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Abstract: Despite the increasing number of flood studies, the interrelationships between urban
form indices (UFIs) and flood resilience (FR) have received little attention and hold miscellaneous
perspectives. Consequentially, this study identifies how UFIs at various spatial scales affect FR by
synthesizing article findings and proposing insights for future research. Scientometric analysis has
been used to analyze the gathered peer-reviewed articles from nine research engines without time
restrictions. One hundred and eighteen relevant articles were included and thoroughly investigated
using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol.
Our findings indicate that divergent and dialectical perspectives about the efficacy of UFIs are due
to multiple disciplines, methodologies, and different case study contexts. The included studies
were classified according to urban scale as macro (citywide), meso (districts), micro (block), and
multi-scalar analysis by 80.5%, 6.8%, 10.2%, and 2.4%, respectively. Furthermore, the included studies
were categorized based on analysis type into realistic case studies, literature reviews, modeling, and
hybrid analysis, with 74.6%, 7.6%, 14.4%, and 3.4%, respectively. At the macroscale, city density
and spatial distribution degree have the most significant effect on FR. At the same time, mixed uses,
connectivity, coverage ratio, block arrangements, and street characteristics are on the meso and micro
scales. Further studies on the trade-offs and commonality between UFIs, FR, and overall urban
resilience are required to shape climate-adaptive, sustainable communities.

Keywords: urban planning; urban form; flood resilience; PRISMA; climate change; scientometric
analysis

1. Introduction

Currently, 55% of the global population lives in urban areas, with projections to rise to
68% by 2050 [1]. Amidst rapid urbanization and urban vulnerability, cities are confronted
with a panoply of natural disasters, jeopardizing their sustainability and exacerbating
socioeconomic inequalities, particularly in marginalized communities and hinterlands [2–7].
In September 2015, the United Nations (UN) endorsed Sustainable Development Goal 11
(SDG11) to make cities and human settlements inclusive, safe, resilient, and sustainable.
This goal is part of the 2030 Agenda to ensure that urban areas are socioeconomically
vibrant, environmentally sustainable, and adaptable to climate change [2–4,8]. Despite
SDG 11, urban communities frequently stray from these aspirations, and numerous cities
worldwide suffer from natural disaster susceptibility. A recent UNDRR report, “Human
Cost of Weather-Related Disasters 1995–2015”, revealed the staggering toll on human lives
and well-being since the Climate Change Conference (COP1) in 1995 [9,10]. Six hundred
and six thousand lives have been lost, and 4.1 billion people have been injured, left homeless,
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or in need of emergency assistance [11]. According to EM-DAT, climate change contributed
to a USD 203.35 billion loss in 2023, four times higher than in 2000, and about 100.26 million
people were displaced from their habitats [12]. These effects differ from place to place
based on individual contexts and risk characteristics. For example, cities in low-income
countries with the most urban residents face more climate risks, lower resilience, and
higher economic losses than high-income cities [13,14]. Moreover, rural areas are even
less prepared against natural disasters than cities, with more than 80% of disaster-related
casualties and economic losses occurring in rural areas [15].

Among previous natural disasters is urban flooding, the riskiest and most frequent,
affecting more than 10% of the world’s population in the last ten years, according to the
Emergency Events Database (https://www.emdat.be/, accessed on 17 November 2023).
Floods and other water-related threats caused by climate change, such as waterborne
diseases or water scarcity, have increasingly become hazards in many parts of the globe [16].
A UNDRR report revealed that flooding alone constituted 47% of all weather-related
disasters between 1995 and 2015 [7,17]. Alarmingly, the vast majority of these losses
(89%) occurred in low-income countries, despite these nations experiencing only 26% of all
floods [11]. Climate-induced changing precipitation patterns are the primary reason for
the 181% increase in flooding frequency and severity worldwide in 2010–2020 compared to
1980–1989. A large ensemble of numerical simulations revealed that 64% (14 of 22 events) of
floods analyzed in 2010–2013 were affected by anthropogenic climate change [18]. Another
reason for flooding is human activities like rapid expansion, unsustained densification in
flood-prone communities, land cover changes, aging drainage systems, and disinvestments
in hazardous districts [19–28]. For several decades, structural measures have been widely
used in flood-proofing; however, these measures have shown weaknesses. These measures
create a false sense of security in people and policymakers who rely solely on them and
neglect other flood risk management measures [29,30]. Implementation and maintenance
can also strain public budgets, especially in low-income countries. Based on historical
data and current conditions, structural measures are typically designed to protect against
floods. However, they may not be effective in the long term and fail during extreme
weather events, leading to catastrophic consequences such as levee breaches or structural
collapse [22,29,31,32]. A contemporary approach has emerged in recent years, combining
structural and non-structural measures during spatial planning in flood-prone areas. This
approach reaches the root causes of flood risk and makes communities more resilient
through spatial planning mechanisms [22,31,33,34].

Spatial planning is one of the essential non-structural approaches to improving FR by
directing sustainable land use development and management in flood-prone areas [29,32,35].
Effective spatial planning integrates flood risk considerations, including zoning regulations,
land-use planning, floodplain preservation, and natural buffers to absorb and mitigate
floodwaters. Additionally, spatial planning can promote resilient building designs, facili-
tate the coordination among flood risk management strategies across different scales, and
foster community engagement [25,36]. Urban form, a non-structural spatial planning tool,
is one of the main paths that help planners efficiently intervene and change undesirable
trajectories in the city system [37–39]. It creates a synergistically interconnected and protec-
tive tissue that facilitates effective emergency response in the disaster aftermath [40–43].
For example, compact urban forms can limit sprawl into flood-prone areas and preserve
valuable agricultural land and natural habitats. Additionally, mixed-use development
supports resilient communities with access to essential services and amenities even during
flood events [44,45]. Due to the recognition of the importance of urban form, many global
strategies have been implemented, focusing on changing city morphology by incorporating
sustainable storm management strategies in densely built areas [7]. These include LID (low
impact development) in North America, sponge cities (SC) in China [46], green infrastruc-
ture (GI) or best management practices (BMPs) for water management, sustainable urban
drainage systems (SUDS) in the United Kingdom [47], and water-sensitive urban design
(WSUD) in Australia [48,49].

https://www.emdat.be/
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Despite the significance of urban forms, debates about the most influential urban form
in FR have arisen [50]. Some studies have regarded the compact form as a symbol of mod-
ern urban planning; at the same time, recent discussions have focused on whether this form
is ideal for FR. A compact urban form may expose many assets and lives to risk due to the
higher concentration of runoff volume in a limited area. On the other hand, higher popula-
tion densities and mixed land use can minimize urban sprawl, leaving more open space for
runoff absorption [51]. Some scholars present several counterarguments that increasingly
intense and unpredictable rainfall patterns can overwhelm even the most well-designed ur-
ban form strategies, making them less effective at flood reduction. Additionally, retrofitting
cities and modifying urban forms to prioritize flood reduction may lead to sophisticated
consequences, such as increased traffic congestion or reduced housing affordability. All
previous discussions raised the necessity of assessing the trade-offs between urban form
and FR in alignment with broader efforts in disaster risk reduction. Therefore, our main
research question is: What are the critical urban form characteristics at different scales
that enhance FR? And why have divergent opinions been raised about the effectiveness of
urban forms on FR? Consequently, a systematic review was conducted using nine scien-
tific database engines to find peer-reviewed articles and classify them using the PRISMA
method. Studying this point is a critical research area with far-reaching implications, in
addition to combining several disciplines (urban planning, environmental management,
disaster risk reduction, etc.) that add scientific value to the disaster management field.

2. Theoretical Background

Before exploring potential associations between UFIs and FR, we clarify the meanings
of urban resilience and vulnerability, multiple-scale urban form and hierarchy, and flood
resilience, as shown in the following sections.

2.1. Urban Resilience and Vulnerability

Vulnerability and resilience often exist on opposite ends, yet they influence each
other. While vulnerability highlights weaknesses and susceptibilities, resilience focuses on
strengths and adaptive capacities. There is a negative correlation between vulnerability
and resilience, as vulnerability decreases, resilience increases, and vice versa. Vulnerability
refers to the susceptibility of individuals, communities, or systems to harm or adverse
impacts stemming from various factors such as socioeconomic disparities, environmental
degradation, or inadequate infrastructure [21,52–54]. According to the Sendai Framework
for Disaster Risk Reduction (SFDRR), 2015–2030, assessing vulnerability is a significant
stage in disaster risk management and reinforcing resilience [55,56]. The SFDRR defines
vulnerability as how climate events can harm human beings, their livelihoods, property,
capital assets, and the urban environment [57]. The Intergovernmental Panel on Climate
Change (IPCC) describes it as a system’s capacity or incapacity to be resilient in dealing
with the negative influences of variability and the extremes of climate change [25,58–60].
Vulnerability can help policymakers identify highly vulnerable areas and system flaws
and allocate resources for adaptation and alleviation [5,61,62]. The vulnerability paradigm
has evolved over the years, with three key stages: disaster management in the 1990s,
disaster risk management in the 2000s, and resilience management and development in the
2010s [63].

On the other hand, resilience refers to cities’ ability to withstand and recover from
various forms of stress, including natural disasters, economic downturns, and social un-
rest. The United Nations Office for Disaster Risk Reduction (UNISDR) offers a commonly
cited definition of urban resilience, which entails the urban system’s ability to anticipate
and handle risks, absorb disturbances, and adapt to changing conditions by reorganizing
itself [64,65]. This resilience is not just about physical structures but also involves socioeco-
nomic, environmental, and institutional capacities that enable communities to bounce back
and thrive [33,66–69]. Resilience theory drives two primary approaches: the equilibrium
approach, which restores a city to its pre-disaster state, and the evolutionary approach,
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which advocates for a comprehensive transformation of the city system [70–73]. Many
frameworks have emerged to measure disaster resilience, such as the disaster resilience
of place (DROP) model and the operationalized version called “the baseline resilience
indicators for the community” (BRIC) framework [69,74]. The DROP framework has been
constructed to demonstrate the link between resilience and vulnerability and present a
holistic evaluation of disaster resilience at multiple scales [17,66,75,76]. Nevertheless, the
BRIC assesses intrinsic resilience, also known as pre-event resilience, using six dimensions:
socioeconomic, community, financial, institutional, infrastructure and built environment,
and ecological [74,77,78].

Urban resilience comprises many characteristics, as shown in Table 1: redundancy,
complexity, collaboration, efficiency, adaptability, self-organization, multifunctionality,
productivity, agility, resourcefulness, foresight capacity, modularity, diversity, creativity,
connectivity, independence, flexibility, and deformability [79]. Redundancy, exemplified
by duplicate infrastructure or services, ensures urban systems can continue functioning
even if one component fails [80,81]. Complexity recognizes the intricate interconnections
within cities, acknowledging that disruptions in one area can have cascading effects. Col-
laboration fosters synergy between various stakeholders, promoting coordinated responses
and resource sharing during crises. Efficiency ensures optimal resource utilization, mini-
mizes waste, and maximizes output [17]. Adaptability allows cities to adjust to changing
environmental, social, or economic conditions by implementing responsive policies and
infrastructure upgrades [82,83]. Self-organization empowers communities to mobilize
resources and initiatives independently, bolstering resilience at the grassroots level. Multi-
functionality promotes versatile urban spaces that serve diverse needs, fostering resilience
through flexibility and adaptability. Productivity ensures efficient resource utilization and
wealth generation, reinforcing a city’s ability to withstand and recover from shocks [84–86].
Agility denotes the capacity to adapt, respond, and navigate change rapidly and effectively,
which involves being flexible and proactive in adjusting to evolving circumstances, seizing
opportunities, and overcoming challenges [10,87,88].

