The Role of Public Space in Building the Resilience of Cities: Analysis of Representative Projects from IFLA Europe Exhibitions
Abstract
:1. Introduction
2. Materials and Methods
3. Climate Threats in Europe
- Drought hazard—referring to data published by the EEA (EEA 2009: 11), drought is defined as the persistent and widespread occurrence of water availability below average. The index provides a measure of meteorological drought using the Standard Precipitation and Evapotranspiration Index (SPEI) on nine-month time scales. A location with rainfall below the European average over a nine-month period is indicated by an SPEI value of less than zero. A location that receives rainfall above the European average over a nine-month period is marked with a value above zero. The above data shows that the Southern Lands and Inland Hinterlands are most vulnerable to drought.
- Wildfire hazard—this statistic shows the percentage of NUTS 3 regions that Corine’s 2012 categorization refers to as “burned areas”. These data show how dangerous forest fires were in the past in particular locations. Positive values characterize areas where fires occurred more often than the European average, and negative values indicate areas where fires are less frequent than the European average. The Southern Lands and Northern Lands, along with the Inland Hinterlands, are most vulnerable to fires.
- Coastal hazard—this indicator shows the percentage of the NUTS 3 coastline (measured in kilometers) exposed to a coastal storm wave occurring once every 100 years, and the percentage of the coastline exposed to flooding in the event of a one meter sea level rise. The areas most sensitive to this type of phenomena are North West Coasts, Lowlands and Estuaries, Northern Lands, and Southern Lands.
- Landslide hazard—this indicator is based on the global landslide susceptibility map developed by NASA, which assesses the probability of landslides occurring over the entire surface of the planet on a scale from minor to severe. The Landlocked and Elevated and Southern Lands areas are most vulnerable to landslides.
- Fluvial hazard—this indicator shows what percentage of the NUTS 3 area is susceptible to flooding in the event of a river flood occurring once every 100 years. The areas most at risk are Lowlands and Estuaries, Inland and Urbanized areas, and Inland Hinterlands.
- Heavy precip. days—p.c.—an indicator determining the difference in the number of days with precipitation of at least 10 mm between the period 1981–2010 (base value) and the period 2036–2065 (future forecast). The forecast was developed for a representative concentration path (RCP 8.5 scenario) of the Intergovernmental Panel on Climate Change (IPCC), which is a scenario characterized by high greenhouse gas emissions. All areas except the Southern Lands are exposed to heavy rainfall above the European average. However, the Northern Lands and Lowlands and Estuaries will suffer the most.
- Very heavy precip. days—p.c.—an indicator determining the difference in the number of days with precipitation of at least 20 mm between the period 1981–2010 (base value) and the period 2036–2065 (future forecast). The forecast was developed for a representative concentration path (RCP 8.5 scenario) of the Intergovernmental Panel on Climate Change (IPCC). All areas except the Southern Lands are also exposed to very heavy rainfall above the European average. The Northern Lands and Landlocked and Elevated areas will be hardest hit.
- heat wave days—p.c.—an indicator showing the difference in the number of days with a maximum temperature higher than 35 °C between the period 1981–2010 (base value) and the period 2036–2065 (future forecast). The forecast was developed for a representative concentration path (RCP 8.5 scenario) of the Intergovernmental Panel on Climate Change (IPCC). The Southern Lands and Inland and Urbanized regions are most vulnerable to heatwaves.
- ice days—p.c.—an indicator showing the difference in the number of days with a maximum temperature lower than 0 °C between the period 1981–2010 (base value) and the period 2036–2065 (future forecast). The forecast was developed for a representative concentration path (RCP 8.5 scenario) of the Intergovernmental Panel on Climate Change (IPCC). The Northern Lands, Landlocked and Elevated, and Inland and Urbanized are most susceptible to significant temperature drops.
4. Results
4.1. Mitigate
4.2. Protect
4.3. Reuse
4.4. Recover
4.5. Educate
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Marzec, A. Zmiany klimatu—Nowy raport Międzyrządowego Panelu ds. Zmian Klimatycznych (IPCC). Polityka Energetyczna 2007, 10, 97–103. [Google Scholar]
- Jaeschke, A.; Bittner, T.; Jentsch, A.; Beierkuhnlein, C. The last decade in ecological climate change impact research: Where are we now? Naturwissenschaften 2014, 101, 1–9. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Urban Adaptation in Europe: How Cities and Towns Respond to Climate Change; EEA Report, No 12/2020; European Environment Agency: Copenhagen, Denmark, 2020.
