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Abstract: Western juniper (Juniperus occidentalis Hook.) is a native species west of the Rocky Moun-
tains that has become noxious as its area increased ten times in the last 140 years. Restoration of
the landscapes affected by the spread of juniper through harvesting poses several challenges related
to the sparse spatial distribution (trees per hectare) of the resource. Therefore, the objective of the
present study is to develop a harvest scheduling strategy that converts the western juniper from a
noxious species to a timber resource. We propose a procedure that aggregates individual trees into
elementary harvest units by considering the location of each tree. Using the coordinates of each
harvest unit and its corresponding landing, we developed a spatially explicit algorithm that aims at
the maximization of net revenue from juniper harvest. We applied the proposed landscape restoration
approach to two areas of similar size and geomorphology. We implemented the restoration algorithm
using two heuristics: simulated annealing and record-to-record travel. To account for the closeness
to the mill, we considered two prices at the landing for the juniper: 45 USD/ton and 65 USD/ton.
Our results suggest that restoration is possible at higher prices, but it is economically infeasible when
prices are low. Simulated annealing outperformed record-to-record travel in both study areas and
for both prices. Our approach and formulation to the restoration of landscapes invaded by western
juniper could be applied to similar instances where complex stand structures preclude the use of
traditional forest stand-level harvest scheduling and require a more granular approach.

Keywords: simulated annealing; record-to-record travel; western juniper (Juniperus occidentalis
Hook.); spatially explicit harvesting; individual tree harvesting

1. Introduction

Western juniper (Juniperus occidentalis Hook.) is a native species west of the Rocky
Mountains that has become noxious in Eastern Oregon [1]. The expansion of the western
juniper is unprecedented [2], as its range has increased tenfold in the last 140 years [3].
The spreading out of western juniper changes the landscape not only by altering species
composition but also by modifying the hydrological processes and wildlife habitat. There-
fore, landscape restoration became important in many areas of Eastern Oregon, where
western juniper canopy cover has increased more than fivefold since 1938 [4]. Currently,
western juniper is removed using techniques typical to noxious species, such as manual
felling and burning. In the past few decades, several mills have started processing western
juniper, regardless of the complexity of stem shape [5]. With the establishment of a potential
demand for western juniper, harvesting as a restoration technique becomes feasible, with
the possibility that tree utilization will offset some of the restoration costs. Therefore, to
make the restoration economically sound, a harvest system must be specified, a harvest
plan developed, the needed infrastructure identified, and an estimate of the harvest costs
and values estimated.
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Applying traditional stand-level harvesting techniques to western juniper is challeng-
ing for several reasons, the first of which is its sparse and variable stand structure [6].
The seemingly erratic density across the landscape creates difficulties in the identification
of relatively homogeneous stands. Furthermore, the complex terrain on which juniper
thrives adds challenges to the development of feasible harvesting approaches [7]. Moreover,
besides the sparse presence of junipers on the landscape and the difficult terrain, many
junipers cannot be profitably harvested, as they lack the minimum merchantable wood
volume needed to offset the costs associated with harvesting. Therefore, the consideration
of individual trees allows for harvest without loss, and even with profit, by accepting
solutions that exclude trees that are unprofitable to harvest. Remote sensing can reduce
some of the costs not only by curtailing inventory expenses but also by helping increase
the efficiency of planning the harvests [8–12]. The addition of information associated
with remote sensing techniques was noticed for more than two decades [8] and improved
harvest practices [10].