Resourcefulness encourages innovative solutions and alternative approaches to
problem-solving, enabling cities to overcome challenges with limited resources [80,89].
Foresight capacity involves proactive planning and risk management, anticipating and
mitigating potential threats before they materialize [80]. Modularity allows for flexible
adaptation and expansion of infrastructure and systems as needed, enhancing resilience
through scalability and versatility. Diversity fosters resilience by promoting a range of
perspectives, skills, and resources within a city, enhancing its ability to adapt to changing
conditions [90–92]. Creativity encourages the development of innovative solutions and
approaches to urban challenges, fostering resilience through continuous adaptation and
improvement [75,93,94]. Connectivity facilitates information exchange and collaboration
between sectors and stakeholders, enhancing resilience through shared knowledge and re-
sources. Independence promotes self-reliance and autonomy within communities, reducing
dependence on external resources and improving resilience to disruptions [81]. Flexibility
and deformability enable urban systems to absorb and recover from shocks by allowing
for adjustments and transformations, ensuring resilience in the face of uncertainty and
change [43]. Deformability recognizes that cities are dynamic, constantly evolving entities
that must adapt to changing conditions and challenges. This adaptive capacity allows
urban systems to bend, stretch, or reshape themselves to better withstand and recover from
adverse events, thereby reducing vulnerabilities and enhancing overall resilience.
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Table 1. A concise overview of urban resilience characteristics.

Shocks and Stressors Resilience Stages Sub-Stages Definitions Resilience Characteristics

- Natural (earthquakes,
hurricanes, floods,
wildfires, volcanic
eruptions, tsunamis,
and droughts)

- Environmental (habitat
destruction, pollution,
deforestation, climate
change, and loss of
biodiversity)

- Social (demographic
changes, cultural shifts,
social movements,
political upheavals,
conflicts, and
migrations)

- Economic (economic
downturns, inflation,
currency crises, market
crashes, trade disputes,
and disruptions to
supply chains)

- Technological
(breakthroughs in
technology,
technological accidents,
infrastructure failures,
cyberattacks, and data
breaches)

- Attacks and terrorism
(terrorist attacks,
bombings, cyberattacks,
and acts of warfare)

Awareness and
understanding

Pre-
disasters

This stage involves
recognizing potential threats
and vulnerabilities a
community or organization
faces. This stage includes
conducting risk assessments,
gathering data on hazards,
vulnerabilities, and capacities,
and engaging stakeholders to
understand the challenges.

Collaboration; efficiency;
resourcefulness; foresight
capacity; creativity;
connectivity

Planning and
preparation

Pre-
disasters

This stage includes creating
emergency response plans,
developing early warning
systems, establishing
communication protocols, and
identifying the resources and
capacities needed for an
effective response.

Redundancy; complexity;
collaboration; efficiency;
resourcefulness; foresight
capacity; creativity;
connectivity

Adaptation
During-
/post-
disasters

Adaptation refers to adjusting
or modifying urban systems,
policies, and practices to better
cope with and respond to
changing environmental,
social, and economic
conditions.

Collaboration;
independence; flexibility
and deformability;
resourcefulness; agility;
modularity; redundancy

Absorption Post-
disasters

Absorption refers to a system’s
capacity to absorb and manage
the initial impacts of
disruption without
experiencing catastrophic
failure or significant damage.

Modularity; diversity;
independence; efficiency;
multifunctionality;
robustness; redundancy

Self-organization Post-
disasters

This capability is needed to
restore the urban system’s
performance to its baseline in
the short to medium term after
an event.

Adaptability;
self-organization; diversity;
efficiency; independence;
multifunctionality;
connectivity; productivity

Source: the authors (depending on [20,41,76–78,80,84,86,87,89,92,95–101]).

2.2. Urban Form Characteristics

Urban form describes the physical layout, design, and spatial organization [10,38]. It
encompasses the arrangement of buildings, streets, open spaces, infrastructure, and land
uses within a city, as well as the patterns of connectivity and urban density. Urban form
plays a crucial role in shaping cities’ functionality, livability, and sustainability, influencing
various aspects of urban life: transportation, land use, social interactions, and quality of life.
Different urban forms can result in distinct urban experiences and outcomes, reflecting di-
verse cultural, historical, economic, and geographical contexts. It fosters urban resilience to
various environmental challenges and pressures [51]. For example, compact and mixed-use
urban forms promote efficiency and connectivity by minimizing mobility distances between
land uses, reducing energy consumption, and fostering social interaction [102–104]. Addi-
tionally, it supports public transportation networks, reducing reliance on private vehicles
and mitigating traffic congestion and air pollution [105–107]. Figure 1 illustrates three
forces that shape urban forms. The first is the centrifugal force, called urban proliferation,
which incorporates fragmented settlements in the city’s periphery or diffused-haphazard
buildings characterized by low density with the existing urban masses [108,109]. The
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second is the centripetal force, called “compactness forces” or monocentric high-density
development, which intensifies built-up areas through infill development, reusing brown-
fields, and replacing existing buildings with new ones [104,110,111]. The hybrid force, also
known as the topo-diverse form, is the last [112]. The topo-diverse city, as envisioned by
Samuelsson, represents an urban form that adheres to these principles. It is characterized
by a macroscale polycentric structure, balancing spatial containment and urban sprawl.
This form supports active movement and psychological restoration, providing a variety of
environments that cater to different needs and preferences.
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Figure 1. Classification of urban forms. The first row illustrates schematic histograms of the aggrega-
tion degrees, while the second row shows each pattern’s connectivity and modularity. In contrast, the
last row indicates the characteristics of each pattern, such as the built-up environment, movement,
and psychological demands—source: adapted from [112], after modification by the authors. The
authors added mobility and connectivity networks to the three urban forms.

2.3. Multiple-Scale Urban Form and Hierarchical Approaches

The scale hierarchy of urban form is a conceptual framework that organizes urban
elements into a hierarchical structure, reflecting the complexity and interconnectedness
of urban systems [113]. As shown in Table 2, the macroscale is at the top of the scale
hierarchy, encompassing the entire city. Macro and meso scales are divided into districts,
neighborhoods, and smaller urban areas, focusing on individual buildings, streets, and
public spaces. Finally, the nanoscale is at the bottom of the scale hierarchy, including the
tiny elements of the urban environment, such as individual rooms, furniture, and even
objects within these spaces.

- Macroscale urban form refers to the overall urban structure and layout, including
its current configuration and future development plans, considering urban systems’
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complex dynamics and interdependencies [43]. The macroscale category incorporates
several key attributes that define urban form, encompassing the scale hierarchy, city
size, development type, distribution pattern of people and jobs, degree of cluster-
ing, and landscape connectivity [10,43,114]. City size and density are two critical
indicators of urban form, measured by gross and net density [101,115]. City size
refers to the total area, including built-up and non-built-up areas, whereas density
measures how many people are packed into a given area [111,116]. Development-type
indicators assist in understanding the nature of urban development, encompassing
aspects such as formality level versus informality and the specific location of the
development [5,73,117,118]. These indicators assess a development’s characteristics,
whether characterized by a formal, structured approach or a more informal develop-
ment style. Additionally, they provide insights into growth location, distinguishing
between infill and greenfield developments built on undeveloped land [5]. Indi-
cators related to clustering degree are essential for understanding whether a city
exhibits a uniform, monocentric, polycentric, or hybrid development pattern [112,119].
Clustering degree is closely linked to well-known urban form characteristics such
as centrality and accessibility, which are critical for assessing urban infrastructure
and service efficiency [6,103,120,121]. Another critical development indicator is the
distribution of jobs and employment, which helps analyze residents’ mobility patterns
and choices [98]. Finally, landscape connectivity is a crucial indicator that examines
the nature and extent of connections between the city and other settlements within
the broader system of settlements, as well as between ecosystem components within
and beyond the city’s boundaries [92,122–124].

- Mesoscale urban form examines the broader layout of neighborhoods and districts,
focusing on key characteristics such as the arrangement and dimensions of these
areas, the mix of land uses, transportation infrastructure, accessibility, and green
spaces [82,98]. Neighborhood configuration shapes mobility patterns and has far-
reaching implications for urban resilience, affecting socioeconomic and environmental
aspects. For example, historically, urban planning has favored segregating land uses
to prevent conflicts, such as mixing undesirable uses with residential areas. However,
mixed-use development is now recognized for creating vibrant, walkable communities,
reducing long commutes, and promoting sustainable lifestyles [10,117,119,125,126].
Districts may exhibit distinct urban forms such as gridiron layouts, radial configu-
rations, or mixed-use cores surrounded by residential peripheries. These structural
elements influence connectivity, shaping how people interact within urban spaces.
Additionally, the diversity and heterogeneity of districts contribute to the richness
and complexity of urban environments, with neighborhoods often reflecting a mix of
architectural styles, land uses, and cultural influences. This diversity fosters a sense
of place and identity within communities, supports social cohesion, and encourages
creativity and innovation [65,114,127–130]. Moreover, the typology of transportation
networks shapes mobility patterns and accessibility, including various modes such as
roads, sidewalks, bike lanes, and public transit routes, each serving different mobility
needs and preferences [22,131]. Transport infrastructure design influences urban mo-
bility’s efficiency, safety, and convenience, with well-connected networks providing
seamless connections between residential areas, commercial centers, and recreational
amenities [10,132]. Intrinsically tied to ‘connectivity’ and ‘centrality’, ‘accessibility’
reflects the ease of reaching urban amenities and is influenced by factors like the
distribution of facilities [10]. Open and green spaces offer ecosystem services and
serve as natural buffers against environmental risks [128,133–135]. Additionally, it
promotes community cohesion and mental well-being, fostering social connections
and adaptive capacity among residents during times of crisis [136–139].

- Microscale urban form refers to the detailed physical characteristics and spatial ar-
rangements of elements within a small area, focusing on the specific features and
interactions at the street level, within individual blocks, or around particular land-
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marks [140,141]. These elements encompass various components, including streets,
buildings, open spaces, and infrastructure, and collectively contribute to urban liv-
ability. One key element of block-scale urban form is street design, which influences
layout, accessibility, and circulation patterns within a neighborhood. Streets vary in
width, orientation, and configuration, affecting pedestrian and vehicular movement,
safety, and social interactions. Well-designed streetscapes with sidewalks, bike lanes,
street trees, and lighting enhance walkability and encourage active transportation.
Another essential aspect of block-scale urban form is building morphology, which
refers to the form, scale, and architectural character of buildings within a block. Build-
ing morphology influences urban environments’ visual identity, density, and spatial
quality, shaping the streetscape and urban experience. Building height, setback, fa-
cade design, and material use contribute to a neighborhood’s character and sense of
place. For example, superblocks, which are large, monolithic areas typically used for a
single purpose, limit subdividing or consolidating urban spaces. This monocultural
approach to urban planning can lead to a lack of diversity and redundancy, negatively
impacting the urban landscape.

Additionally, superblocks often result in long, impermeable street edges, which hin-
der accessibility within the built environment [142]. Site arrangement, focusing on the
dimensions of the land and the positioning of buildings and the surrounding streets, is
a critical aspect of urban planning and encompasses considerations such as the lot size,
the configuration of buildings, and the uniformity or variability of the layout. Building
design, including size, compactness, orientation, and space between them, is critical to
resilience [10,143]. Street design, including street edge configuration, has profound implica-
tions for walkability, socioeconomic factors, and environmental sustainability. Street edges,
which serve as a boundary between properties and adjacent streets, are critical for facili-
tating connectivity [10,80,139,144]. These areas can achieve permeability through physical
modifications, such as smaller lots with multiple access points, reduced distances between
buildings, and non-physical factors like active businesses that encourage walkability.

Table 2. Multiple-scale urban form.

Classification Features Sub-Features
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Macroscale

City size City area

Population density

Scale hierarchy Regional and local connectivity

Distribution of the
population and

employment
Degree pattern of equal distribution

Development type
Planned/unplanned; formal/informal

Infill, sprawl, etc.

Degree of clustering Degree of compactness/centrality/
uniformity/monocentric/polycentric

Landscape/Habitat connectivity

Mesoscale

Shape of districts District size and shape; sanctuary area

Diversity/Heterogeneity Mixed land uses; open space ratio.