- Witek, M.; Bednorz, E.; Forycka-Ławniczak, H. Kontynentalizm termiczny w Europie; Wydawnictwo Poznańskiego Towarzystwa Przyjaciół Nauk: Poznan, Poland, 2015; pp. 171–181. [Google Scholar]
- Cin, F.D.; Hooimeijer, F.; Silva, M.M. Planning the Urban Waterfront Transformation, from Infrastructures to Public Space Design in a Sea-Level Rise Scenario: The European Union Prize for Contemporary Architecture Case. Water 2021, 13, 218. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, C.; Zou, M.; Xu, Q. Investigating into the Coupling and Coordination Relationship between Urban Resilience and Urbanization: A Case Study of Hunan Province, China. Sustainability 2022, 14, 5889. [Google Scholar] [CrossRef]
- Ajuntament de Barcelona. Barcelona fot Climate. Available online: https://www.barcelona.cat/barcelona-pel-clima/en/barcelona-responds/specific-actions/climate-shelters-network (accessed on 28 April 2024).
- Pirlone, F.; Spadaro, I.; Candia, S. More Resilient Cities to Face Higher Risks. The Case of Genoa. Sustainability 2020, 12, 4825. [Google Scholar] [CrossRef]
- Ricart, S.; Berizzi, C.; Saurí, D.; Terlicher, G.N. The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences. Land 2022, 11, 1575. [Google Scholar] [CrossRef]
- Orsetti, E.; Tollin, N.; Lehmann, M.; Valderrama, V.A.; Morató, J. Building Resilient Cities: Climate Change and Health Interlinkages in the Planning of Public Spaces. Int. J. Environ. Res. Public Health 2022, 19, 1355. [Google Scholar] [CrossRef]
- Dastgerdi, A.S.; Kheyroddin, R. Policy Recommendations for Integrating Resilience into the Management of Cultural Landscapes. Sustainability 2022, 14, 8500. [Google Scholar] [CrossRef]
- Aktürk, G.; Dastgerdi, A.S. Cultural Landscapes under the Threat of Climate Change: A Systematic Study of Barriers to Resilience. Sustainability 2021, 13, 9974. [Google Scholar] [CrossRef]
- Chen, X. An Analysis of Climate Impact on Landscape Design. Atmos. Clim. Sci. 2016, 6, 475–481. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, Y.; Yang, S.; Lv, Y.; Sarker, M.N.I. Urban Resilience for Urban Sustainability: Concepts, Dimensions, and Perspectives. Sustainability 2022, 14, 2481. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Salvia, M.; Hurtado, S.D.G.; D’Alonzo, V.; Church, J.M.; Geneletti, D.; Musco, F.; Reckien, D. Urban climate change mitigation and adaptation planning: Are Italian cities ready? Cities 2019, 91, 93–105. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Cotterill, S.; Bracken, L.J. Assessing the Effectiveness of Sustainable Drainage Systems (SuDS): Interventions, Impacts and Challenges. Water 2020, 12, 3160. [Google Scholar] [CrossRef]
- IFLA Europe. IFLA Europe—National Associations. Available online: https://iflaeurope.eu/index.php/site/national-associations (accessed on 15 March 2024).
- Carter, J.; Hincks, S.; Vlastaras, V.; Connelly, A.; Handley, J. European Climate Risk Typology. 2018. Available online: https://european-crt.org/index.html (accessed on 2 February 2024).
- European Commission. Directive 2007/60/EU for Assessment and Management of Flood Risks. Off. J. Eur. Comm. 2007. Available online: https://www.eumonitor.eu/9353000/1/j4nvk6yhcbpeywk_j9vvik7m1c3gyxp/vitgbgimtmez (accessed on 27 March 2024).