Several previous authors have considered harvesting at individual tree levels, but their
studies were focused on stand management rather than landscape restoration [13–18]. The
studies by Pukkala et al. [15], Pukkala and Miina [16], Vauhkonen and Pukkala [17], and
Wing et al. [18] were focused on the selection of individual trees to be thinned using either
a deterministic or a heuristic algorithm. The four investigations aimed at the optimization
of revenue [15–17] or a criterion that combines volume, area, and edge [18] based on the
size and location of the trees. Philippart et al. [14] used mixed integer programming to
minimize total skidding distance in a semi-deciduous tropical forest in Cameroon where
3930 trees were located on 2562 ha, but the trees were referenced on a 20 m × 20 m
grid. Dykstra’s shortest path algorithm was used to calculate skidding distances between
candidate tree locations and landings, with the skidding distances used as a penalty. To
reduce the problem size, the trees accessible to each landing were limited. The tree level
problem addressed by Parsakhoo et al. [13] in the Hyrcanian forests of Iran also sought to
minimize skid trail length to avoid environmental impacts using multi-objective criteria
analysis and network programming but did not consider landing costs. A tree-level solution
was proposed by Contreras and Chung [19] to reduce the crown fire potential in stands
dominated by Douglas fir (Pseudotsuga menziesii (Mirb) Franco), ponderosa pine (Pinus
ponderosa Dougl. ex Laws.), and western larch (Larix occidentalis Nutt). For fire management,
the trees need to be spaced out so that the fire propagation is at least slowed down if not
eliminated, whereas, for landscape restoration, the trees must be grouped so that economic
feasibility is ensured. The methods developed in the studies presented above cannot be
applied to landscape restoration as they are designed for small areas, specifically stand level.
The usage of thousands of elementary management units in the previously mentioned
studies led to computational challenges, which were addressed by simplification of the
complex formulations. A common reduction in problem complexity is implemented by
grouping trees, which can be done by pixels [14] or by economic criteria [19]. The main
difference among the studies rests in the formulation of the planning problems, with some
considering only economic attributes [15–17], while others consider additional facets of
forest management, particularly the ecological aspect [19]. Landscape-scale problems add
two levels of computational complexity that are not common to individual stands: first,
an increased number of constraints that challenge the implementation of the problem
and the rendering of a solution in a feasible amount of time, and second, a hierarchical
structure that is difficult to formulate numerically without sacrificing problem simplicity.
Therefore, the objective of this study was to develop a landscape-level restoration method
that considers the individual tree as the elementary management unit. The tree level
granularity allows the harvest schedule to adapt to the local conditions, expressed as tree
density and geomorphology variations.
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2. Materials and Methods
2.1. Study Areas

The landscape restoration strategy proposed in this study was tested on two areas of
approximately 1600 ha in Wheeler County, Oregon (Figure 1): Pine Creek, with an elevation
gradient of approximately 500 m, and Bridge Creek, with an elevation gradient of approxi-
mately 600 m (Table 1). The soils in the two basins are mainly Mollisols from the Palexerolls
and Argixerolls Great Groups [20]. The climate is predominantly semiarid warm continental,
according to Thornthwaite classification, with an average temperature of 11.3 ◦C (hottest
month 30.5 ◦C and coldest month 5.5 ◦C), average rainfall of 390 mm, and average snowfall of
150 mm [16]. The detailed Köppen–Geiger classification places almost all of Wheeler County
in two climates [21]: one warm-temperate [i.e., Cfa and Csa—Temperate (C) with hot summers
(a) that can be without dry season (f) or dry summer (s)] and one arid [i.e., BSk—Arid (B)
steppe (S) cold (k)]. The main tree species growing in these edaphic and climatic conditions is
the western juniper, with spots of ponderosa pine (Pinus ponderosa Douglas ex C. Lawson).
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Table 1. Summary statistics describing the two areas.

Study Area
Surface Elevation

Mean/Min ↔ Max/Std. Dev. Roads Length Number of
Sub-Basins

[ha] [m] [km] [count]

Bridge Creek 1667.9 950/642 ↔ 1259/178.4 21.9 12

Pine Creek 1597.1 1133/833 ↔ 1358/95.7 19.4 14

Complex terrain, understood as a multitude of small ridges (Figure 2a,c), dominates
the study sites, which challenges the mobility of the equipment required for harvesting
and processing western juniper [6]. To account for the unlikely movement of the harvested
trees over significant ridges, we delineated the main sub-basins from the 10 m resolution
digital terrain models (DTMs) provided by the US Geological Service [22]. The sub-basins
were delineated with the D8 flow direction model based on the segment length threshold
approach [23]. Having more variable geomorphology, the Pine Creek area was separated
into 14 sub-basins, whereas the Bridge Creek area had 12 sub-basins.
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2.2. Input Data
2.2.1. Individual Tree Location and Value