Typology of transportation
network

Route type; street width; street orientation;
street layout

Centrality and spinally of street
network segments

Permeability/connectivity;
access to amenities

Open and green spaces Size; shape; distribution pattern
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Table 2. Cont.

Classification Features Sub-Features

Microscale

Site layout Layout configuration (uniform/random); lot
size and geometry; site coverage

Block type Block size; perimeter

Building configuration
and density

Dwelling size, orientation, setbacks, floor
area ratio

Building typology,
furniture, and facade

Townhouse; detached; courtyard;
roof type

Street elements Aspect ratio; front setback; front usage;
emergency route design

Sample of
multiple-scale

urban form
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2.4. Urban Flood Resilience (FR)

FR is about creating sustainable, adaptable, and environmentally friendly cities that
can withstand and recover from flooding. FR is a shift from traditional flood management
practices to a more holistic, integrated approach that leverages natural processes and green
infrastructure [76,93,138]. FR refers to the capacity of urban areas to anticipate, withstand,
recover from, and adapt to flood events while maintaining the functionality, integrity,
and sustainability of the built environment, infrastructure, and communities, enhancing
preparedness, and promoting long-term resilience in urban settings [66,138,148]. Keating
et al. describe FR as the ability of a community to pursue its development and growth
objectives while managing its flood risk over time in a mutually reinforcing way [149].
Implementing FR strategies involves a combination of physical and socioeconomic mea-
sures, including developing flood-proof infrastructure, establishing early warning systems,
creating floodplain management plans, and promoting community preparedness and re-
sponse [33,69,150]. The Environmental Protection Agency (EPA) provides a comprehensive
framework to comprehend flooding threats and detect practical mitigation alternatives to
protect critical assets [128,137,151,152]. Indicators that measure FR relate to the system’s
response to flood waves or rainfall intensity, including the reaction threshold, amplitude,
graduality, and recovery rate. These indicators provide insights into the system’s perfor-
mance but cannot be aggregated into a single numerical value due to the need to assign
weights to the indicators [152–154].

Barsley, in his book “Retrofitting for Flood Resilience”, outlines six critical strategies
for building flood-resilient environments [155]. These strategies are about mitigating
flooding risks and leveraging these challenges as opportunities for improvement, such as
enhancing biodiversity and creating adaptable, sustainable, and beneficial environments for
communities. One of the strategies highlighted is alleviation, which involves increasing the
capacity of water systems or creating supplementary floodable areas to lower peak flood
levels and limiting the exposure of vulnerable locations to flood risks. An example of this
strategy is the Yanweizhou Park project in China. In this project, removing flood walls and
implementing a cut-and-fill terracing strategy allows the park to accommodate additional
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floodwater, thereby reducing flood risks to the city and surrounding areas [156]. Another
strategy is attenuation, which uses natural or artificial structures and spaces to reduce water
velocity and turbidity while providing more time for infiltration. The “Climate District” in
Copenhagen is a prime example of this approach, where streetscapes are retrofitted into
“Cloudburst Roads”, which serve as green routes for cyclists, pedestrians, and vehicles, as
well as channels for slowing, storing, and discharging water during heavy rainfall [157].
Restriction strategies aim to reduce flood risk by preventing water entry through structural
and non-structural flood risk management measures. Here is an example of the BIG U
project in New York, where a 16-km-long system is being developed to protect Manhattan
from flooding [158]. Each neighborhood tailors the system with specific programs and
functions at various scales. A realignment strategy involves reducing exposure to flood
risk by repositioning critical infrastructure, properties, or land use classifications. The
“managed retreat” in areas like Oakwood Beach in Staten Island, as part of the NY Rising
Community Reconstruction Program, is an example of this, where buildings have been
removed to restore the land to its natural floodplain functions [159].

Another strategy is incorporating flooding into the scheme as a design driver to orga-
nize and adapt the built and natural environments. SCAPE’s work with the City of Boston
to create a “resilient Boston Harbor” vision includes interventions like elevated landscapes,
protective parks, and resilient retrofitting of vulnerable buildings [160]. Schwarz et al. ana-
lyzed and mapped FR in Australia’s Hawkesbury-Nepean Catchment. This study utilizes a
comprehensive set of indicators, including government grant density, motor vehicle density,
index of economic resources, unemployment rate, tertiary qualification rate, community
service workers, internet access, median personal income, and flood project density [161].
Another significant case study is North Carolina, which showcases how natural ecosys-
tems can enhance FR, particularly in coastal areas vulnerable to sea-level rise and storm
surges [162]. Rotterdam, Netherlands: Known as the “Venice of the North”, Rotterdam
has a long history of dealing with water challenges based on “living with water” rather
than keeping water out entirely [163]. The “living with water” strategy includes creating
parks and green spaces that double flood retention areas and developing innovative flood
barriers like the Maeslantkering. Singapore faces significant challenges protecting itself
against rising sea levels and extreme weather events [164,165]. The city-state has adopted a
holistic approach to FR, integrating it into its broader urban planning and infrastructure
development. This approach includes the construction of the Marina Barrage; additionally,
Singapore invests heavily in researching and developing cutting-edge technologies such as
drones for real-time flood monitoring and smart sensors for early warning systems.

As shown in Figure 2, FR encompasses a multifaceted approach that hinges on four
critical processes: recovery, protection, preparedness, and prevention. These processes
are interconnected and essential for minimizing flooding damage, ensuring less risk to
people and infrastructure, and facilitating quicker and more efficient recovery [166,167].
Recovery efforts entail reconstructing infrastructure and communities using lessons from
previous flooding events [148]. After a flood event, the focus shifts to restoring the com-
munity to its pre-flood state as quickly and efficiently as possible. Achieving this entails
quickly communicating information to residents, understanding the recovery resources
available, assisting them in navigating the repair or rebuilding process, and implementing
mitigation measures to prevent future damage. Additionally, flood insurance and compen-
sation mechanisms alleviate the financial burden on affected individuals and businesses,
facilitating a smooth transition toward normalcy post-disaster [131,137,168]. Protection
entails constructing and maintaining physical barriers and infrastructure to defend against
floodwaters. Examples include levees, dikes, seawalls, and flood-proof measures such
as elevating critical equipment or placing it within waterproof containers or foundation
systems. These protective measures are crucial for safeguarding critical infrastructure and
reducing flooding impact [31,169–171].
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Figure 2. A multi-layered FR strategy. The first circle encompasses a multifaceted approach that
hinges on four critical processes: recovery, protection, preparedness, and prevention. The second circle
includes essential strategies for creating flood-resilient environments. The third circle defines the main
dimensions used in FR assessment, including socioeconomic evaluations, institutional, infrastructure,
built environment, ecological conditions, administrative entities, regulatory framework, policy, and
governance. The last frame shows the properties of a flood-resistant system: redundancy, efficiency,
adaptability, multifunctionality, resourcefulness, flexibility, rapidity, and robustness.

Preparedness is vital in assessing urban vulnerability and implementing flood mit-
igation measures. Part of the preparedness measures is evaluating land use plans and
policies to minimize conflicts between built infrastructure and floodplains. Preparedness
also involves educating the public on flood risks and evacuation procedures [114,152,172].
Communities with well-coordinated emergency plans can swiftly mobilize resources and
aid evacuation efforts. Furthermore, transparent risk communication fosters a collective
understanding of flood risks, empowering individuals and communities to mitigate po-
tential damages proactively. Prevention focuses on reducing flooding likelihood through
strategic planning and management. It includes developing and implementing flood pro-
tection master plans, such as the Virginia Flood Protection Master Plan and the Coastal
Resilience Master Plan. These master plans collect data on historical and forecasted flood-
ing conditions, conduct risk and vulnerability analyses, and identify strategies for reducing
vulnerability and bolstering resilience. Prevention also involves informed decision-making
based on the best available flood and flood damage reduction data, allowing for anticipatory
planning and preparation [114,138,173,174].
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3. Systematic Review Method

The systematic literature review process comprises three primary stages based on the
PRISMA 2020 statement, the explanatory paper [175], and Supplementary Table S1:

- Database search and retrieval: This initial stage identifies and retrieves an extensive
set of potentially eligible publications for inclusion in the review. This stage involves
comprehensive searches across relevant scientific databases and information sources,
utilizing carefully crafted search terms, keywords, and subject headings. Next, the
search process begins, where the reviewers execute the predefined search strategies
across the identified databases and sources, retrieving potentially relevant studies
based on the search criteria.

- Screening and preliminary analysis: The second stage entails applying predefined
inclusion and exclusion criteria to evaluate the retrieved publications systematically.
Irrelevant publications are excluded, while those meeting the eligibility criteria are
retained for further analysis. Additionally, a preliminary bibliometric analysis is
conducted to gain insights into the characteristics and distribution of the identified
literature. In the eligibility assessment stage, the remaining studies undergo a full-text
review, in which the reviewer carefully evaluates each study against the eligibility
criteria. Additionally, the reviewers identify and include relevant studies from other
sources, such as reference lists or expert consultations, based on the inclusion criteria.

- Full-text review and analysis (interpretation and presentation): This stage involves
synthesizing the included studies’ findings and analyzing the evidence’s heterogene-
ity and quality. This stage conducts meta-analyses, if appropriate, or provides a
narrative synthesis of the results. The full-text versions of the remaining publications
are thoroughly analyzed and the findings are presented clearly and in a structured
manner, using tables, figures, and other visual aids to facilitate understanding and
interpretation. Our study follows these processes, as shown in the following sections.

4. Results
4.1. Systematic Review Results
4.1.1. Search Strategy and Data Extraction

Studying UFIs and FR is a multidisciplinary field encompassing various keywords
related to urban planning, climate change, and disaster mitigation strategies. This me-
thodical inclusion of terms related to urban form characteristics, resilience, low-impact
development, spatial planning, green infrastructure, and flooding enabled us to perform a
focused and targeted search across multiple databases. This search strategy gathers theoret-
ical and empirical literature to provide a solid analytical foundation and incorporates many
perspectives. Our study relies on established and reputable databases widely recognized in
academic fields for their comprehensive coverage, indexing standards, and search func-
tionalities. These databases, such as PubMed, Web of Science, and Scopus, have extensive
collections of peer-reviewed journals, conference proceedings, and scholarly publications,
making them preferred for literature reviews and research inquiries. These databases
often offer advanced search features, citation tracking, and filtering options tailored to
researchers’ specific needs, enhancing the efficiency and effectiveness of literature searches.
This paper gathered peer-reviewed articles without time restrictions based on nine search
databases, as shown in Table 3: Nature, Taylor & Francis, Wiley, Science Direct, ASCE,
MDPI, JSTOR, ASCE, and Springer. As shown in Figure 3, the VOSviewer tool facilitates
article classification and visualization of these relationships. VOSviewer, developed by
Leiden University, is a powerful software tool for visualizing and analyzing bibliometric
networks: co-authorship, co-citation, and keyword co-occurrence networks derived from
scientific literature databases [176,177]. The visualization produced is a distance-based map
that features clustered keywords in various colors and sizes, reflecting their frequency in
the publications analyzed. Lines connecting two keywords signify their co-occurrence, with
the thickness of these lines representing the strength of their co-occurrence. Keywords are



Sustainability 2024, 16, 5076 13 of 47

grouped into clusters according to how often they co-occur. Only keywords that appeared
at least ten times were included in this analysis.

Table 3. Journals, titles, keywords, database classifications, and a list of selected literature categorized
by subject area.