- Aguiar, F.C.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to climate change at local level in Europe: An overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Jamioł, K.; Jaróg, T.; Nowak, N. Reconsidering Nature—Analysis of design solutions which improve the resilience of urban landscapes. Przestrz. Urban. Archit. 2023, 1, 189–199. [Google Scholar] [CrossRef]
- IUCN Commission on Ecosystem Management (CEM) and IUCN Global Ecosystem Management Programme. IUCN Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling Up of NbS, 1st ed.; IUCN Commission on Ecosystem Management (CEM) and IUCN Global Ecosystem Management Programme: Gland, Spain, 2020. [Google Scholar]
- de Graaf, R.; van de Giesen, N.; van de Ven, F. Alternative water management options to reduce vulnerability for climate change in the Netherlands. Nat. Hazards 2007, 51, 407–422. [Google Scholar] [CrossRef]
- IFLA Europe. IFLA Europe Exhibition—Landscape Architecture as a Common Ground; IFLA Europe: Brussel, Belgium, 2018. [Google Scholar]
- IFLA Europe. IFLA Europe Exhibition—Reconsidering Nature; IFLA Europe: Brussel, Belgium, 2022. [Google Scholar]
- Eurostat. Regions in the European Union—Nomenclature of Territorial Units for Statistics—NUTS 2013/EU-28. 2015. Available online: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-14-006 (accessed on 2 February 2024).
- Iddle, E.; Bines, T. Planowanie Ochrony Obszarów Cennych Przyrodniczo. Przewodnik dla Praktyków i ich Szefów; Klubu Przyrodników: Wydaw, Poland, 2004. [Google Scholar]
- UNFCCC. The Paris Agreement; UNFCCC: Paris, France, 2015. [Google Scholar]
- United Nations. Global Status Raport For Buildings and Constructions; United Nations: Nairobi, Kenya, 2020.
- Żelazo, J. Renaturyzacja Rzek i Dolin; No. 4/1; Infrastruktura i Ekologia Terenów Wiejskich: Kraków, Poland, 2006. [Google Scholar]
- Bokwa, A.; Kicińska, B.; Kurowski, Ł.; Wieczorek, L. Climate change as an educational challenge. Czas. Geogr. 2022, 93, 703–730. [Google Scholar]
- Peattie, K. Green consumption: Behaviour and norms. Annu. Rev. Environ. Resour. 2010, 35, 195–228. [Google Scholar] [CrossRef]
- Zhao, H.-H.; Gao, Q.; Wu, Y.-P.; Wang, Y.; Zhu, X.-D. What affects green consumer behavior in China? A case study from Qingdao. J. Clean. Prod. 2014, 63, 143–151. [Google Scholar] [CrossRef]
- Wells, V.K.; Ponting, C.A.; Peattie, K. Behaviour and climate change: Consumer perceptions of responsibility. J. Mark. Manag. 2011, 27, 808–833. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldán, J.; Pacheco-Torres, R.; Ordoñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- European Commission and Directorate—General for Research and Innovation. European Green Deal: Research & Innovation Call; Publications Office of the European Union: Luxembourg, 2021.