To identify each tree, we used the multispectral imagery supplied by the National
Agriculture Imagery Program (NAIP) and two lidar-derived products provided by the
Oregon Department of Geology and Mineral Industries (i.e., the digital surface model and
the digital terrain model). The NAIP images have a resolution of 1 m and record four bands
(i.e., red, green, blue, and near-infrared) with a radiometric resolution of 16 bits. Lidar
collected from the Pine Creek area was used to generate a canopy height model, which,
together with the multispectral imagery, constituted the input for locating individual
trees [24]. We computed a canopy height model using a generative adversarial neural
network [25] as implemented in pix2pix [26]. We located each tree by applying a Faster
R-CNN (Regional Convolutional Neural Network) on the NAIP multispectral imagery and
the canopy height model, as implemented in TensorFlow [27]. The combination of two
algorithms, the generative adversarial neural network and the Faster R-CNN, identified the
spatial coordinates of approximately 175,000 trees in the Pine Creek area and 160,000 trees
in the Bridge Creek area [24]. The metrics used to assess the individual tree inventory
were recall, precision, F1, omission error and commission error, similar to Strimbu and
Strimbu [28] and Hao et al. [12]. The recall was 0.735, the precision 0.913, F1 0.824, the
omission error 0.070, and the commission error 0.265. The 30 m pixel aggregated metrics
were superior to the most recent study focused on juniper inventory in the area [29], which
exhibited an 8.63% absolute error, whereas the convolutional neural network-based method
produced only a 4.98% absolute error. Once the trees were positioned on the landscape,
we estimated their height from the canopy height model created using the generative
adversarial networks, which was, on average, 8.3 m for the Pine Creek area and 5.8 m for
the Bridge Creek area (Table 2).

Table 2. Summary statistics for the predicted tree height and value.

Study Area
Number of Trees Height

Mean/Min–Max/Std. Dev.

[count] [m]

Pine Creek 178,515 8.3/1.8–36.3/4.48

Bridge Creek 162,941 5.8/1.8–24.4/2.53

The combination of neural network algorithms was not accurate in species delineation
(i.e., an accuracy of approximately 65%), which is likely the product of an unbalanced
distribution of species (i.e., western juniper dominates the landscape) and a lack of nadir
view throughout the image. Field survey and random NAIP image analysis revealed that
more than 90% of the trees were western juniper, with only a small portion being other
species, mostly ponderosa pine. Although other species are present in the study areas, for
simplicity, we considered all trees to be western juniper. We chose to consolidate all the
species to juniper to provide a conservative estimate for revenue, as ponderosa pine is more
valuable than western juniper.

To identify the merchantable component of an individual juniper tree, we measured
and harvested 26 trees, which were processed at the “In The Sticks” sawmill at Fossil,
OR. The trees were selected randomly, the focus being on stems that provide revenue,
expressed as merchantable timber. To estimate the value of each tree, we first measured
the merchantable volume of each stem in cubic meters, then developed a linear model that
relates the volume with the height of the juniper in meters (Equation (1)):

volume = 0.00708 × height
[
m3
]

(1)

Local mills commonly buy western juniper by green weight. Therefore, from the
landowner’s perspective, green weight is the measure used to estimate the potential value
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of harvested juniper. We converted the volume from Equation (1) to weight, assuming a
density of 799.5 kg/m3. The density was obtained by converting the 499.6 kg/m3 density
at 12% moisture content (dry basis), as estimated by Swan and Connolly [30], to a moisture
content of 45% (wet basis), which approximates the freshly cut density of the junipers.

mass = 811 × Volume [kg] (2)