S. No

Journal Database

References

Taylor
&

Francis
Wiley Science

Direct ASCE Nature Springer JSTOR MDPI Science

String

Urban form; urban pattern; spatial planning; urban planning; climate change; floods;
resilient cities; disasters; vulnerability; flood mitigation; flood resilience; risk

management; spatial analysis; flood recovery; sustainable cities; resilience; flooding;
runoff; nature-based solutions; low impact development; land use and cover change;

street layout; layout configuration; built-up mode

1 Urban form 584,016 490,473 70,244 15,31 13,186 740,311 989,223 3155 4679 [51,102,103,105,112,178–182]

2 Urban
resilience 158,599 178,830 197,391 1632 15,246 260,116 177,915 1958 3361

[10,17,20,29,33,43,67,75,79–
81,83,88,94,96,100,113,117,138,

143,147,148,157,183–216]

3 Resilient
urban form 10 34 98 4 27 14 19 144 14 [10,43,50,89,99,144,184,209,215,

217–221]

4 Flood 232,553 299,632 202,085 13,289 12,796 431,248 427,793 10,463 10,000 [20,23,35,40,62,71,166,167,214,
222–238]

5 FR 20,530 27,180 6326 2051 876 52,710 17,468 778 387 [29,148,166,167,214,222,238–
250]

6 Urban form
and FR 9 17 120 2 201 7 22 12 72 [51,79,96,139,230,251,252]
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4.1.2. Screening, Inclusion, and Exclusion Process

The third step is identification and searching, for which we thoroughly checked each
paper to make sure it met the eligibility criteria. Initially, there were 176 articles that
included “urban form” and “flood resilience” in their abstracts, titles, or keywords (both
author and indexed keywords) and were categorized as articles. Screening is the fourth
step, and involved exporting the bibliographic data for these 176 articles into a CSV file
and checking for duplicates and missing data. The fifth step, eligibility and assessment,
involved a detailed review of the full text of the selected articles. Publications were included
if they discussed UFIs and FR, such as research papers, method papers, theory papers,
case studies, viewpoint/commentary papers, and secondary sources like narrative reviews,
systematic reviews, and meta-analyses. After this step, 81 articles were selected for urban
form and 52 for flood resilience, as depicted in Figure 4. From the 133 selected papers, 15
were excluded because they did not contain relevant discussions on either UFIs or FR in
their full texts. Ultimately, 118 papers were chosen and are presented in detail in Section 4.2.
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4.1.3. Classification of the Studies Included in the Systematic Review

One hundred and eighteen selected studies on UFIs and FR were classified based on
the scale and type of analysis, as shown in Table 4 and Figure 5. Most of the studies 80.5%,
focused on the macroscale, encompassing city-wide or regional analyses. These studies
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typically examine broad urban form characteristics such as land use patterns, large-scale
infrastructure systems, and regional hydrology. Only 6.8% of the studies were conducted
at the mesoscale pertaining to neighborhood or district-level analyses. The microscale,
which involves a detailed examination of small areas such as individual buildings or spe-
cific sites, was addressed in 10.2% of the studies. A small fraction of the research, 0.8%,
integrated analyses across micro, meso, and macro scales, while another 0.8% combined
micro and meso scales, and yet another 0.8% combined macro and meso scales, reflect-
ing a comprehensive approach to understanding urban form and flood resilience across
different scales.

Table 4. The 118 articles selected, with their publication year, source title, title, analysis type, and
urban scale.

Paper ID Year Source Title Title Analysis Type Urban Scale

1 2011 12th International Conference
on Urban Drainage

Spatial metrics modeling to analyze
correlations between urban form and
surface water drainage performance

Modeling Micro

2 2019 International Journal of
Disaster Risk Reduction

Urbanization and floods in the Seoul
Metropolitan area of South Korea:
What old maps tell us

Realistic case study Macro

3 2021 Natural Hazards
Urbanization impacts on flood risks
based on urban growth data and
coupled flood models

Realistic case study Macro

4 2023 Journal of Asian Architecture
and Building Engineering

Urban and architectural design from
the perspective of flood resilience:
framework development and case
study of a Chinese university campus

Modeling Micro

5 2020 Sustainability (Switzerland)
Influence of the built environment on
community flood resilience: Evidence
from Nanjing City, China

Realistic case study Macro

6 2015 Environmental Research Urban flood risk warning under
rapid urbanization Realistic case study Macro

7 2024 Science of The Total
Environment

Spatial congruency or discrepancy?
Exploring the spatiotemporal
dynamics of built-up expansion
patterns and flood risk

Realistic case study Macro

8 2019 International Journal of
Disaster Risk Reduction

Urbanization and floods in the Seoul
Metropolitan area of South Korea:
What old maps tell us

Realistic case study Macro

9 2020 Hydrology Research
Quantifying effects of urban land-use
patterns on flood regimes for a typical
urbanized basin in eastern China

Realistic case study Macro

10 2015 Science of the Total
Environment

Flood risk and adaptation strategies
under climate change and urban
expansion: A probabilistic analysis
using global data

Realistic case study Macro

11 2006 Landscape and Urban
Planning

The effects of watershed urbanization
on the stream hydrology and riparian
vegetation of Los Peñasquitos
Creek, California

Realistic case study Macro

12 2015 Global Environmental Change
Changing global patterns of urban
exposure to flood and
drought hazards

Realistic case study Macro
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Table 4. Cont.

Paper ID Year Source Title Title Analysis Type Urban Scale

13 2018 Science of the Total
Environment

Integrated assessments of green
infrastructure for flood mitigation to
support robust decision-making for
sponge city construction in an
urbanized watershed

Realistic case study Macro

14 2018 Journal of Environmental
Management

Effects of spatial planning on future
flood risks in urban environments Realistic case study Macro

15 2020 Earth’s Future The role of urban growth in resilience
of communities under flood risk Realistic case study Macro

16 2019 Science of the Total
Environment

Comparison of urbanization and
climate change impacts on urban
flood volumes: Importance of urban
planning and drainage adaptation

Realistic case study Macro

17 2023 Sustainability (Switzerland)

Global Megacities and Frequent
Floods: Correlation between Urban
Expansion Patterns and Urban
Flood Hazards

Realistic case study Macro

18 2019 American Geophysical Union The Impact of Urban Form on Urban
Flood Hazards Modeling Micro

19 2017
International Journal of

Environmental Research and
Public Health

Exploring the linkage between urban
flood risk and spatial patterns in
small urbanized catchments of
Beijing, China

Realistic case study Macro

20 2023 International Journal of
Disaster Risk Reduction

Towards flood risk reduction:
Commonalities and differences
between urban flood resilience and
risk based on a case study in the Pearl
River Delta

Realistic case study Macro

21 2023 Journal of Environmental
Management

Assessing the effectiveness of
nature-based solutions-strengthened
urban planning mechanisms in
forming flood-resilient cities

Realistic case study Macro

22 2021 Environmental Research
Letters

Shaping urbanization to achieve
communities resilient to floods Realistic case study Macro

23 2019 Advances in Water Resources

Flood inundation modeling in
urbanized areas: A
mesh-independent porosity approach
with anisotropic friction

Modeling Micro

24 2020 Journal of Environmental
Management

Urban flood risk assessment and
analysis with a 3D visualization
method coupling the PP-PSO
algorithm and building data

Realistic case study Macro

25 2023 International Journal of
Disaster Risk Reduction

Urban resilience assessment: A
multicriteria approach for identifying
urban flood-exposed risky districts
using multiple-criteria
decision-making tools (MCDM)

Realistic case study Meso

26 2011 Journal of Planning Education
and Research

Examining the influence of
development patterns on flood
damages along the Gulf of Mexico

Realistic case study Macro
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Table 4. Cont.

Paper ID Year Source Title Title Analysis Type Urban Scale

27 2022 Frontiers in Sustainable Cities

Distributive Justice and Urban Form
Adaptation to Flooding Risks: Spatial
Analysis to Identify Toronto’s Priority
Neighborhoods

Realistic case study Meso

28 2024 Communications Earth &
Environment volume

Urban Form and Structure Explain
Variability in Spatial Inequality of
Property Flood Risk among US
Counties

Realistic case study Macro

29 2023 Environment, Development
and Sustainability

Assessment of urban form resilience:
a review of literature in the context of
the Global South

Review Macro

30 2019 Land Planning in Dhaka, Bangladesh Realistic case study Macro

31 2017 Hydrology and Earth System
Sciences Discussions

Comparison of the impacts of urban
development and climate change in
exposing European cities to pluvial
flooding

Realistic case study Macro

32 2021 Urban Science

Urban Form Resilience: A
Comparative Analysis of Traditional,
Semi-Planned, and Planned
Neighborhoods in Shiraz, Iran

Realistic case study Meso

33 2017 Journal of Geographic
Information System

Flood Resilient Cities: A Syntactic
and Metric Novel on Measuring the
Resilience of Cities against Flooding,
Gothenburg, Sweden

Realistic case study Macro

34 2017 Urban Floods Community of
Practice Knowledge Notes

Land Use Planning for Urban Flood
Risk Management Realistic case study Macro

35 2021 Journal of Hydrology

Influence of urban forms on
long-duration urban flooding:
Laboratory experiments and
computational analysis

Modeling Micro

36 2020 Science of the Total
Environment

The growth mode of built-up land in
floodplains and its impacts on flood
vulnerability

Realistic case study Macro

37 2021 Advances in Water Resources
Experimental and numerical model
studies on flash flood inundation
processes over a typical urban street

Realistic case study Macro

38 2021 Environmental Research

Investigating the influence of
three-dimensional building
configuration on urban pluvial
flooding using random forest
algorithm

Realistic case study Macro

39 2019 Cities
Building urban resilience with
nature-based solutions: How can
urban planning contribute?

Realistic case study Macro

40 2023 Urban Climate

An integrated indicator-based
approach for constructing an urban
flood vulnerability index as an urban
decision-making tool using the PCA
and AHP techniques: A case study of
Alexandria, Egypt

Realistic case study Macro
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Table 4. Cont.

Paper ID Year Source Title Title Analysis Type Urban Scale

41 2009 Water Science and Technology
Flood vulnerability indices at varying
spatial scales Flood vulnerability
indices at varying spatial scales

Realistic case study Macro

42 2019 Journal of Environmental
Planning and Management Flood resilience: a systematic review Review Macro

43 2020 Annals of the American
Association of Geographers

Understanding Urban Flood
Resilience in the Anthropocene: A
Social–Ecological–Technological
Systems (SETS) Learning Framework

Realistic case study Macro

44 2018 Science of the Total
Environment

Flood risk assessment in metro
systems of mega-cities using a
GIS-based modeling approach

Modeling Marco

45 2018 Wiley Interdisciplinary
Reviews: Water

Pluvial flood risk and opportunities
for resilience Realistic case study Macro

46 2024 Nature Communications
Urban development pattern’s
influence on
extreme rainfall occurrences

Modeling Macro

47 2019 International Journal of
Disaster Risk Reduction

A multi-criteria approach for
assessing urban flood resilience in
Tehran, Iran

Realistic case study Macro

48 2016 Landscape and Urban
Planning

Urban design principles for flood
resilience: Learning from the
ecological wisdom of living with
floods in the Vietnamese Mekong
Delta

Realistic case study Macro

49 2021 Land

Integrating sponge city concept and
neural network into land suitability
assessment: Evidence from a satellite
town of Shenzhen metropolitan area

Realistic case study Macro

50 2024 Journal of Hydrology

Analyzing urban form influence on
pluvial flooding via numerical
experiments using random slices of
actual city data

Modeling Micro

51 2023 Natural Hazards and Earth
System Sciences

Assessment of building damage and
risk under extreme flood scenarios in
Shanghai

Realistic case study Macro

52 2021 Sustainability (Switzerland)
Urban form and natural hazards:
Exploring the dual aspect concept of
urban forms on flood damage

Realistic case study Macro

53 2022 Sustainability (Switzerland) Flood Resilience and Adaptation in
the Built Environment Realistic case study Macro

54 2017 Natural Hazards and Earth
System Sciences

Development and testing of a
community flood resilience
measurement tool

Realistic case study Macro

55 2022 Theoretical and Applied
Climatology

Urban flood vulnerability assessment
in a densely urbanized city using
multi-factor analysis and machine
learning algorithms

Realistic case study Macro
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56 2020 Remote Sensing

Impact of expansion pattern of
built-up land in floodplains on flood
vulnerability: A case study in the
North China Plain area