- European Committee of the Regions, Commission for Social Policy, Education, Employment, Research and Culture; Errico, B.; Bisogni, F.; Levi, T. The New European Bauhaus at the Local and Regional Level; European Committee of the Regions: Brussels, Belgium, 2023.
- Gajewska, M.; Rayss, J.; Szpakowski, W.; Wojciechowska, E.; Wróblewska, D. System Powierzchniowej Retencji Miejskiej w Adaptacji Miast do Zmian Klimatu—Od Wizji do Wdrożenia; Gajewska, M., Ed.; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2019. [Google Scholar]
- Długozima, A. Ogrody Deszczowe. Probl. Ekol. 2009, 13, 211–215. [Google Scholar]
- Suchanek, E.; Mrowiec, M. Zastosowanie metody wymiarowania niecek infiltracyjno-retencyjnych do zagospodarowania wód opadowych. Ecol. Eng. 2015, 41, 160–165. [Google Scholar]
- Szruba, M. Odwodnienie i zagospodarowanie wód opadowych w miastach. Nowocz. Bud. Inżynieryjne 2019, 3, 20–25. [Google Scholar]
- Januchta-Szostak, A. Miasto w symbiozie z wodą. Czasopismo Techniczne. Architektura 2010, 11, A2. [Google Scholar]
- Kumar, P. Climate change and cities: Challenges ahead. Front. Sustain. Cities 2021, 3, 645613. [Google Scholar] [CrossRef]
- Bala, G. Can planting new trees help to reduce global warming? Curr. Sci. 2014, 106, 1623–1624. [Google Scholar]
- Neuman, M. Infrastructure planning for sustainable cities. Geogr. Helv. 2012, 66, 100–107. [Google Scholar] [CrossRef]
- Mertens, E. Resilient City: Landscape Architecture for Climate Change; Birkhäuser: Basel, Switzerland, 2021. [Google Scholar]
- Corner, J.; Hirsch, A. The Landscape Imagination: Collected Essys of James Corner 1990–2010; Princeton Architectural Press: New York, NY, USA, 2015; pp. 257–290. [Google Scholar]
- Waldheim, C. Landscape as Urbanism: A General Theory; Princeton University Press: Princeton, NJ, USA, 2016; p. 169. [Google Scholar]
- Masoud, F.; Holland, E. Landscape architecture is resilient design: Enduring strategies and frameworks adapted from the Olmsted Office. J. Landsc. Archit. 2021, 16, 50–65. [Google Scholar] [CrossRef]
- Raj, M.P.; Madapur, A.B.S. Interdisciplinary urban design approach for sustaining the development. Gedrag Organ. Rev. 2020, 33, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate—Designing the Spaces between Buildings; Routledge: London, UK, 2010. [Google Scholar]
- Valdemars, A.; Dzintra, A. Environmentally friendly transport solutions. In Economic Science for Rural Development, Proceedings of the 2013 International Conference, Jelgava, Latvia, 25–26 April 2013; Rural Development and Entrepreneurship Marketing and Sustainable Consumption; LLU: Jelagava, Latvia; p. 2013.
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Nęcka, G. Szeroka partycypacja społeczna w planowaniu przestrzennym na poziomie lokalnym. In Społeczno—Ekonomiczne i Przestrzenne Przemiany Struktur Regionalnych; Oficyna Wydawnicza AFM: Kraków, Poland, 2014; Volume 2, pp. 137–159. [Google Scholar]