Depending on the estimated weight of each juniper, we placed each tree into two
categories: those that will be harvested and sent to a mill for processing and those that will
be felled but left in the field. Many junipers are too small to be harvested profitably due
to juniper’s dense crown [31]. However, these trees are still valuable from an ecological
perspective, and this value is recognized by the US Department of Agriculture (USDA),
which provides monetary incentives for juniper removal. Therefore, the final value of
the harvested western junipers is the sum of the value of the merchantable timber plus
the USDA incentives. Based on the costs of felling, processing, and skidding, the green
weight threshold separating the western junipers reaching the mill from the one left on the
ground was estimated to be 0.3 tons. The 0.3 tons tree weight ensures that all harvested
trees would be profitable, given the costs and the revenue, as described in Dodson [6], at
least to a landing. We computed the felling costs and the restoration value for all trees, but
for trees above 0.3 tons, we also calculated the skidding and processing costs. To mimic
the transportation costs, we considered two values, namely 65 USD/ton and 45 USD/ton.
These values aimed to represent the distance to the processing facility, with closer mills
having lower transportation costs and, therefore, higher values at the landing.

2.2.2. Landing Locations

Landing locations are truck-accessible points where logs can be loaded onto trucks for
transport to the mill. Logs are skidded from their felling point to a landing. We identified the
potential landing locations based on the improved and unimproved road network (Table 3).
The improved roads in the two study areas are maintained gravel roads, whereas the
unimproved roads are roads with limited or no maintenance (Figure 2). The unimproved
tracks were digitized from the NAIP aerial imagery in ArcGIS 10.6.1 [32] (Environmental
Systems Research Institute, 2008). In addition to the condition that the landings are along
the existing roads (Figure 2), we considered four more criteria to represent reality accurately:
(1) increased accessibility to western juniper, (2) the possibility of connecting unimproved
and improved roads, (3) realistic positioning on the slope and landscape, and (4) the
insurance of a distance of approximately 46 m (i.e., 150 feet) between landing locations. We
selected the value of 46 m between landings to ensure continuous coverage of the entire
area, as in the region, the minimum length of a landing is approximately 30 m (i.e., 100 feet),
while the largest can reach 60 m (i.e., 200 ft).

Table 3. Summary statistics for the possible landings. The average area per landing was calculated as
the study area divided by the number of potential landings.

Study Area No. Potential Landings Average Area/Potential Landing [ha]

Bridge Creek 344 4.8

Pine Creek 399 4.0

2.3. Individual Tree Harvest Scheduling

Spatially explicit forest planning problems using stands as elementary management
units have polynomial complexity [33]. Therefore, planning problems that replace stands
with individual trees have at least polynomial complexity. Considering that each individual
tree and landing location is a distinct decision variable, the scale of this problem suggests
the usage of heuristic methods rather than exact solutions, such as complete enumeration
or mixed integer linear programming. To process the large number of possible solutions



Sustainability 2024, 16, 5124 7 of 18

that select the trees to be harvested in a feasible computation time, we explore the use of
two Monte Carlo-based optimization heuristics: simulated annealing [34,35], subsequently
abbreviated to SA, and record-to-record travel [36], subsequently abbreviated to R2R
(Figure 3). Both SA and R2R use a neighborhood search to find optimality, where each
solution is a small modification of a previous solution. SA and R2R have been shown to
lead to results close to an optimal solution for harvest scheduling [35,37]. Furthermore,
SA and R2R are preferred over other heuristic optimization techniques, such as genetic
algorithms or tabu search, because of their uncomplicated implementation [33,38].
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The objective of our study was to maximize the net revenue, which is represented as
the revenue from the tree scheduled to be harvested minus the costs associated with their
harvesting, the cost of developing landing sites, and the hauling costs (Figure 3). The cost
and revenue of each tree depend on two variables: the weight of the tree and the distance
from the tree to the closest active landing. We modeled two scenarios for each area: one
assuming the area is close to the mill (i.e., the value paid at the landing is 65 USD/green
ton) and one that assumes the area is far from the mill (i.e., the value paid at the landing is
45 USD/green ton).