Realistic case study Macro

57 2020
Environment and Planning B:

Urban Analytics and City
Science

Procedural generation of
flood-sensitive urban layouts Realistic case study Macro

58 2019

The Eleventh International
Conference on Advanced
Geographic Information

Systems

Investigating the Impact of Urban
Layout Geometry on Urban Flooding Realistic case study Macro

59 2018 PhD thesis

Spatiotemporal modeling of
interactions between urbanization
and flood risk: A multi-level
approach

Modeling and
Realistic case study

Micro, meso,
and macro

60 2015 Regional Environmental
Change

Flood exposure and settlement
expansion since pre-industrial times
in 1850 until 2011 in north Bavaria,
Germany

Realistic case study Macro

61 2020 Urban Ecosystems
Flood-resilient urban design based on
the indigenous landscape in the city
of Can Tho, Vietnam

Realistic case study Macro

62 2021 Sustainable Cities and Society

Urban Flood Modeling Application:
Assess the Effectiveness of Building
Regulation in Coping with Urban
Flooding Under Precipitation
Uncertainty

Modeling Micro

63 2018 Springer International
Publishing

Resilient urban form: a conceptual
framework chapter 9 resilient urban
form: a conceptual framework

Review Macro

64 2018 IOP Conf. Series: Materials
Science and Engineering 413

Impact of flood danger in built-up
areas in Nigeria and floor
management systems for espousal

Realistic case study Macro

65 2018 Georgia Tech Library
Urban form and neighborhood
vulnerability to climate change case
study: Jakarta, Indonesia

Realistic case study Meso

66 2013 Natural Hazards and Earth
System Sciences

Reduction of maximum tsunami
run-up due to the interaction with
beachfront
development—Application of single
sinusoidal waves

Realistic case study Macro

67 2017 Natural Hazards Use of LSPIV in assessing urban flash
flood vulnerability Realistic case study Macro

68 2016 Journal of Hydrology

A step towards considering the
spatial heterogeneity of urban key
features in urban hydrology flood
modelling

Realistic case study Macro

69 2017 Journal of Hydrology

Assessment of urban pluvial flood
risk and efficiency of adaptation
options through simulations—A new
generation of urban planning tools

Modeling Micro
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70 2021 Master thesis

A computational approach to
integrating non-structural flood risk
mitigation strategies into the urban
planning process

Modeling and
Realistic case study

Micro and
meso

71 2021 Journal of Hydrology
Sustainable stormwater management
under the impact of climate change
and urban densification

Realistic case study Macro

72 2007 Journal of Hydraulic Research Flash flood flow experiment in a
simplified urban district Realistic case study Meso

73 2016 Coastal Engineering

Physical modelling of tsunami
onshore propagation, peak pressures,
and shielding effects in an urban
building array

Realistic case study Macro

74 2023 Water Security A review of recent advances in urban
flood research Review Macro

75 2019 Sustainable Cities and Society Mapping urban resilience to
disasters—A review Realistic case study Macro

76 2018 Water Resources Research
The influence of urban development
patterns on streamflow characteristics
in the charlanta megaregion

Realistic case study Macro

77 2021
IOP Conference Series
Materials Science and

Engineering

Building climate resilient city through
multiple scale cooperative planning:
Experiences from Copenhagen

Realistic case study Macro

78 2021 Natural Hazards
Urbanization impacts on flood risks
based on urban growth data and
coupled flood models

Realistic case study Macro

79 2022 Handbook of Environmental
Chemistry

Nature-Based Solutions for Flood
Mitigation and Resilience in Urban
Areas

Realistic case study Macro

80 2021 Environmental Evidence

What evidence exists on the possible
effects of urban forms on terrestrial
biodiversity in western cities? A
systematic map protocol

Realistic case study Macro

81 2023 Urban Studies

Urban development and long-term
flood risk and resilience: Experiences
over time and across cultures. Cases
from Asia, North America, Europe
and Australia.

Realistic case study Macro

82 2022 Sustainability
Flood Resilience and Adaptation in
the Built Environment: How Far
along Are We?

Realistic case study Macro

83 2019 Journal of Environmental
Planning and Management Flood resilience: a systematic review. Review Macro

84 2020 Natural Hazards and Earth
System Sciences

Are flood damage models converging
to “reality”? Lessons learnt from a
blind test

Realistic case study Macro

85 2024 Scientific Data
Mapping urban form into local
climate zones for the continental US
from 1986–2020

Realistic case study Macro
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86 2021 Cities
Adapting cities for climate change
through urban green infrastructure
planning

Realistic case study Macro

87 2017 Environmental Science &
Policy

A framework for assessing and
implementing the co-benefits of
nature-based solutions in urban areas

Realistic case study Macro

88 2018 International Journal of
Disaster Risk Reduction

Resilience assessment of complex
urban systems to natural disasters: A
new literature review

Realistic case study Macro

89 2024 Sustainable Cities and Society Impact of urban built-up volume on
urban environment: a case of Jakarta Realistic case study Macro

90 2010 Landscape and Urban
Planning

Urban form revisited—Selecting
indicators for characterising
European cities.

Realistic case study Macro

91 2018 Water (Switzerland)

Urban floods and climate change
adaptation: The potential of public
space design when accommodating
natural processes

Realistic case study Macro

92 2021 Natural Hazards and Earth
System Sciences

Assessment of building damages and
adaptation options under extreme
flood scenarios in Shanghai

Realistic case study Macro

93 2024 International Journal of
Disaster Risk Reduction

Resilient urban expansion:
Identifying critical conflict patches by
integrating flood risk and land use
predictions: A case study of Min
Delta Urban Agglomerations in
China

Realistic case study Macro

94 2023 Urban Climate

Spatial-temporal evolution of urban
form resilience to climate disturbance
in adaptive cycle: A case study of
Changchun city

Realistic case study Macro

95 2018 Science of the Total
Environment

Influence of urban pattern on
inundation flow in floodplains of
lowland rivers

Realistic case study Macro

96 2018 Environmental Modelling and
Software

Variance-based sensitivity analysis of
1D and 2D hydraulic models: An
experimental urban flood case

Modeling Macro

97 2018 Science of the Total
Environment

The changing pattern of urban
flooding in Guangzhou, China Realistic case study Macro

98 2020 International Journal on
Emerging Technologies

Causes and Impacts of Urban Floods
in Indian Cities: A Review Review Macro

99 2021 Journal of Hydrology
Impact of the porosity of an urban
block on the flood risk assessment: A
laboratory experiment

Modeling Micro

100 2014 Sustainability (Switzerland) Urban land pattern impacts on floods
in a new district of China Realistic case study Meso

101 2011 Landscape and Urban
Planning

The impact of urban development on
hydrologic regime from catchment to
basin scales

Realistic case study Macro
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102 2020 Scientific Reports
A network percolation-based
contagion model of flood propagation
and recession in urban road networks

Realistic case study Macro

103 2022 IOP Conference Series: Earth
and Environmental Science

Flood resiliency approach for urban
planning: critical review and future
research agenda

Review Macro

104 2008 Urban Design and Planning The absorbent city: urban form and
flood risk management Review Macro

105 2003 U.S. GEOLOGICAL SURVEY Effects of urban development
on floods Realistic case study Macro

106 2023 Urban Planning International
Empirical correlations between urban
form and climate resilience: A study
of flooding events in Macau

Realistic case study Macro

107 2022 Urban Science
An Urban Density-Based Runoff
Simulation Framework to Envisage
Flood Resilience of Cities

Review and
realistic case study Macro

108 2024 Environmental and
Sustainability Indicators

Analysis of sustainable urban forms
for climate change adaptation
and mitigation

Review and
realistic case study Macro

109 2023 NA Adaptation to Flooding and its Effect
on the Urban Form Modeling Macro

110 2022 Scientific data Laboratory modeling of
urban flooding Modeling Meso

111 2022 Journal of Urban Design
Multi-functional urban design
approaches to manage floods:
examples from Dutch cities

Realistic case study Macro

112 2018
International Society of City

and Regional Planners
(ISOCARP)

A methodological approach to
measure interrelations
between urban form and
flood-related risks in
Kampala, Uganda

Review Macro

113 2023 Research Square How urban form impacts flooding Modeling Micro

114 2023
International Conference of

Contemporary Affairs in
Architecture and Urbanism

The resilient city: What urban form
characteristics to adapt to flood risks?
(Case of the city of Skikda-Algeria)

Realistic case study Macro

115 2023 Land

Spatial correlation between urban
planning patterns and vulnerability
to flooding risk: a case study in
Murcia (Spain)

Realistic case study Macro

116 2017 Journal of Hydrology

Assessment of urban pluvial flood
risk and efficiency of adaptation
options through simulations—a new
generation of urban planning tools

Modeling Meso

117 2021 UC Irvine Electronic Theses
and Dissertations

The effect of urban texture on
flood behavior Modeling Micro

118 2016
International Journal of

Disaster Resilience in the Built
Environment

The impact of urban form on disaster
resiliency: A case study of Brisbane
and Ipswich, Australia

Realistic case study Macro, and
meso
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Figure 5. Classification of the studies included in the systematic review based on spatial scale and
analysis type.

Regarding the type of analysis conducted, the review revealed that 74.6% of the
studies utilized a realistic case study approach. These studies focused on specific real-
world scenarios to explore the interplay between urban form indicators and flood resilience,
providing practical insights and empirical data. Of the studies, 7.6% are literature reviews,
offering comprehensive summaries and syntheses of existing literature. Modeling studies
used computational simulations and predictive models to analyze urban form and flood
resilience, accounting for 14.4% of the research. A small proportion of the studies, 1.7%,
combined review methodologies with realistic case studies, while another 1.7% integrated
modeling with realistic case study approaches, demonstrating a blend of theoretical and
practical perspectives in the research landscape.

4.2. Divergent Perspectives on Urban Form and FR

Urban form and flood resilience are often viewed from divergent perspectives. These
contradictory perspectives are due to the complexity of urban hydrology, the influence of
local topography and drainage infrastructure, and the heterogeneity of urban development
patterns across different regions. Urban planners prioritize compact, dense city layouts
to optimize land use and infrastructure efficiency. However, such designs can exacerbate
flood risks by reducing natural drainage areas and increasing impervious surfaces. Envi-
ronmentalists advocate green infrastructure and decentralized water management systems
to enhance FR and promote ecological sustainability. Proponents of scattered urban forms
often highlight the role of low-density development in reducing runoff volumes and veloci-
ties. They argue that dispersed development allows for more natural rainwater infiltration
into the soil and promotes the preservation of open spaces, which can serve as protective
buffers against flooding.

Additionally, dispersed development may offer more flexibility for implementing
decentralized stormwater management practices, such as green infrastructure and rain
gardens [44,48,65,154,253,254]. Conversely, advocates for compact urban forms emphasize
the benefits of higher population density and mixed land use in promoting sustainable
water management. Compact development patterns, characterized by higher building
densities and reduced lot sizes, can support efficient land use in limited spaces, reduce
urban sprawl, and encourage pedestrian-friendly neighborhoods [103,105,107]. Proponents
argue that compact urban forms facilitate the implementation of centralized stormwater
management systems and enable better coordination of flood protection measures. For
example, Yao et al. explained that if flood mitigation policies are not promoted, high-
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density development exposes more population, residential and commercial buildings, and
infrastructure to risk than low-density development on equivalent land units [124].