- IFLA EUROPE. The Role of Landscape Architects in Promoting Biodiversity. 2023. Available online: https://www.iflaeurope.eu/assets/docs/2023_IFLA_Europe_Position_Paper_Role_of_Landscape_Architects_in_Promoting_Biodiversity_EN.pdf (accessed on 2 January 2024).
- Toofan, S. Importance of humane design for sustainable landscape. Int. J. Eng. Technol. 2014, 6, 508. [Google Scholar] [CrossRef]
- Ananiadou-Tzimopoulou, M.; Bourlidou, A. Urban Landscape Architecture in the Reshaping of. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 042050. [Google Scholar] [CrossRef]
- Zhang, M.; Lou, L.; Fu, J.; Pan, J. City acupuncture: The sustainable development of the balanced city in post-industrial age. In Seminario Internacional de Investigación en Urbanismo, Proceedings of the VI Seminario Internacional de Investigación en Urbanismo, Barcelona, Spain, 3–4 June 2014; Universitat Politècnica de Catalunya: Barcelona, Spain, 2014. [Google Scholar]
- Lerner, J. Urban Acupuncture, Washington, Covelo; Island Press: London, UK, 2014. [Google Scholar]
Region NUTS 3 | Drought Hazard (D) | Wildfire Hazard (W) | Coastal Hazard (C) | Landslide Hazard (L) | Fluvial Hazard (F) | Heavy Precip. Days—p.c. (HP) | Very Heavy Precip. Days—p.c. (VP) | Heat Wave Days—p.c. (H) | Ice Days—p.c. (I) |
---|---|---|---|---|---|---|---|---|---|
Inland and Urbanized | 0.14 | −0.46 | −0.51 | −0.67 | 1.03 | 0.36 | 0.13 | −0.06 | −0.06 |
Inland Hinterlands | −0.46 | 0.66 | −0.52 | −0.39 | 0.58 | 0.19 | 0.04 | 0.44 | 0.51 |
Northern Lands | 0.85 | 0.28 | 0.72 | −0.06 | −0.2 | 1.04 | 0.69 | −1.15 | 1.85 |
Southern Lands | −0.48 | 1.04 | 0.37 | 0.9 | −0.49 | −1.49 | −1.4 | 1.36 | −1.14 |
North West Coasts | 0.44 | −0.31 | 1.89 | −0.53 | −0.76 | 0.02 | 0.22 | −1.03 | −0.63 |
Landlocked and Elevated | −0.03 | −0.45 | −0.56 | 1.03 | 0.01 | 0.39 | 0.65 | −0.23 | 0.58 |
North West Urban | 0.26 | −0.79 | −0.48 | −0.57 | −0.84 | 0.23 | 0.24 | −0.54 | −0.04 |
Lowlands and Estuaries | 0.69 | −0.24 | 1.45 | −1.08 | 1.57 | 0.51 | 0.16 | −0.56 | −0.33 |
Participation | Countries Presenting the Projects |
---|---|
in both editions | Austria, Bulgaria, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Norway, Poland, Romania, Slovenia, Spain, Sweden, Switzerland |
only in 2018 | Croatia, France, Israel, Latvia, The Netherlands, Slovakia, Turkey, Ukraine, United Kingdom |
only in 2022 | Belgium, Germany, Ireland, Italy, Lithuania |
Project ID | Category of Undertaken Climate Action | Project ID | Category of Undertaken Climate Action | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MI | PR | RU | RC | ED | MI | PR | RU | RC | ED | ||
18_AT_01 | 22_LT_02 | ✔ | ✔ | ||||||||
22_AT_01 | ✔ | ✔ | 22_LT_03 | ✔ | |||||||
22_AT_02 | 18_NL_01 | ✔ | ✔ | ||||||||
22_BE_01 | 18_NL_02 | ✔ | ✔ | ||||||||
22_BE_02 | ✔ | 18_NL_03 | ✔ | ✔ | |||||||
22_BE_03 | ✔ | 18_NO_01 | |||||||||
18_BG_01 | ✔ | 18_NO_02 | ✔ | ||||||||