2.3.1. Harvest Costs

We modeled harvest costs based on the work by Dodson [6], which examined a series
of harvest systems for western juniper in eastern Oregon. Felling and processing costs
are both based on tree weight, while skidding costs are based on a combination of tree
weight and distance to landing. Because many trees are felled for their restoration value
rather than economic value, as assigned by the USDA, we also modeled the traveling costs
associated with the harvesting equipment. A popular approach for estimating the distance
from stump to landing is to estimate the centroid of the harvest unit and then compute the
Euclidean distance between the centroid and landing. However, considering that in our
case, the elementary management unit was the tree, which is represented by a point and
not by a polygon, there was no meaningful centroid to be determined. To overcome the
lack of area when individual trees are used as elementary management units, we observed
that whenever the feller-buncher stops to harvest, all the trees within arm’s reach are cut
and placed in one location, usually close to the previous stop. Therefore, the area reached
by the feller-buncher can be considered as a harvest unit, the harvested trees being the
elements on which the value is computed. Consequently, the centroid of the harvest unit is
the location of the feller-buncher, which in actuality is the center of a circle with a radius
defined by the arm of the feller-buncher. The expression of the hauling costs from stump
to landing in these conditions is linearly related to the Euclidean distance between the
coordinates of the feller-buncher when it stops to harvest and the coordinates of the landing.
However, the study areas contain challenging terrain, which would be difficult to cross
with some skidding equipment and whose cost would be erroneously modeled by the
Euclidean distance. An unrealistic harvest situation is encountered when the trees from



Sustainability 2024, 16, 5124 8 of 18

one basin are allocated to landings from another basin, which indicates a significant terrain
change. To prohibit such situations, a penalty cost was applied when a change in basins
between a landing and harvest unit occurred, which would encourage the algorithm to
either select a different landing point or abandon that harvest unit. Considering the settings
of our problem, we found that a penalty equal to that of skidding 3000 m was sufficient to
prohibit the assignment of harvested trees to landings outside of their basin. Besides the
variable hauling costs, there is a fixed cost associated with each landing for its construction.
The current costs from Wheeler County suggest a cost of USD 500 per landing [39].

2.3.2. Spatial Implementation of the Harvests

Spatial considerations in scheduling harvests are often focused on ensuring that
neighboring restrictions are not violated. Their achievement is commonly implemented
with two approaches [40,41]: restricting harvests to adjacent units once an elementary
management unit is cut, also known as a unit-restricted model, or restricting the size of
the cut, also known as an area-restricted model. However, in our study, neither of the
two constraints is applicable because the objective is landscape restoration by removing
as many junipers as possible. Furthermore, spatial constraints impact the costs of harvest
rather than the arrangements for harvests. To clear an area as large as possible, we started
by defining the smallest area on which harvest could occur. We can naturally define such
an area, which serves as an elementary planning unit, by referring to the capabilities of
the equipment executing the felling. In this study, junipers were cut, processed, and piled
with a feller-buncher, which can reach trees at most 7.6 m (i.e., 25 feet) from the operator [6].
Therefore, we define an elementary planning unit as a square with a side length of 15.24 m
(i.e., 50 feet). The elementary planning units create a grid with a cell size of 232.26 m2

(i.e., 2500 ft2). We should point out that even though a grid is used for harvesting, scale
is not a part of the analysis, as the cell size is defined by the forest operations and not
analytically. Furthermore, no spatiality or generality was lost, as all the trees within a cell
were harvested from one location, which we assumed to be in the center of the cell. Each
grid cell is a harvest unit. After aggregating all trees within the grid cells, we reduced the
problem complexity by not including the harvest units with costs that exceeded the value
of the trees. If a harvest unit was not profitable, even assuming the closest possible landing
point, then it was removed from the set of eligible harvests. In the eventuality that the
minimum skidding load was not reached, the skidder would carry trees from more than
one harvest unit to the landing.