Brody et al., on the other hand, argue that fragmentation or leapfrog development
could increase stormwater runoff due to the vast expansion of impervious surfaces and
fragmented drainage networks. They discovered that more connected and concentrated
development patterns reduce flood losses in the Gulf of Mexico [133]. Han et al. assessed
the modes of built-up land in floodplains (BLF). They elucidated their differing impacts
on flood vulnerability through a case study in the Yangtze River Economic Belt (YREB),
China. The findings reveal a nearly two-fold increase in BLF within the YREB from 1990
to 2014. 35.43% of this BLF expansion occurs in small patches (≤1 km2), which exhibit a
notably stronger correlation with flood incidents than other patch sizes. Both leapfrogging
and edge-expanding BLFs exhibit significant associations with flood incidents, whereas
the infilling type does not [71]. Diwangkari indicated that urban fringes and peripheral
nuclei are less vulnerable and sensitive than clustered urban settlements [255]. The sprawl
pattern has probably included hazardous regions and placed more structures and residents
in flood-prone areas by spreading across the landscape [93,101]. Additionally, sprawling
development and outside extraterritorial jurisdictions may infringe on floodplains left
initially as open space or for low-impact uses. Mabrouk et al. analyzed the relationship
between the spatiotemporal dynamics of built-up expansion patterns (BE) and flood risk.
Their findings indicate a strong correlation between the unplanned-infilling pattern and
areas prone to flooding, with a coefficient of 0.975 and a p-value of less than 0.05 [5]. Wang
et al. examined the built-up land in floodplains (BLF) (patch size and expansion type) in the
North China Plain from 1975 to 2014. The results show that flood vulnerability significantly
correlated with the small (R = 0.36, p < 0.01), edge expansion (R = 0.53, p < 0.01), and
outlying patches (R = 0.51, p < 0.01). Large patches significantly correlated with flood
vulnerability (R = 0.18, p > 0.1), but there was a negative trend. Over a long time, infilling
patch growth was highly associated with flood vulnerability (R = 0.27, p < 0.05) [62].

4.3. Effectiveness of UFIs on FR at the Macroscale

Table 3 shows that macroscale UFIs significantly impact FR by altering flow patterns
and determining floodwater speed and depth [131,256]. The relationship between city
size and FR is multifaceted; larger cities tend to have more resources, including financial,
infrastructure, and human capital [93,139]. These resources enable larger cities to invest in
comprehensive flood management strategies such as sophisticated drainage systems, flood
barriers, and early warning systems [153]. Additionally, more prominent cities often have
more diversified economies and faster flood recovery. However, larger cities can also pose
challenges to FR, where urban sprawl and extensive infrastructure networks can increase
impervious surfaces, reducing natural drainage and exacerbating flood risks [20,42,117].
Moreover, large cities’ dense populations and infrastructure concentration can amplify
flood impacts, leading to more significant disruptions and higher economic losses [5]. Scale
hierarchy, from local to regional, plays a critical role in FR. At the regional level, larger
geographical entities, such as river basins or watersheds, exhibit significant connectivity
through water flow, which can influence flood patterns across broader areas. For instance,
implementing flood control measures upstream in a river basin can reduce downstream
flood risk for communities situated further along the watercourse [22,133,152]. At the local
scale, the focus shifts to specific communities, infrastructure, and land-use practices that di-
rectly influence flood vulnerability. Local connectivity can improve FR by fostering effective
communication, evacuation routes, and community-based adaptation measures [10,133].
Moreover, localized land-use planning and zoning regulations can minimize flood expo-
sure by restricting development in high-risk areas and promoting green infrastructure
solutions [75,138,257].

Regarding urban growth rates, increasing growth leads to impervious surfaces, re-
duces natural water absorption, and contributes to surface runoff. As cities grow, they
infringe on natural floodplains and wetlands that provide natural buffers against flooding.
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Previous studies have shown that urbanization increases flood intensity and raises surface
runoff peaks. For instance, Arnold et al. showed that water runoff doubled with only
a 10–20% growth in waterproof covers [258]. White and Greer indicated that increasing
urbanization from 9% to 37% between 1973 and 2000 in Peñasquitos Creek, California,
amplified runoff by 200% [259]. Likewise, approximately 250% higher runoff was ob-
served in Texas and New York urban areas than in greenery areas [133,260,261]. Brody
et al. noticed that expanding impervious land cover across 81 coastal regions in Texas and
Florida was associated with a considerable increase in flood flow [133,262]. From 1997 to
2001, flooding affected the built environment in over thirty-seven counties; every square
meter of extra impervious cover annually adds around USD 3600 of property damage [96].
Bae and Chang investigated how land cover change and socioeconomic variables have
influenced flood damage in the Seoul metropolitan region of South Korea over the past 30
years. They found that high flood damage is spatially clustered on the outskirts, where
rapid urbanization occurred, and the proportion of farmland and urban area demonstrated
positive and negative correlations with flood damage [20].

Development type has been discussed as one of the most significant factors in shaping
disaster-resilient cities [35,263]. Some scholars believe that the compact type is a slo-
gan for sustainability [103,264]. However, inadequately managed compact urban forms
can engender adverse consequences, such as traffic congestion, air pollution, heightened
health hazards, diminished recreational spaces, escalated land values, and housing costs,
disproportionately affecting lower-income households and renters [51,139,265]. Compact-
ness facilitates efficient resource allocation and infrastructure development to enhance
FR [10,114]. Compactness may reduce damage because it is less likely to include hazardous
areas such as floodplains [51]; however, the concentration of population and infrastructure
in specific areas can also exacerbate flooding impacts and pose challenges in coordinat-
ing evacuation efforts and providing aid during and after floods [70,133]. Monocentric
cities with a single dominant center may face heightened flood risks due to concentrated
exposure [50,103,266]. In contrast, polycentric cities, with multiple activity centers, offer
redundancy in critical infrastructure and provide alternative hubs for shelter and emer-
gency operations, bolstering flood resilience through decentralized strategies. However,
clustering can also foster resilience through social cohesion and shared resources, where
close-knit communities often exhibit higher levels of collective action and mutual support,
affecting disaster response and recovery [65,128,129]. Lastly, landscape and FR are rooted
in the understanding that natural features and ecological systems play a critical role in
mitigating flooding [65,138,267]. Landscapes incorporating elements such as wetlands,
forests, and green spaces are natural buffers against floodwaters by absorbing, slowing,
and redirecting their flow [7]. These features help reduce flooding intensity, decrease
erosion, and enhance water absorption into the soil, minimizing infrastructure damage.
Furthermore, landscapes support biodiversity, which enhances sustainable development
and safeguards against climate-posed escalating risks [30,268,269].

4.4. Effectiveness of UFIs on FR at Mesoscale

The mesoscale encompasses a range of elements: polyvalency, land use patterns, build-
ing densities, modularity, green spaces, transportation networks, and infrastructure systems
within a defined area of a city. These features significantly influence the local hydrological
cycle, stormwater management, and flood response. For example, polyvalency, or the mul-
tifunctionality of spaces within urban areas, is closely tied to FR as it enables diverse and
adaptable land uses that can respond effectively to inundation events [139]. Open spaces
serve multiple purposes, such as recreational areas, temporary flood storage during heavy
rainfall, and flexible buffers against flooding [129,131,153]. Street network connectivity is
critical to FR because it influences evacuation routes, emergency response times, and access
to essential services during flood events [97,120,235,270,271]. Well-connected street net-
works with multiple routes and alternative paths can facilitate the movement of people and
resources, reducing the risk of isolation or trapped populations during flood events. Addi-
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tionally, interconnected streets provide opportunities for effective stormwater management
through decentralized drainage systems and green infrastructure [167,242,272].

Population density has significant implications for FR, as it affects evacuation pro-
cedures, emergency response capabilities, and the overall vulnerability of urban areas
to inundation [131,173,273]. High population densities in flood-prone zones increase the
number of people at risk and the potential for widespread impacts on public health, safety,
and infrastructure. However, dense urban areas also offer opportunities for efficient land
use, infrastructure sharing, and collective responses to flooding. Modularity in resilient
systems refers to the design principle that allows structurally or functionally distinct parts
of a system to retain autonomy during periods of stress. This approach facilitates easier
recovery from loss, making the system more resilient [274,275]. In FR, modularity can be
applied to infrastructure, urban planning, and environmental management to ensure that
even if one part of the system is affected by a flood, other parts can continue functioning,
reducing the event’s overall impact. For example, in urban planning, modularity can be
applied by designing buildings and infrastructure in a way that allows for the isolation
of flood-affected areas without disrupting urban functionality [39,88,139,202]. Harmony
with nature is essential for fostering FR by integrating natural features and ecological
processes into urban landscapes [7,139]. Nature-based solutions, such as blue–green infras-
tructure, mitigate flooding by absorbing excess water, reducing runoff, and enhancing soil
permeability. Additionally, natural habitats provide essential ecosystem services, such as
water filtration, carbon sequestration, and habitat for biodiversity, contributing to overall
urban resilience.

Mixed-land use is a crucial principle in FR planning, as it promotes the integration
of diverse activities and functions within urban areas, creating vibrant and resilient com-
munities less susceptible to flood impacts [51,268,276]. Mixed-use development impacts
FR in many ways. Firstly, mixed-use projects enable the integration of diverse amenities
and services, enhancing the ability to adapt to challenging circumstances swiftly. Secondly,
combining different land uses fosters stronger social connections, bolstering the capacity
to absorb and recover from adverse events. Flood risk is distributed across multiple areas
by spreading out different land uses. This means that even if one location is severely
affected by flooding, others may remain unaffected or may be less impacted [277,278].
Hence, mixed land-use strategies facilitate shorter mobility distances and increase local
self-sufficiency [67,192,279].

Flood evacuation route accessibility is critical for safety during flood events [235,280].
Cities need well-defined evacuation routes for effortless mobility, particularly in flood-
prone areas. Clear signage, designated evacuation centers, and efficient transportation
systems are essential to an effective evacuation plan. In the article “Enhancing Pedestrian
Evacuation Routes During Flood Events”, Musolino, Ahmadian, and Xia present a novel ap-
proach to increasing resilience by retrofitting existing infrastructure to enhance evacuation
and access routes, thereby reducing the flood hazard rate based on flood and pedestrian
characteristics. The research also emphasizes that the shortest path is not always the safest
when designing an evacuation plan. It suggests that all possible evacuation routes should
be considered to determine the safest path to an assembly point [281].

Additionally, cities can leverage technology, such as real-time monitoring and commu-
nication systems, to provide timely warnings and updates to residents about evacuation
routes and flood risks [152,282,283]. Proximity to water bodies significantly impacts FR,
as areas near rivers, lakes, or coastlines are more susceptible to inundation and flood
risks [268,284–286]. While proximity to water bodies may offer recreational and economic
opportunities, it also increases the vulnerability of communities to flooding events. Im-
proving green infrastructure and restoring natural buffers along water bodies can mitigate
flood impacts and enhance urban waterfront resilience. The open space index (OSR), or
green space ratio, measures the amount of open and green space within urban areas relative
to the total land area. Sharifi et al. defined it as “any unroofed ground space in the city
(either natural or human-made), excluding various types of right-of-way, which can be
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publicly or privately owned” [10]. High OSR values indicate more abundance of parks,
recreational areas, and natural landscapes. Green spaces absorb excess water, reduce runoff,
and mitigate flood risks by providing natural drainage systems and flood storage areas.
Additionally, green spaces contribute to the overall well-being and quality of life of urban
residents, providing opportunities for recreation, relaxation, and social interaction. Floor
area ratio (FAR) is a critical urban design parameter that influences FR by regulating the
intensity of development and the density of built-up areas within a given space. The FAR
represents a building’s total floor area divided by the size of the lot it occupies [287]. In
flood-prone areas, high FAR can exacerbate flood risks by increasing impervious surfaces;
conversely, low FAR may allow for porous surfaces, facilitating water absorption and re-
ducing flood vulnerability. Edge density refers to the amount of perimeter or edge relative
to the area of a landscape patch or urban district, and it plays a significant role in FR by
influencing water flow patterns and connectivity. Higher edge densities in urban areas
result from irregularly shaped patches, intricate street networks, or fragmented land use
patterns [103,104,288]. Excessive edge density can lead to localized flooding without proper
stormwater management infrastructure.