22_BG_01 | ✔ | 18_NO_03 | ✔ | ||||||||
22_BG_02 | ✔ | 22_NO_01 | ✔ | ||||||||
18_HR_01 | ✔ | 22_NO_02 | ✔ | ✔ | ✔ | ||||||
18_CZ_01 | ✔ | ✔ | 22_NO_03 | ✔ | ✔ | ||||||
18_CZ_02 | ✔ | 18_PL_01 | ✔ | ✔ | |||||||
18_CZ_03 | ✔ | 18_PL_02 | ✔ | ||||||||
22_CZ_01 | ✔ | ✔ | 18_PL_03 | ✔ | |||||||
22_CZ_02 | ✔ | ✔ | ✔ | 22_PL_01 | ✔ | ✔ | ✔ | ||||
22_CZ_03 | ✔ | ✔ | 22_PL_02 | ✔ | ✔ | ||||||
18_DK_01 | ✔ | ✔ | 22_PL_03 | ✔ | ✔ | ✔ | |||||
18_DK_02 | ✔ | 18_RO_01 | |||||||||
18_DK_03 | ✔ | ✔ | 18_RO_02 | ||||||||
22_DK_01 | ✔ | ✔ | ✔ | 18_RO_03 | ✔ | ||||||
22_DK_02 | 22_RO_01 | ✔ | ✔ | ✔ | |||||||
18_EE_01 | ✔ | ✔ | ✔ | 22_RO_02 | ✔ | ✔ | ✔ | ||||
18_EE_02 | ✔ | 22_RO_03 | ✔ | ✔ | ✔ | ||||||
18_EE_03 | 18_SK_01 | ||||||||||
22_EE_01 | ✔ | ✔ | ✔ | 18_SK_02 | |||||||
22_EE_02 | ✔ | ✔ | ✔ | 18_SK_03 | |||||||
22_EE_03 | ✔ | ✔ | 18_SI_01 | ||||||||
18_FI_01 | ✔ | 18_SI_02 | ✔ | ||||||||
18_FI_02 | ✔ | 18_SI_03 | ✔ | ||||||||
18_FI_03 | ✔ | 22_SI_01 | ✔ | ✔ | ✔ | ✔ | |||||
22_FI_01 | ✔ | ✔ | 22_SI_02 | ✔ | ✔ | ||||||
22_FI_02 | ✔ | ✔ | ✔ | 22_SI_03 | |||||||
22_FI_03 | ✔ | ✔ | 22_ES_01 | ✔ | |||||||
18_FR_01 | ✔ | 22_ES_02 | ✔ | ||||||||
18_FR_02 | ✔ | ✔ | ✔ | 22_ES_03 | |||||||
18_FR_03 | ✔ | 22_ES_01 | ✔ | ✔ | |||||||
22_DE_01 | ✔ | 22_ES_02 | ✔ | ✔ | ✔ | ||||||
22_DE_02 | ✔ | 22_ES_03 | ✔ | ||||||||
22_DE_03 | ✔ | ✔ | 18_SE_01 | ✔ | |||||||
18_GR_01 | ✔ | ✔ | ✔ | 18_SE_02 | |||||||
22_GR_01 | ✔ | ✔ | ✔ | 18_SE_03 | ✔ | ✔ | |||||
22_GR_02 | ✔ | ✔ | ✔ | ✔ | 22_SE_01 | ||||||
18_HU_01 | 22_SE_02 | ✔ | ✔ | ✔ | |||||||
18_HU_02 | 22_SE_03 | ✔ | |||||||||
18_HU_03 | 18_CH_01 | ✔ | ✔ | ||||||||
22_HU_01 | ✔ | 18_CH_02 | |||||||||
22_HU_02 | ✔ | 18_CH_03 | ✔ | ✔ | |||||||
22_IE_01 | ✔ | ✔ | 22_CH_01 | ||||||||
18_IL_01 | 22_CH_02 | ✔ | ✔ | ✔ | |||||||
18_IL_02 | ✔ | ✔ | 22_CH_03 | ✔ | ✔ | ||||||
22_IT_01 | ✔ | ✔ | 18_TR_01 | ||||||||
22_IT_02 | ✔ | ✔ | ✔ | 18_TR_02 | ✔ | ✔ | ✔ | ||||
22_IT_03 | ✔ | ✔ | 18_TR_03 | ✔ | |||||||
18_LV_01 | ✔ | 18_UA_01 | |||||||||
18_LV_02 | ✔ | ✔ | ✔ | 18_GB_01 | |||||||
18_LV_03 | ✔ | ✔ | ✔ | 18_GB_02 | ✔ | ||||||
22_LT_01 | ✔ | ✔ | 18_GB_03 |
Edition of the IFLA Europe Exhibition | Mitigate (MI) | Protect (PR) | Reuse (RU) | Recover (RC) | Educate (ED) |
---|---|---|---|---|---|
2018 | 14 | 16 | 7 | 20 | 7 |
2022 | 21 | 27 | 8 | 31 | 15 |
2018 + 2022 | 35 | 43 | 15 | 51 | 22 |
Edition of the IFLA Europe Exhibition | Inland and Urbanized | Inland Hinterlands | Northern Lands | Southern Lands | North West Coasts | Landlocked and Elevated | North West Urban | Lowlands and Estuaries | Other |
---|---|---|---|---|---|---|---|---|---|
2018 | 14 | 10 | 11 | 5 | 4 | 5 | 1 | 4 | 7 |
2022 | 13 | 10 | 9 | 7 | 6 | 4 | 2 | 2 | 0 |
2018 + 2022 | 27 | 20 | 20 | 12 | 10 | 9 | 3 | 6 | 7 |
Edition of the IFLA Europe Exhibition | Inland and Urbanized | Inland Hinterlands | Northern Lands | Southern Lands | North West Coasts | Landlocked and Elevated | North West Urban | Lowlands and Estuaries | Other |