The heuristic solution to scheduling problems usually starts by defining the solution
space and the method by which the heuristic will move through it. In our problem, we
had only two sets of decision variables: the set of harvest units, hu, which can be active or
inactive, and the set of landings, l, which also can be active or inactive. An active landing
or harvest unit means that logs are stored or harvest occurs, whereas an inactive unit is the
opposite (i.e., no logs and no harvest). Given the decision variables, the movement through
the solution space occurs in two directions: (1) a harvest unit can switch between the active
and inactive set, and (2) a landing can move between the active and inactive status. In our
formulation, we enforced at least one active landing, which ensures that when only one
element is in the active landing set, it cannot be moved into the inactive set. The set of
active harvest units and active landing make up a solution. The formulation of the landing
selection is similar to that of Anderson and Nelson [42] and Philippart et al. [14] in the sense
that each location was represented by a binary variable. However, since the restoration
problem is spatially explicit, any change in the status of a landing (e.g., from active to
inactive) triggers the re-computation and, consequently, reallocation of each harvest unit to
the new set of active landings. The repeated estimation of all harvest unit–active landing
pairs, even though it has a polynomial complexity, increases the time to obtain a solution
from minutes to hours (i.e., on a Dell Precision 7910 workstation with a Xeon E5-263 v3
CPU and 32 GB RAM, it took approximately 8 h).
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The heuristic algorithms selected to solve the scheduling problem are stochastic,
and therefore, the moves through the solution space are executed according to a preset
probability [43]. A possible move can occur if a random uniform variable in the set (0, 1] is
smaller than the probability defining the heuristic, which depending on the algorithm have
multiple forms [44].

2.3.3. Formulation of the Harvest Problem

The objective function is to maximize net revenue from all active harvest units:

max

(
ahu

∑
1
(FVi + HVi)− (EQMCi + FCi + PCi + SKCi)−

al

∑
1

LCj

)
(3)

subject to

i. Harvest weight = sum of weights of trees with weight > 0.3 tons;
ii. Non-harvest weight = sum of weights of trees with weight ≤ 0.3 tons;
iii. Distance to closest active landing = Euclidean distance from the centroid of harvest

unit to landing;
iv. The monetary values of the attributes used to compute the net revenue of each

harvest unit are presented in Table 4.

where
ahu is the number of active harvest units;
al is the number of active landings;
subsidy value of harvest unit i (FVi) = number of trees in harvest unit i × felling

value subsidy;
harvested value of harvest unit i (HVi) = weight of merchantable volume in harvest

unit i × harvest value coefficient;
feller-buncher moving cost of harvest unit i (EQMCi) = distance to closest active

landing × equipment moving coefficient to harvest unit i;
felling cost in harvest unit i (FCi) = non-harvest weight × non-harvest felling coeffi-

cient + harvest weight × harvest felling coefficient;
processing cost in harvest unit i (PCi) = harvest tree weight × processing coefficient;
skidding cost from harvest unit i (SKCi) = harvest tree weight of unit i× (distance to

closest active landing × skidding distance coefficient + skidding coefficient);
cost of building landing j (LCj) = constant.

Table 4. Juniper harvest costs and values used to estimate the net revenue at landing.

Attribute Value Units Short Description and Source

Felling subsidy 2.0 USD/tree Estimated USDA remediation value [45]

Value of merchantable tree 65 USD/ton Estimated value of a tree [46]

Feller-buncher and processor
moving cost 0.03 USD/m Estimated cost of moving the feller-buncher and

processor within the harvested area (authors)

Non-merchantable tree felling cost 12 USD/green ton Cost of felling a non-merchantable tree [6]

Merchantable tree felling cost 10 USD/green ton Cost of felling a merchantable tree [6]

Merchantable tree processing cost 15 USD/green ton Cost of processing a merchantable tree [6]

Skidding distance coefficient 0.18 USD/m/green ton Distance-related cost of moving merchantable
juniper to the landing [6]

Skidding coefficient 20 USD/green ton Non-distance related skidding activities [6]

Landing cost 500 USD/landing Cost of preparing a landing area [39]
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2.3.4. Simulated Annealing