4.5. Effectiveness of UFIs on FR at the Microscale

The microscale includes localized elements such as block design and surface perme-
ability. For example, building setbacks, which are the distances between a building and
its property lines, allow stormwater to collect and infiltrate into the ground temporar-
ily [42,230,289]. More setbacks can provide more space for green infrastructure features like
rain gardens and swales, attenuating and managing stormwater runoff [48,253,290,291].
Moreover, setbacks provide emergency access for responders during flood events, enabling
efficient rescue operations and evacuation procedures. During the tsunami inundation,
Tomiczek et al. investigated the effect of building setbacks on hydrodynamic loads and
discovered that the spaces between buildings reduce water depth and vulnerability [71,292].
The concept of “patches” refers to the fragmentation of urban areas into smaller, more
manageable units [293]. This fragmentation can take various forms, including dividing
a city into smaller districts, creating green corridors, or implementing buffer zones be-
tween land uses [205]. Higher numbers of patches indicate greater landscape diversity
and connectivity, which can enhance flood resilience by providing multiple pathways for
water flow [133,139,261]. However, excessive patchiness indicates land use fragmentation
and sprawl, which can compromise flood resilience by reducing contiguous green spaces
and impeding effective stormwater management [112,208]. More patches can lead to a
more fragmented urban landscape, slowing floodwater spread and reducing flooding
risk in adjacent areas. It implies that smaller, more manageable units can be more easily
managed and adapted to changing conditions, including climate change and increased
flood risk [36,140,205]. However, the effectiveness of patches in enhancing FR depends on
several factors, including the size and distribution of the patches, the types of land uses
within each patch, and the presence of buffer zones or green corridors that can absorb and
store floodwater [187,288,294]. For example, tiny or poorly connected patches may not
effectively reduce flood risk. Similarly, patches that do not include buffer zones or green
corridors may not provide sufficient space for floodwater to be absorbed and stored.

The shape of the patches influences FR by impacting water flow and distribution
during inundation events. Irregularly shaped patches, characterized by jagged edges
or intricate boundaries, create more diverse flow paths for floodwater than uniformly
shaped patches [5]. This diversity can improve FR by dispersing water force and reducing
concentrated flow or infrastructure damage. Irregular patch shapes can provide natural
flood storage areas or retention zones, allowing water to be temporarily held and gradually
released, thus mitigating peak flows downstream [21,22]. Lots size significantly impacts
FR, as fine-grained lots manage flood risks better than larger ones. Fine-grained lots allow
for greater land use diversity and more efficient land management practices. With smaller
lots, green infrastructure is typically more accessible.
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Additionally, smaller lots enable more flexibility in urban design, creating intercon-
nected open spaces and waterways that can serve as natural drainage channels during
heavy rainfall [17]. Worn-out urban texture, which includes aging infrastructure, deterio-
rating buildings, and neglected public spaces, can pose challenges to FR [69]. In such areas,
inadequate maintenance and outdated infrastructure impede drainage systems, exacerbat-
ing flood risks during extreme weather events. Building conditions, including structural
integrity and maintenance, directly impact FR [295]. Well-maintained buildings with robust
foundations, watertight envelopes, and flood-resistant materials are better equipped to
withstand inundation and minimize flood damage [66,296,297]. Conversely, deteriorating
or poorly maintained buildings are more susceptible to flood damage, compromising oc-
cupant safety and resilience. The sky view factor (SVF), the ratio of the visible sky to the
total field of view at a given point in the urban environment, influences FR. High SVF areas
with abundant open space and vegetation tend to experience lower temperatures, reduced
heat stress, improved ventilation, and decreased flood vulnerability due to more permeable
surfaces [10,128].

Building height influences adaptability, pedestrian safety, and overall resilience to
flooding [10]. Low-rise buildings with elevated ground floors or flood-resistant foundations
are less vulnerable to inundation and can remain functional during floods with minimal
damage. In contrast, high-rise buildings with ground-level entrances may face higher flood
risks and require additional protection measures to safeguard occupants and assets. Beijing
Normal University, Beijing Hydrological Center, and the China Institute of Water Resources
and Hydropower Research highlight the importance of urban planning in mitigating
flooding risks [298,299]. The study found that urban buildings’ arrangement and heights
significantly impact pedestrian safety during floods. Li et al. explored how different
urban configurations affect flooding severity, finding that the arrangement of buildings and
conveyance porosity in the primary flow direction has a notably positive impact on flood
reduction [143]. Additionally, higher building coverage ratios result in more impervious
surfaces and less open space for stormwater infiltration and storage, leading to increased
runoff volumes and faster flood peaks during rainfall events [22,37,268,300]. Impervious
surface ratio, the proportion of non-absorbent surfaces such as pavement and rooftops
to the total land area, directly impacts FR. High impervious surface ratios in urban areas
increase surface runoff during rainfall, overwhelming drainage systems and exacerbating
flooding [22,133,137]. A study in Nanjing City, China, examined the influence of the built
environment on FR, revealing the high effects of the impervious surface ratio on FR [76].
Mustafa et al. demonstrated a procedure for automatically designing flood-sensitive
urban layouts based on porosity-based hydraulic computations of inundation flow for a
set of 2000 building layouts [37]. Their findings indicated that conveyance porosity and
increasing building setbacks decreased upstream water depth and severity.

Block size impacts FR by influencing permeability, connectivity, and land use patterns
within urban areas [114,230]. Smaller block sizes, interconnected streets, and pedestrian-
friendly design promote efficient stormwater management, reduce flood risks, and enhance
mobility during flood events. Additionally, smaller blocks encourage mixed land uses,
diverse building typologies, and compact development patterns, fostering resilience and
vibrancy in urban neighborhoods. Building configuration, furniture, and facade design
influence FR by affecting building functionality, durability, and adaptability [10,139,230].
Well-designed furniture and facade elements, such as elevated entrances, flood barriers,
green facades, and waterproof materials, can minimize flood damage, ensure occupant
safety, and facilitate recovery efforts [301]. FR is impacted by street elements such as aspect
ratio, front setback and usage, and emergency route design [133,230]. Streets with appro-
priate setbacks from buildings allow effective stormwater management and create space
for green infrastructure or flood barriers. Moreover, designing streets with clear emergency
routes, minimizing obstructions, and incorporating features like raised medians or traf-
fic islands for temporary flood storage can enhance evacuation and emergency response
capabilities during flooding events [10,42,131,154,230,256]. Curved streets can alter flow
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paths and velocities, potentially affecting flood propagation within a block. Sharp bends
or curves may cause flow constrictions or eddies. Longer streets provide more pathways
for stormwater to flow, potentially increasing the volume and velocity of runoff within a
block, particularly in areas with inadequate drainage infrastructure. Street orientation can
influence exposure to sunlight and wind, affecting evapotranspiration rates [42,289,302].
Additionally, street orientation may impact the distribution of impervious surfaces and
vegetation within a block, influencing runoff patterns and flood dynamics. Mohammed
conducted a computational analysis study in Ethiopia and discovered that street network
layouts that follow stormwater flow direction significantly impact runoff volume [302].

5. Discussions and Conclusions

This study fills the existing literature gap by examining potential connections between
UFIs at three scales and FR. By examining the collective body of literature reviewed, the
discussion delves into the strengths, limitations, and implications of existing studies in this
domain, offering insights into current knowledge and avenues for future research. We will
briefly discuss the key aspects of each element.

5.1. Concise Discussion

Understanding the interplay between UFIs and FR has several benefits for urban
resilience. Studies have diverse perspectives on urban form’s influence on FR results be-
cause they use different indices at different levels and focus on a specific city, limiting their
generalizability. Urban areas vary widely in their susceptibility to flooding, depending
on topography, soil type, climate, historical development patterns, economic forces, and
cultural preferences. Finally, studies and approaches from multiple disciplinary back-
grounds have different theoretical frameworks, research methods, and priorities. Studying
macroscale urban form elements such as city size and density, degree of distribution and
clustering, urban growth rate, and landscape elements provides valuable insights into
understanding FR. City size and density influence the extent of impervious surfaces and
natural systems’ capacity to absorb rainfall, affecting surface runoff and flood risk. More-
over, distribution and clustering impact FR by altering the effectiveness of water flow paths
and drainage systems. Urban growth and rapid urbanization can outpace infrastructure
development, increasing flood vulnerability. Landscape elements affect water absorption,
runoff, and floodplain dynamics. Studying the mesoscale encompasses an array of factors
crucial for FR. Polyvalency fosters adaptability and resourcefulness in crises, aiding flood
management strategies. Street network connectivity ensures efficient evacuation routes
and emergency responses. Flexibility allows adaptive measures to be implemented swiftly,
accommodating changing flood dynamics. Population density influences evacuation pro-
cesses, emergency service accessibility, and community resilience capacities. Modularity
promotes resilience by reconfiguring spaces and infrastructure to effectively respond to
flooding events.

Harmonizing with nature promotes ecosystem services that aid flood mitigation,
such as wetlands or green infrastructure providing natural flood protection. Mixed-land
use diversifies urban functions, reducing vulnerability by dispersing critical assets and
services. Proximity to water bodies necessitates careful planning to mitigate flood risks,
incorporating buffer zones and floodplain management strategies. The number and shape
of patches, building setbacks, and urban texture all impact FR at the microscale. A higher
number of patches, especially when interconnected by green spaces or porous surfaces, can
enhance infiltration and reduce surface runoff, mitigating flood risk. Similarly, the shape of
patches plays a crucial role, with irregular shapes promoting better FR by creating natural
flow paths and increasing surface area for absorption. Building setbacks impact FR by
influencing flood extent and potential damage. Parks, green belts, and recreational areas
also provide recreational amenities and natural buffers against flooding. FR is influenced
by the condition of buildings, street depth, sky view factor, building height, and the ratio
of impervious surfaces. According to the revised literature review, Table 5 presents how
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each element influences FR by dividing it into three dimensions: Negative influence refers
to aspects or factors that cause a decrease in FR; positive influence relates to aspects that
enhance FR; dual influence refers to aspects or characteristics that can positively and
negatively affect FR, depending on context, implementation, or interaction with other
elements. In Figure 6, we relate each urban form to resilience characteristics, drawing
on previous studies and expert opinions. The correlation ratio ranges from 0 to 100%,
where 0 indicates no association between the variables. In comparison, 100% indicates an
ideal association, meaning that the categorical variable can explain all continuous variable
variability. Our findings reveal that many elements are closely linked to crucial resilience
attributes such as collaboration, resourcefulness, connectivity, redundancy, complexity,
modularity, flexibility, diversity, multifunctionality, robustness, and adaptability.

Table 5. The linkages between UFIs and FR at multiple scales.

Scale Morphological Indicator Definitions Influence

Macroscale urban
form

City size and density [124,303]
The size of a city is a quantitative indicator that
distinguishes whether it is large or small based on the
linear relationship between population and area.

Negative

Degree of distribution [62]
The degree of clustering can be used to measure urban
form (compactness, polycentricity, or concentricity)
through the global Moran’s I coefficient [304,305].

Dual

Degree of clustering [62]

The degree of distribution is used as an index
indicating that the population or urban area is
unevenly distributed. Local Moran’s I is a familiar
LISA (Local Indicators of Spatial Association) statistic
that identifies locations with significant clustering or
spatial outliers [304,305].

Positive

Urban growth rate [306]
The urban growth rate refers to the rate at which the
population of urban areas increases relative to the total
population.

Negative

Landscape elements
Landscape refers to the visible features of an area of
land, including its physical elements such as terrain,
vegetation, water bodies, and human-made structures.

Positive

Mesoscale urban
form

Polyvalency [22,152]

It refers to a space’s ability to be open to multiple
interpretations and appropriated ways. It is a form of
flexibility that extends beyond physical
reconfigurability via moving walls or panels.

Positive

Street network connectivity [22,152]
It refers to the design and layout of streets within a
city or urban area, aiming to ensure that all parts of
the city are accessible and well-connected.

Positive

Flexibility [80,307]

The ability of urban spaces and structures to adapt to
changing needs, conditions, and future scenarios. It
involves aligning placeness factors with perceived
urban design qualities (PUDQs) to enhance adaptive
attributes.