---|---|---|---|---|---|---|---|---|---|
2018 | 9 | 5 | 9 | 4 | 3 | 4 | 0 | 4 | 4 |
2022 | 10 | 10 | 9 | 7 | 5 | 3 | 2 | 2 | 0 |
2018 + 2022 | 19 | 15 | 18 | 11 | 8 | 7 | 2 | 6 | 4 |
Region NUTS 3 | Project ID | D | W | C | L | F | P | H | I | Project ID | D | W | C | L | F | P | H | I |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inland and Urbanized | 18_AT_01 | 22_AT_01 | ✔ | ✔ | ||||||||||||||
18_FR_02 | ✔ | ✔ | 22_AT_02 | |||||||||||||||
18_HU_01 | 22_BE_01 | |||||||||||||||||
18_HU_02 | 22_CZ_01 | |||||||||||||||||
18_NL_02 | ✔ | ✔ | 22_CZ_03 | ✔ | ✔ | |||||||||||||
18_PL_01 | ✔ | ✔ | 22_DE_01 | |||||||||||||||
18_PL_02 | ✔ | ✔ | 22_DE_02 | |||||||||||||||
18_PL_03 | 22_DE_03 | ✔ | ✔ | |||||||||||||||
18_SK_03 | 22_PL_01 | ✔ | ✔ | |||||||||||||||
18_ES_01 | ✔ | ✔ | 22_PL_02 | ✔ | ✔ | |||||||||||||
18_CH_01 | ✔ | ✔ | 22_PL_03 | ✔ | ✔ | |||||||||||||
18_CH_02 | ✔ | ✔ | 22_CH_01 | |||||||||||||||
18_GB_01 | 22_CH_02 | ✔ | ✔ | |||||||||||||||
18_GB_02 | ✔ | ✔ | ||||||||||||||||
Inland Hinterlands | 18_CZ_01 | ✔ | ✔ | ✔ | 22_BG_01 | ✔ | ✔ | |||||||||||
18_CZ_02 | ✔ | ✔ | ✔ | 22_CZ_02 | ✔ | ✔ | ✔ | |||||||||||
18_CZ_03 | ✔ | ✔ | ✔ | 22_HU_01 | ||||||||||||||
18_EE_02 | 22_HU_02 | |||||||||||||||||
18_HU_03 | 22_LT_01 | ✔ | ||||||||||||||||
18_RO_01 | 22_LT_02 | |||||||||||||||||
18_RO_02 | 22_LT_03 | |||||||||||||||||
18_RO_03 | 22_RO_02 | |||||||||||||||||
18_SK_01 | 22_RO_03 | ✔ | ✔ | ✔ | ||||||||||||||
18_SK_02 | 22_SI_01 | ✔ | ✔ | ✔ | ✔ | |||||||||||||
Northern Lands | 18_EE_01 | 18_SE_03 | ||||||||||||||||
18_FI_01 | ✔ | 22_FI_01 | ||||||||||||||||
18_FI_02 | ✔ | 22_FI_02 | ✔ | |||||||||||||||
18_FI_03 | ✔ | 22_FI_03 | ||||||||||||||||
18_LV_02 | ✔ | 22_NO_01 | ||||||||||||||||
18_NO_01 | 22_NO_02 | ✔ | ||||||||||||||||
18_NO_02 | 22_NO_03 | ✔ | ||||||||||||||||
18_NO_03 | ✔ | 22_SE_01 | ||||||||||||||||
18_SE_01 | 22_SE_02 | |||||||||||||||||
18_SE_02 | 22_SE_03 | |||||||||||||||||
Southern Lands | 18_BG_01 | 22_GR_01 | ✔ | |||||||||||||||
18_HR_01 | 22_IT_01 | |||||||||||||||||
18_GR_01 | ✔ | 22_IT_03 | ✔ | ✔ | ||||||||||||||
18_ES_02 | 22_ES_01 | |||||||||||||||||
18_ES_03 | 22_ES_02 | ✔ | ||||||||||||||||
22_BG_02 | 22_ES_03 | ✔ | ||||||||||||||||
North West Coasts | 18_DK_01 | ✔ | 22_DK_02 | |||||||||||||||
18_DK_02 | 22_EE_01 | ✔ | ||||||||||||||||
18_DK_03 | ✔ | 22_EE_02 | ✔ | |||||||||||||||
18_EE_03 | 22_EE_03 | |||||||||||||||||
22_DK_01 | ✔ | 22_IE_01 | ||||||||||||||||
Landlocked and Elevated | 18_FR_03 | 22_IT_02 | ✔ | ✔ | ✔ | |||||||||||||
18_SI_01 | 22_SI_02 | ✔ | ✔ | ✔ | ||||||||||||||
18_SI_02 | 22_SI_03 | |||||||||||||||||
18_SI_03 | 22_CH_03 | ✔ | ✔ | ✔ | ||||||||||||||
18_CH_03 | ✔ | |||||||||||||||||
North West Urban | 18_GB_03 | 22_RO_01 | ||||||||||||||||
22_GR_02 | ✔ | |||||||||||||||||