SA is a heuristic technique based on the idea that negative deviation from the current
solution should decrease as the number of iterations increases [34,35,47]. SA has been
widely applied in combinatorial optimization, cited second only to genetic algorithms,
and well ahead of other combinatorial heuristics (Google Search 23 December 2018). SA is
analogous to the annealing process through cooling in the sense that at higher temperatures,
molecules have more energy. Therefore, they are able to move substantially, while later,
when the temperature decreases, the energy is reduced, and the molecules move less. SA is
mathematically represented through an exponential function and a ‘temperature’ variable,
which allows for a large negative deviation for high temperatures and a small negative
deviation when the temperature is small. SA is driven by at least four parameters [43,48,49]:
annealing rate, initial temperature, number of moves at each temperature, and the stopping
rule. The identification of proper parameters has a significant role in SA performance [50].
We chose the parameters using trial and error; the chosen parameters are the following:

Annealing rate: 0.99
Initial temperature: 0.25
Number of moves/temperature: 200

Stopping rule: freezing temperature of 0.00001 or no improvement for 10,000 moves
(~5% of the possible moves), whichever occurred first. If SA reached the freezing tempera-
ture, 201,000 moves were executed.

We found that normalizing the deviation between neighboring solutions by the cur-
rent solution value provided consistent results. This normalization, which bounded the
solution fitness deltas between −1 and 1, is the reason for the low initial temperature. The
full description of the SA implementation, including the normalization, is shown in the
pseudocode form Appendix A (Figure A1).

2.3.5. Record-to-Record Travel

R2R is a stochastic optimization heuristic that allows for a change in the current
solution if it is not worse than the best-observed solution by a specified percentage [36].
R2R is a hill-climbing heuristic that is selected as a possible solution, which does not
improve the current solution within a preset value called deviation. The major advantage
of R2R over other heuristic methods is the reduced number of parameters to tune: the
allowed deviation and the ending of the algorithm. To find the values suitable for our
problem, we used a trial-and-error approach, which is common in the application of
heuristic techniques [50]. We found that a deviation of 10% from the best-observed solution
and an exploration of 200,000 moves supplies acceptable solutions. We also implemented
an additional stopping rule based on the non-improvement of the solution. If the best
solution did not improve after 10,000 moves or 5% of the total possible moves, similar
to Zomaya and Kazman [51], we terminated the heuristic under the assumption that the
optimum value for this run had been reached. To avoid premature termination, we enforced
the 10,000 moves stopping rule after 150,000 moves. At the termination of the algorithm,
the best solution was chosen as the output of the heuristic. A pseudocode description of
the R2R implementation is shown in Appendix B (Figure A2).

Being heuristic, SA and R2R can supply close or far from optimal solutions, although
well-chosen parameters and sufficient moves have been shown to produce high-quality
solutions in other applications. We ran SA and R2R on the Amazon Web Service Cloud. SA
terminated in about 4 h and RTR in about 2 h. For the 65 USD/ton price, we ran 29 solutions
from different random number starts, and for the 45 USD/ton price, we terminated at
10 solutions because their solution values were closely grouped.

3. Results

One method for evaluating the quality of a heuristic solution is to see how close it is to
a known upper or lower bound on the solution. For maximization problems, the interest is
the upper bound. For complex problems solved with mixed integer linear programming,
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the upper bound is represented by the solution of a simplification of the original problem
through the relaxation of some of the constraints. In this problem, the upper bound can be
computed analytically under the assumptions of a given price per ton and ignoring the
landing construction costs. Under these assumptions, each tree will travel to the closest
possible landing, and trees with negative values will be dropped from the solution. It is not
feasible in the sense that the landing costs are not considered. Subtracting the landing costs
from the chosen landings in the upper bound solution provides a feasible lower bound.
Another approach for measuring the quality of this heuristic is to compare the solution to
the necessary conditions for optimizing skidding distance under a uniform distribution of
harvest volume. For two-way skidding to evenly spaced discrete landings, the necessary
conditions for existing roads are that the average skidding cost (USD/ton) is equal to twice
the landing cost (USD/ton) [52]. We would expect the optimal solution to be near, although
not equal to, these conditions given a non-uniform distribution of juniper trees.

