is the sequence in which
the mothership passes through each supply point. As shown in Figure 9, the navigation
path of the mothership M is {Sta→ c4 → c2 → c1 → Sta}. Then assign the supply point
corresponding to the sorted twindow to the set W. Traverse the elements in W, and use the
speed constraint of the mothership to determine whether the mothership can reach the
corresponding supply point to charge the UAV before the UAV’s power is exhausted, that is,
whether d(ck ,ck+1)

/SM is less than twindow(ck)
+ Tendu; if satisfied, add ck to the mothership’s

travel path rM, and update Tcost, as shown in Figure 9, each time the mothership moves
from the current supply point to the next supply point, such as c4 → c2 .

(2) Since the mothership and the UAV can wait for each other at the supply point, it
is necessary to determine the order in which the mothership and the UAV arrive at the
supply point and then update the time. Specifically, it needs to be judged whether tM

ck
is

greater than twindow(ck)
, where tM

ck
represents the time when the mothership arrives at the

supply point. If it is satisfied, it means that the mothership arrived after the UAV arrived at
the supply point ck. At this time, Tcost needs to be updated, Tcost = Tcost + tM

ck
− twindow(ck)

,
and the UAV waits for the mothership’s time to be added to the time consumption.

(3) After executing a set of data, assign Tcost + d(lm ,Sta)/SM to f . f represents the
completion time of the monitoring task. lm represents the mothership passing the last
supply point. This formula represents the mothership passing through the last supply
point. The time when the vessel-borne UAV returns to the port is added to Tcost and then
assigned to f . After all the data have been traversed, the smallest f is selected as the
optimal solution Ttotal of the algorithm. Finally, output rM and Ttotal .

The pseudocode of the mothership traveling path optimization algorithm is shown in
Algorithm 4.
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Algorithm 4: The Mothership Traveling Path Optimization Algorithm

1 Begin
2 Input ru, Tendu, twindow
3 for i in ru1
4 for j in ru2
5 . . .
6 for n in ru NU
7 seqM = Sort ru in time order according to twindow
8 W = corresponding supply point sequence after sorting
9 Tcost = 0
10 for k in W
11 if Tcost +d(ck ,ck+1)/SM < twindow(ck)+ Tendu
12 rM← c k
13 Tcost = Tcost+ Tcost/SM + TV
14 end if
15 end for
16 Ttotal ← Tcost + d(lm ,Sta)/SM
17 end for
18 . . .
19 end for
20 end for
21 minTtotal = min( f )
22 Output rM, minTtotal
23 Finish

5. Experiment and Analysis

In this section, in order to prove the effectiveness of the improved adaptive differen-
tial evolution algorithm, this article uses Python 3.12.0 to implement the solution of the
algorithm. This experiment was run on a computer with an Intel (R) Core (TM) i5-7200U
CPU at 2.50 GHz to 2.70 GHz and a memory of 8 GB.

5.1. Data Preparation and Parameter Settings

This paper conducted a numerical experiment on the vessels entering and leaving the
port in a certain port area of Ningbo Zhoushan Port. At 17:40 on 3 April 2023, 100 vessels in
the above port were obtained from the automatic identification system (AIS). The position
data of vessels sailing in the sea area are partly shown in Table 4. The table gives the vessel
serial number, vessel name, vessel type, vessel location (including longitude and latitude),
and the update time of the current position. In order to more intuitively display the position
of the vessel in the port sea area, a real-time satellite image of the selected sea area is given,
as shown in Figure 10. The area within the dotted line is the monitored port sea area.

Before parameter setting, we consider some more realistic factors, such as whether the
sea state and weather environment have any influence on the path optimization problem
of air pollution monitoring of port vessels by shipboard UAVs.