Positive

Building heights [230,308]

Building heights are critical to urban planning and
design, influencing cities’ physical and social
characteristics. They are closely related to the
economic context, physical systems, transportation,
environmental effects, and culture.

Dual

Population density [105,309]
Population density is a measure that quantifies the
number of people living in a specific area, typically
expressed as the number of people per unit area.

Negative
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Table 5. Cont.

Scale Morphological Indicator Definitions Influence

Mesoscale urban
form

Modularity [310,311]
Modularity refers to the design principle of breaking
down a system or product into smaller, independent
modules or components.

Positive

Harmony with nature [22,139,312]

Harmony enhances incorporating natural ecosystems
into urban forms to absorb and reduce flood risk and
surface imperviousness, such as blue-green
infrastructure (GBI).

Positive

Mixed-land use [124,284,313]
Mixed-land use refers to integrating various land uses
within a single area, such as residential, commercial,
retail, and recreational spaces.

Positive

Flood evacuation routes [22,314]

Evaluate the availability and accessibility of flood
evacuation routes to ensure safe and efficient
evacuation. Dijkstra’s algorithm, which finds the
shortest path between two nodes in a weighted graph,
can be used to calculate the optimal evacuation routes.

Positive

Proximity to water bodies [260,284]
Identifying urban areas within flood-prone zones,
such as floodplains or coastal areas, is a fundamental
indicator of flood vulnerability.

Negative

Landscape percentage [20,288] A compensation metric that measures the percentage
of landscape belonging to urban areas Positive

Open space index [10] Open space index describes the relationship between
unbuilt space and the total built surface. Positive

Floor area ratio (FAR) [141,287]

The FAR is a zoning regulation that limits the amount
of floor area on a specific piece of land. It calculates
the ratio of a building’s total floor area to its total
land area.

Negative

Edge density [187] An aggregate metric that measures urban landscape
fragmentation Negative

Fractal dimension (FD) [266,294]

FD refers to applying fractal geometry to urban
morphology’s complex, scale-free patterns. This
approach helps understand urban growth and
development’s non-linear, self-similar structures. FD
can be defined using generalized entropy and
correlation functions, providing a mathematical
framework for analyzing urban form diversity and
complexity.

Dual

Microscale urban
form

Number of patches [101,288]
The number of urban patches in a city or urban area is
a critical metric in urban morphology, reflecting the
complexity and diversity of urban landscapes.

Negative

Shape of the patch [261,294] It typically refers to a specific area’s geometric
configuration or form within an urban environment. Dual

Building setbacks [42]
Building setback distance is calculated as the total
property width (or depth) minus the allowable
building footprint.

Positive

Worn-out urban texture [22]

Worn-out urban texture refers to the physical and
visual characteristics of urban environments that have
been altered or degraded over time due to various
factors such as urban development, environmental
changes, and human activities.

Negative
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Table 5. Cont.

Scale Morphological Indicator Definitions Influence

Microscale urban
form

Access to open space [288,315]

It refers to the availability and ease of access to public
outdoor areas frequently used for recreational or
environmental purposes. These areas include parks,
playgrounds, trails, nature reserves, beaches, and
other green spaces.

Positive

Buildings’ condition [316] Poor building conditions increase buildings’
vulnerability to flooding. Negative

Street depth (SP) [17] It refers to the distance between the front property
lines of buildings on opposite sides of a street. Positive

Sky view factor (SVF) [10,128]
SVF provides valuable insights into building spatial
arrangements and the openness of urban spaces. It can
be calculated using ENVI-MET [317]

Positive

Building height and mass [314,318]

Building height and massing describe the physical
characteristics of buildings. Massing refers to the
arrangement and distribution of volume within a
building or a group of buildings. Building height
refers to the vertical distance from the ground to a
building’s highest point, including any architectural
features such as spires, antennas, or other protrusions.

Dual

Impervious surface ratio (ISR)
[120,319]

ISR is a measure used to quantify the amount of
impervious surfaces in a given area. It is calculated by
dividing the total area of all impervious surfaces by
the total area of the site.

Positive

Note: Influence classification according to the revised literature review, specialized experts, and the authors.

Urban form strategies and FR lead to dual-aspect influences. For instance, while
high-density areas can yield numerous socioeconomic and environmental benefits, they
may also become prime targets for terrorist attacks. Compact urban forms promote efficient
land use by reducing sprawl and long-distance commuting, conserving natural habitats
and agricultural land, and promoting sustainable development. Compact urban forms
with tall buildings and limited vegetation can exacerbate the urban heat island effect,
leading to higher temperatures and decreased thermal comfort, which can negatively
impact public health, particularly during heat waves, and increase energy consumption for
cooling. Enhancing land use diversity may affect housing affordability and prioritization,
and excessive compactness harms well-being and livability while posing challenges to
renewable energy adoption. These trade-offs highlight the complexity of urban planning,
where balancing multiple objectives is essential for sustainable development. Similarly,
connectivity, often hailed as a desirable urban form measure, can prove detrimental in
the context of resilience to health epidemics, as heightened connectivity can facilitate
disease spread. Other urban form elements, such as ‘city size’ and ‘degree of clustering’,
may have varying implications across different phases. Hence, the trade-offs inherent in
pursuing each of these characteristics must be carefully examined. Urban planners must
consider potential trade-offs with other hazard mitigation strategies while implementing FR
measures to ensure comprehensive and balanced resilience. A holistic approach is essential
when applying this conceptual framework to assess urban form resilience, necessitating a
thorough understanding of its components’ interrelationships.
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Figure 6. Multi-scale urban form elements relevant to FR, based on the evidence discussed in
Sections 4 and 5. (a), a Sankey plot shows the relationship between FR, urban form elements, and
urban resilience characteristics. The following are abbreviations for urban resilience characteristics:
foresight capacity (FOC); creativity (CR); connectivity (CON); redundancy (RE); complexity (COM);
agility (AG); modularity (MO); independence (IN); flexibility (FL); deformability (DE); diversity (DI);
multifunctionality (MU); robustness (RO); adaptability (AD); self-organization (SO); and productivity
(PR). (b), the number of articles that discuss urban form and FR, and (c), the correlation between
scales of urban form and FR articles.

5.2. Literature Review Gaps and Prospective Research

Our research offers valuable perspectives on the correlation between UFIs and FR.
Nevertheless, significant aspects that warrant further investigation in subsequent studies
remain: While UFIs play a role in FR, some have garnered more attention than others, leav-
ing certain elements relatively underexplored. Moreover, there is a notable gap in evidence
regarding how specific UFIs empirically relate to FR and overall urban form resilience, as
shown in Table 6. Previous studies on FR assessment focused on individual components of
urban form, such as land use patterns, building design, or infrastructure systems. However,
a more holistic and integrated approach is required to consider the complex interplay
between various urban form indicators in multi-scalar analysis. Achieving complete FR
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is likely unattainable due to conflicts and trade-offs arising from different priorities and
stressors (such as natural disasters, socioeconomic challenges, and environmental concerns).
For example, a strategy to enhance FR might conflict with efforts to preserve biodiversity
or maintain affordable housing, illustrating that addressing one aspect of resilience may
inadvertently compromise another.

Table 6. Articles addressing UFIs at various scales and FR. In addition, the papers address possible
conflicts resulting from actions intended to enhance FR and overall urban resilience.

Scale Morphological Indicators No. of Articles No. of Articles Discussing Conflict %

Macroscale urban form

City size and density 13 7 6.9%
Degree of distribution 9 5 5.0%
Degree of clustering 9 5 5.0%
Urban growth rate 18 12 11.9%

Landscape elements 20 6 5.9%

Mesoscale urban form

Polyvalency 2 0 0.0%
Street network connectivity 11 4 4.0%

Flexibility 5 3 3.0%
Building heights 4 3 3.0%

Population density 14 8 7.9%
Modularity 2 1 1.0%

Harmony with nature 14 8 7.9%
Mixed-land use 9 6 5.9%

Flood evacuation route 8 3 3.0%
Proximity to water bodies 6 1 1.0%

Landscape percentage 8 3 3.0%
Open space index (OSR) 9 3 3.0%

Floor area ratio (FAR) 1 1 1.0%
Edge density 5 3 3.0%

Fractal dimension (FD) 5 0 0.0%

Microscale urban form

Number of patches 6 2 2.0%
Shape of the patch 4 2 2.0%
Building setbacks 5 3 3.0%

Worn-out urban texture 3 1 1.0%
Access to open space 3 1 1.0%
Buildings’ condition 2 0 0.0%

Street depth (SP) 8 5 5.0%
Sky view factor (SVF) 3 2 2.0%

Building height and massing 4 3 3.0%
Impervious surface ratio (ISR) 7 0 0.0%

As a result, researchers and policymakers must carefully navigate these trade-offs
and develop nuanced approaches that balance competing priorities to enhance FR and
overall urban resilience effectively. Most discussion and conflict in urban form revolves
around density; however, the study acknowledges that other UFIs might also lead to
contradiction, albeit to a lesser extent, implying that additional conflicts may emerge as
research in the field progresses. Therefore, more in-depth studies are needed to examine
the possible trade-offs between different urban form elements and develop ways to help
decision-makers minimize these trade-offs. In addition, prospective research could include
longitudinal studies that track the evolution of urban form and FR outcomes after various
interventions, providing valuable insights for future policymaking. Analyzing UFIs and FR
is concentrated in developed countries; more research is needed in developing countries
with socioeconomic vulnerabilities and inadequate infrastructure and resources. Nature-
based solutions, low-impact development (LID), green infrastructure (GI) tools, and other
non-structural interventions should be evaluated in various urban forms.

In addition to physical factors, non-physical factors such as administrative, social,
and economic factors also play a crucial role in determining FR. As global urbanization
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continues, providing planners and decision-makers with insights into resilient urban
forms can help prevent cities from becoming trapped in undesirable trajectories and avert
potential disasters. Given the variability of optimal form parameters across contexts, more
context-specific studies are needed to give planners and policymakers tailored guidelines
for enhancing urban resilience. More research can develop and apply weighting schemes
that prioritize these UFIs based on their relative importance and contribution to the FR.
For example, machine learning algorithms are crucial in assessment instead of relying
consistently on multi-criteria decision-making (MCDM) (AHP, fuzzy AHP, VIKOR, etc.),
which depends on subjectivity. Furthermore, assessing the efficacy of UFIs in pre- and
post-flood mitigation scenarios and projecting potential susceptibility scenarios is essential
to gaining practical insights to develop flood mitigation strategies. Thus, we recommend
studying different forms under the same conditions and at various scales in the same region.

5.3. Conclusions

Our systematic review highlights the multifaceted relationship between UFIs and
FR. By meticulously examining existing literature, we have identified key insights and
trends contributing to a deeper understanding of how urban form influences FR across
various spatial scales. Our findings highlight the importance of considering diverse urban
form factors, ranging from microscale land use patterns to macroscale city morphology. By
synthesizing the knowledge gleaned from this review, we aim to inform urban planners,
policymakers, and researchers about the critical role of urban form in reinforcing FR.
Nevertheless, significant aspects warrant further investigation in subsequent studies, so
our study presents literature review gaps and several opportunities for prospective research.

Further empirical evidence is required on the trade-offs between the efficacy of UFIs,
FR, and overall urban resilience through interdisciplinary collaborations. Despite our
extensive study, we relied only on English articles from nine search engines. One recom-
mendation for improvement is diversifying the sources, languages, and methodologies
used for gathering information. In addition, it could involve exploring alternative search
engines or databases that provide a more comprehensive understanding of the topic. For
example, researchers could consider utilizing specialized search engines tailored to their
field of study or accessing repositories of other literature, such as conference proceedings
or technical reports. These repositories may contain valuable insights not captured by
traditional academic databases. Additionally, complementary research methods, such as
qualitative interviews, surveys, or case studies, can offer alternative perspectives and enrich
the findings.
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