Lowlands and Estuaries | 18_LV_01 | 18_NL_03 | ✔ | ✔ | ✔ | |||||||||||||
18_LV_03 | 22_BE_02 | |||||||||||||||||
18_NL_01 | ✔ | ✔ | 22_BE_03 | |||||||||||||||
other | 18_FR_01 | 18_TR_02 | ||||||||||||||||
18_IL_01 | 18_TR_03 | |||||||||||||||||
18_IL_02 | 18_UA_01 | |||||||||||||||||
18_TR_01 |
Region NUTS 3 | Project ID | Drought Hazard (D) | Wildfire Hazard (W) | Coastal Hazard (C) | Landslide Hazard (L) | Fluvial Hazard (F) | (Very) Heavy Precip. Days—p.c. (P) | Heat Wave Days—p.c. (H) | Ice Days—p.c. (I) |
---|---|---|---|---|---|---|---|---|---|
Inland and Urbanized | 2018 | 8/14 | 8/14 | ||||||
2022 | 7/13 | 7/13 | |||||||
2018 + 2022 | 15/27 | 15/27 | |||||||
Inland Hinterlands | 2018 | 3/10 | 0/10 | 3/10 | 3/10 | 0/10 | 0/10 | ||
2022 | 3/10 | 0/10 | 3/10 | 5/10 | 2/10 | 0/10 | |||
2018 + 2022 | 6/20 | 0/20 | 6/20 | 8/20 | 2/20 | 0/20 | |||
Northern Lands | 2018 | 0/11 | 1/11 | 4/11 | 0/11 | ||||
2022 | 0/9 | 0/9 | 3/9 | 0/9 | |||||
2018 + 2022 | 0/20 | 1/20 | 7/20 | 0/20 | |||||
Southern Lands | 2018 | 0/5 | 0/5 | 0/5 | 0/5 | 1/5 | |||
2022 | 3/7 | 0/7 | 1/7 | 0/7 | 1/7 | ||||
2018 + 2022 | 3/12 | 0/12 | 1/12 | 0/12 | 2/12 | ||||
North West Coasts | 2018 | 0/4 | 2/4 | ||||||
2022 | 0/6 | 3/6 | |||||||
2018 + 2022 | 0/10 | 5/10 | |||||||
Landlocked and Elevated | 2018 | 0/5 | 0/5 | 1/5 | 0/5 | 0/5 | |||
2022 | 3/4 | 0/4 | 3/4 | 3/4 | 0/4 | ||||
2018 + 2022 | 3/9 | 0/9 | 4/9 | 3/9 | 0/9 | ||||
North West Urban | 2018 | 0/1 | |||||||
2022 | 1/2 | ||||||||
2018 + 2022 | 1/3 | ||||||||
Lowlands and Estuaries | 2018 | 1/4 | 2/4 | 2/4 | |||||
2022 | 0/2 | 0/2 | 0/2 | ||||||
2018 + 2022 | 1/6 | 2/6 | 2/6 | ||||||
total | 2018 | 3/20 | 0/26 | 2/24 | 0/10 | 14/33 | 19/49 | 1/15 | 0/26 |
2022 | 9/21 | 0/26 | 1/24 | 0/11 | 13/29 | 22/46 | 3/17 | 0/23 | |
2018 + 2022 | 12/41 | 0/52 | 3/48 | 0/21 | 27/62 | 41/95 | 4/32 | 0/49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forczek-Brataniec, U.; Jamioł, K. The Role of Public Space in Building the Resilience of Cities: Analysis of Representative Projects from IFLA Europe Exhibitions. Sustainability 2024, 16, 5105. https://doi.org/10.3390/su16125105
Forczek-Brataniec U, Jamioł K. The Role of Public Space in Building the Resilience of Cities: Analysis of Representative Projects from IFLA Europe Exhibitions. Sustainability. 2024; 16(12):5105. https://doi.org/10.3390/su16125105
Chicago/Turabian StyleForczek-Brataniec, Urszula, and Katarzyna Jamioł. 2024. "The Role of Public Space in Building the Resilience of Cities: Analysis of Representative Projects from IFLA Europe Exhibitions" Sustainability 16, no. 12: 5105. https://doi.org/10.3390/su16125105
APA StyleForczek-Brataniec, U., & Jamioł, K. (2024). The Role of Public Space in Building the Resilience of Cities: Analysis of Representative Projects from IFLA Europe Exhibitions. Sustainability, 16(12), 5105. https://doi.org/10.3390/su16125105