First of all, the performance and stability of the current DJI UAV are very high, and as
an example, the wind resistance of the DJI Warp M300 RTK model UAV can reach 12 m/s,
i.e., level 6. According to the survey, in some open sea areas, such as the central part of the
ocean or some particularly windy sea areas (such as the roaring westerly wind belt in the
South Atlantic Ocean), the average wind speed may be between 7 m/s (about 25 km/h) and
10 m/s (about 36 km/h). Wind speeds are somewhat lower in harbor-based waters, so the
monitoring mission is largely unaffected by winds at sea. Secondly, wave heights average a
few centimeters to 20 m and can only reach 30 m in very extreme natural conditions [49].
However, when monitoring vessels, UAVs need to fly into the vessel’s plume to do so, and
the average vessel’s air height (i.e., the height of a vessel in the ocean between sea level and
the very top of the vessel) can vary greatly depending on the type and use of the vessel, and
the following are the approximate ranges of air heights for some common types of vessels:
container vessels: larger container vessels, usually in the range of 40 to 60 m; bulk carriers:
medium-sized bulk carriers may be between 20 and 30 m; tankers: roughly between 30 and
50 m; cruise vessels: usually over 50 m; and medium-sized passenger vessels: these are
generally between 20 and 30 m. The vessel’s plume is at a position even higher than the
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highest point of the vessel, so under normal circumstances, the plume height is higher than
the waves, and therefore, the UAV monitoring process will not be affected by the waves as
long as it maintains the flight height at the plume position.

Table 4. Data from selected test vessels.

Serial Number Type Name Longitude Latitude Update Time

1 cruise vessel MINFUDINGYU02378 122.210367 29.87655 17:38:30
2 freighter ZHESHENGYU07203 122.367693 29.876857 17:39:23
3 other types SHUNAN118 122.167765 29.877635 17:39:24
4 passenger vessel ZHELINGYU96006 122.168633 29.878233 17:38:30
5 cruise vessel MINFUDINGYU04373 122.248718 29.879403 17:22:29
6 other types ZHELINGYUYUN20079 122.313133 29.882153 17:39:19
7 cruise vessel ZHEXIANGYUYUN01008 122.313125 29.882275 17:34:58
8 passenger vessel ZHEPUYU81003 122.312587 29.882623 17:14:21
9 other types MINFUDINGYU09892 122.30088 29.882937 17:24:20

10 cruise vessel ZHESANYUYUN80399 122.300633 29.883198 17:39:20
11 freighter XIN HAI 125 122.300817 29.8832 17:33:44
12 other types 02387-21 51% 122.373223 29.883888 17:11:32
13 other types FUDINGYU07855-6 90% 122.305915 29.88447 16:51:14
14 cruise vessel ZHEPUYUYUN98788 122.287335 29.886522 17:37:51
15 other types 07853-25 80% 122.210898 29.887745 16:57:28
16 port supplies RUN ZHOU 7 122.186388 29.888345 17:33:42
17 passenger vessel MA ZHI DU 2 122.372592 29.888377 17:39:06
18 freighter SUQIYU02669 122.372337 29.888437 17:34:28
19 port supplies PU MAO GONG 4 122.37232 29.888593 17:24:03
20 other types SUQIYU02669-33% 122.260595 29.891088 17:30:34
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The default values of the parameters involved in the experiment are shown in Table 5.
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Table 5. Parameter settings involved in the test.

Parameter Value

Number of UAVs 3
Number of equal-area divisions within the sea

area (number of candidate supply points) 9

Harbor initial point coordinates (153.8975, 172.3765)
UAV maximum flight speed 18 m/s

Maximum endurance of UAV 45 min
Average monitoring time per vessel 3 min

UAV charging time 2 min
Mothership maximum sailing speed 621 m/min
Number of vessels to be monitored 100 vessels

The description of the main parameters in Table 5 is as follows:
Number of UAVs: in the scenario of the vessel exhaust gas measurement trial car-

ried out by the Hanjiang Maritime Safety Department of the Yangzhou Maritime Safety
Administration, the number of UAVs was established at three.

Number of equal area divisions in the sea area (number of candidate supply points):
In the sea area, it is not advisable to select too many candidate supply points, because too
many supply points will greatly increase the running time of the algorithm; at the same
time, it is not advisable to select too few candidate supply points, because there may be no
solution if there are too few supply points. Therefore, this article divides the sea area into
nine equal areas; that is, there are nine candidate supply points.

Port starting point coordinates: set according to the coordinates of a central pier in the port.
Maximum UAV flight speed and maximum UAV endurance time: Based on the UAV

produced by DJI that can be used in water conservancy: M300 RTK flight parameters:
55 min maximum flight time, 23 m/s maximum flight speed, and 12 m/s wind resistance.
Taking into account the impact of the environment and special circumstances, the maximum
flight speed of the UAV is set to 18 m/s, and the maximum endurance time of the UAV is
set to 45 min.

Average monitoring time of each vessel: based on previous monitoring experience,
the time for UAV monitoring of each vessel is set to 3 min [50].

UAV charging time: In order to save the time required for the total monitoring task,
the battery is directly replaced on the mothership to replenish the UAV’s power. Therefore,
the battery replacement time is set to 2 min.

The maximum sailing speed of the mothership: Calculated based on the previous
average speed of China Maritime Safety Administration port patrol vessels of 20.13 knots.
After converting the unit into m/min, it is 621 m/min.

Table 6 shows the parameter settings in the improved adaptive differential evolu-
tion algorithm.

Table 6. Parameterization of improved adaptive differential evolutionary algorithms.

Parameter Definition Value

NP Number of populations 100
G_max The maximum number of iterations 300

F Variation scaling factor Adaptive (initially 1)
CR Crossover probability Adaptive (initially 1)

bounds Element upper and lower bounds [0, 1]

5.2. Solution to MUCWM Path Optimization Algorithm Based on IADE Algorithm

According to the actual geographical location of the port, this article scales the mon-
itored sea area to the xoy plane rectangular coordinate system of 200 × 200 to run the
algorithm of this article. Following scaling, the initial positions of the 100 vessels to be



Sustainability 2024, 16, 4948 24 of 33

monitored, one mothership, and three UAVs were determined, represented by (x, y) co-
ordinates. These data are partially displayed in Table 7. Initially, the three UAVs and the
mothership share the same location. Figure 11 visually illustrates the initial locations of the
vessels to be monitored, the mothership, and the UAVs.

Table 7. Partially scaled vessels’ position data.

Vessel X Y

v1 46.99850459302554 0.0728363324858847
v2 133.20431783052203 3.016281062558292
v3 181.7962476594918 7.069408740377959
v4 167.35237568646986 13.041988003445184
v5 91.48372017039544 16.482433590408455
...

...
...

v90 146.9947346595266 178.70608397601762
v91 148.79173630574027 179.34875749784328
v92 154.04953692653433 182.60497000858064
v93 6.501878683514789 188.69751499570967
v94 20.46319916557688 188.9203084832821

Harbor initial point 153.8975 172.3765
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Figure 11. Schematic of the vessels’ positions after zooming.

The data are substituted into the improved adaptive differential evolution algorithm
to solve the problem. Figure 12 shows the MUCWM path optimization results obtained in
the above scenario. Different colors represent different UAV flight paths, and the dotted
line is when the UAV goes to the supply point for charging. Since the figure involves many
line segments, the path of the mothership will be displayed in the table. Table 8 shows the
specific results of path optimization for the mothership and three UAVs.
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Table 8. Specific results of MUCWM path optimization.

UAV monitoring sequence

u1

Sta→v80→v68→v60→v75→c4→v22→v66→v36→v84→v17→c6→v46→v74→v39
→v28→v61→c5→v24→v42→v12→v81→c9→v63→v85→v96→v41→v14→c3
→v21 →v55→v73→c5→v99→v34→v100→v65→v3→c3→v13→v58→v87→c4

u2

Sta→v93→v83→v57→v26→v23→v27→c5→v88→v77→v50→v76→v72→c5→v47
→v32→v67→v40→c6→v35→v7→v78→v59→v48→c5→v97→v62→v91→v82
→v95→v1→c3→v10→v30→v70→v86→c8→v44→v56→v54→c8→v89→v5→c7

u3

Sta→v49→v51→v11→v20→c5→v45→v2→v53→c2→v4→v6→v71→v90→c7
→v64→v69→v92→v29→c3→v18→v43→v25→v52→c4→v9→v94→v15→v38

→c4→v33→v19→v31→v37→c8→v79→v98→v16→v8→c7

Mothership sailing sequence M Sta→c4→c5→c6→c2→c7→c6→c9→c3→c5→c3→c4→c3→c5→c8→c7→c4→Sta

Minimum time consumption of monitoring tasks 112.25619 min

5.3. Analysis of Results
5.3.1. Algorithm Performance Comparison

In order to verify the accuracy of the algorithm in small-scale calculation examples,
the results of IADE solving this problem in small-scale cases are compared with the Gurobi
running results. We set the problem scales, NU = {1, 2, 3}, NV = {5, 10, 20, 50}, to
conduct 12 independent experiments for each scale, and we recorded the GAP between the
algorithm and Gurobi in each experiment, where GAP = (f(IADE) − f(Gurobi))/f(Gurobi)
× 100%. It is stipulated that if Gurobi runs for more than 30 min and still does not obtain a
result, it is considered that Gurobi cannot obtain the solution to the calculation example.
The IADE algorithm records the results and running time of each generation and selects
the running time of the generation with the smallest difference from the Gurobi result. The
comparison results are shown in Table 9.
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Table 9. Experimental comparison of the results of IADE and Gurobi.

Problem Size

Optimal Solution (min) CPU Running Time (s)

This
Article Gurobi GAP This

Article Gurobi

NU = 1

NV = 5 83.26657 83.26657 0 1.52 4.98
NV = 10 93.83875 93.83875 0 8.93 21.92
NV = 15 100.64764 100.64764 0 36.54 118.34
NV = 20 115.90341 115.90341 0 114.06 523.03

NU = 2

NV = 5 69.33498 69.33498 0 3.58 27.05
NV = 10 80.93034 80.93034 0 12.95 99.07
NV = 15 99.06371 97.43652 1.67% 40.65 256.83
NV = 20 105.99024 103.95277 1.96% 136.98 976.64

NU = 3

NV = 5 66.98347 66.98347 0 6.98 87.54
NV = 10 75.54691 74.96964 0.77% 18.97 386.83
NV = 15 84.96447 84.86348 1.19% 49.54 1605.75
NV = 20 93.71631 - - 145.86 -

It can be seen from the table that, in the independent experiment with NU = 3, NU = 20,
the GAP value between IADE and the accurate result is less than 5%, and the solution
speed has been greatly improved. Although Gurobi can obtain accurate results, it takes
a long time to solve, so the comparison with the Gurobi results proves the effectiveness
of this algorithm in solving the collaborative routing optimization problem of UAVs and
motherships, and it has practical application significance in real-life scenarios.

When solving the model, in order to verify the superiority of the improved adaptive
differential evolution algorithm compared to the traditional differential evolution algo-
rithm, this paper compares the parameters of the adaptive improved differential evolution
algorithm with the basic differential evolution algorithm. The group size and the number of
iterations are set to NP = 100 and Gmax = 300, respectively. The resulting operation iteration
diagram is shown in Figure 13.
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From Figure 14, it can be seen that the DE algorithm, after the adaptive improvement
strategy, shows a trend of being better than the traditional DE algorithm in terms of
convergence speed and optimal solution performance.
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On the basis of the adaptive parameter differential evolution algorithm, after adding
the hybrid mutation improvement strategy and the hybrid crossover improvement strategy,
the test example is also run when NP = 100 and Gmax = 300, and the resulting convergence
diagram is shown in Figure 14. It can be seen from the figure that although the convergence
speed has dropped slightly, the improved algorithm has strong search capabilities and
performs well in manifesting the optimal solution. Therefore, the overall solution perfor-
mance of the improved adaptive differential evolution algorithm is higher than that of the
adaptive differential evolution algorithm.

We took the test case data from Shen et al. [12], as shown in Figure 15, and adjusted the
parameters to the values in the article, as shown in Table 10. Since the vessel distribution is
relatively concentrated, the number of candidate supply points can be increased to improve
the efficiency of the algorithm. Since Shen et al. [12] did not consider the UAV charging
time, the UAV charging time was set to 0. Bringing the adjusted data into the algorithm
of this article, the result is 116.76982 min, which is smaller than the optimal solution of
126.69466 min in the article. The optimization performance of the improved adaptive
differential evolution algorithm is further demonstrated. Figure 16 shows the MUCWM
path optimization results obtained by using the algorithm of this article to execute the test
case data in Shen et al. [12].
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Table 10. Test data parameter settings.

Parameter Value

Number of UAVs 3
Number of equal-area divisions within the sea

area (number of candidate supply points) 25

Harbor initial point coordinates (0, 125)
UAV maximum flight speed 1000 m/min

Maximum endurance of UAV 35 min
Average monitoring time per vessel 2 min

UAV charging time 26 m/min
Mothership maximum sailing speed 90 vessels
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5.3.2. Sensitivity Analysis

Figure 17a illustrates that with an increasing number of UAVs, the overall time for
MUCWM monitoring decreases, although the rate of reduction in total monitoring time
gradually diminishes. Thus, beyond a certain number of UAVs, further increases will not
significantly decrease the total duration of the MUCWM monitoring task. Figure 17b reveals
that as the number of UAVs grows, the total execution time of the algorithm consistently
increases, suggesting a roughly positive correlation between the number of UAVs and the
algorithm’s running time.

Figure 18a demonstrates that as the number of grid divisions rises, there is a decrease
in the total MUCWM monitoring time, particularly noticeable when the grid count increases
from 1 to 9. However, with further increases in grid divisions, the rate of reduction in
the total monitoring task time starts to taper off. Hence, beyond a certain number of
grid divisions, the advantages of further increases in reducing the overall time of the
MUCWM monitoring task become marginal. Figure 18b shows that as the number of grid
divisions grows, the total execution time of the algorithm also increases, with the rate of
increase accelerating, suggesting that the number of grid divisions significantly affects the
algorithm’s running time.
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port surpasses 120, there is a significant spike in the algorithm’s running time. Conse-
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Figure 19 indicates that extending the maximum endurance time of the UAV has a
minimal effect on the total duration of the MUCWM monitoring task. This minimal impact
is largely due to the introduction of the mothership serving as a mobile power supply for
the UAVs, which significantly mitigates the power limitation issues of the UAV. Figure 20
additionally reveals that, while increasing the sailing speed of the mothership reduces
the overall monitoring time of MUCWM, this reduction tends to plateau. Thus, after the
mothership’s speed reaches a certain level, further increases in speed yield diminishing
returns in reducing the total monitoring time. Figure 21 illustrates that, with varying
numbers of UAVs, when the number of vessels to be monitored rises from 30 to 150, the
algorithm’s running time increases by 2487.962 s. Notably, when the count of vessels
monitored in the port surpasses 120, there is a significant spike in the algorithm’s running
time. Consequently, the algorithm exhibits improved computational efficiency when the
number of vessels monitored remains below 120.
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Figure 21. The relationship between the number of vessels to be monitored and the algorithm
running time.

In particular, we discussed the impact on the total monitoring time in the case of
leakage of 5–10% of the monitored vessels, and 10 sets of experiments were conducted
for each value of leakage, and the results obtained after averaging are shown in Figure 22.
From the figure, it can be observed that the total monitoring time tends to decrease as the
number of missed vessels increases, and we find that the impact on the total monitoring
task is more significant when it is reduced to 10%. This provides a compromise for the port;
the port can tradeoff between the time of the total monitoring task and the coverage of
the monitored vessels and can choose to give up a small portion of the vessels to obtain
a shorter monitoring time, and this analysis provides a certain reference value for the
monitoring program of the vessels in the port’s sea area.
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6. Conclusions

This paper presents an innovative monitoring solution for vessel air pollution, utiliz-
ing a mothership and multiple UAVs to conduct efficient and comprehensive monitoring
in maritime pre-monitoring areas. This significantly enhances monitoring efficiency and
extends the monitoring scope. The core focus of this research is the path optimization
problem for multi-UAV collaborative mothership (MUCWM) monitoring, which encom-
passes three critical issues: (1) optimizing the monitoring paths of multiple UAVs to ensure
efficient and accurate coverage of the target area; (2) developing a collaboration mechanism
between the mothership and multiple UAVs to synchronize their monitoring efforts; and
(3) optimizing the mothership’s traveling path to maximize overall monitoring efficiency.

To address these challenges, the paper develops a path optimization model for multi-
UAV collaborative mothership monitoring of vessel air pollution in port waters. The
model is solved using an improved adaptive differential evolution (IADE) algorithm.
Utilizing vessel position data from the Automatic Identification System (AIS) of Ningbo
Zhoushan Port, we demonstrate the model and algorithm’s effectiveness through an
example. Performance comparisons and sensitivity analyses of the algorithm highlight its
significant advantages in solving the path planning problems of collaborative operation
between the mothership and multiple UAVs.

However, the research also acknowledges certain limitations: the mission optimization
model lacks practical constraints such as UAV flight altitude, sea wind speed, and air
control. Furthermore, the model designates static supply points as the midpoints of a
divided grid network. Future research will explore dynamically adjusting the supply
points based on navigation conditions to achieve a better optimal solution.
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