3.1. Price at 65 USD/ton at the Landing

For USD 65 per ton, the upper bound on the net revenue was USD 559,281 for the
Pine Creek area and USD 289,752 for the Bridge Creek area. The lower bound, obtained
by subtracting the costs of the landings from the upper bound, was USD 359,781 for the
Pine Creek area and USD 117,752 for the Bridge Creek area. The results of the 29 runs show
the existence of a large number of solutions below the lower bound for each area for both
algorithms (Table 5).

Table 5. Summary statistics for the harvest value of 65 USD/ton.

Study
Area Algorithm Upper

Bound
Lower
Bound

Maximum
Net Revenue

Number of Solutions
above/below
Lower Bound

Terminating
Criteria for Best

Solution

Bridge
Creek

SA USD
289,752

USD
117,752 USD 154,943 23/6 freezing

R2R USD
289,752

USD
117,752 USD 125,464 23/6 non-

improvement

Pine
Creek

SA USD
559,281

USD
359,781 USD 397,219 12/17 freezing

R2R USD
559,281

USD
359,781 USD 365,836 19/10 non-

improvement

The best solutions revealed consistent results, with the R2R terminating because the
solution did not improve for more than 10,000 moves, whereas SA ended when the freezing
temperature was reached (Figure 4). Nevertheless, for both areas, the SA solutions did not
improve more than 1% for the last 40,000 moves, which suggests, for the parameters chosen,
that increasing the number of moves will not significantly improve the objective function.

At 65 USD/ton, SA supplied results that were more than 10% better than R2R. The
weak performance of R2R likely reflects the algorithm’s disposition to investigate areas
of the solution space with low juniper values (Figure 5), which led to a large number
of solutions far from optimal. For both algorithms and study areas, the best solutions
averaged at least one full truckload (20 tons) at each active landing (Table 6). We also see
that the best R2R solution had significantly more landings than the solutions chosen by SA,
which contributed to lower volume/landing and skidding distance/landing (Table 6).

As a check on the SA solution for Bridge Creek using the necessary conditions from Pe-
ters [52], the average landing cost (USD/ton) was 5.56 USD/ton (USD 500/90 tons = 5.56 USD/
ton) (Table 6). The variable cost of skidding was 12.8 USD/ton (71.1 m × 0.18 USD/ton-
m = 12.8 USD/ton). Thus, two times the landing cost, 11.12 USD/ton, is approximately equal
to the skidding cost of 12.8 USD/ton, with a ratio of 0.87. The R2R solution had a more
unbalanced landing-to-skidding cost, with an average landing cost of 7.69 USD/ton and an
average skidding cost of 11.73 USD/ton, and the ratio was 1.31.
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Table 6. Summary statistics of the best solution for each area and algorithm for 65 USD/green ton
value at the landing.

Study
Area Heuristic

Number of
Landings

Average
Weight/Landing

Average Distance
from Cell

to Landing

Average
Number of

Cells/Landing

Average Number
of Trees

Harvested/Landing

Net Revenue
at Landing

[count] [ton] [m] [count] [count] [USD/Merchantable
Green ton]

Bridge
Creek

SA 223 90 71.1 94 228 7.72/ton

R2R 308 65 65.2 68 201 6.27/ton

Pine
Creek

SA 261 147 71.9 86 276 10.35/ton

R2R 354 108 68.3 63 203 9.56/ton
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3.2. Price at 45 USD/ton at the Landing

The upper and lower bounds defining the solution for 45 USD/ton are USD 37,049
and USD −162,451 for the Pine Creek area and USD 9861 and USD −162,139 for the Bridge
Creek area, which not only are small in comparison to the 65 USD/ton but are also nearly
unfeasible from an economic perspective. The summary statistics for the 45 USD/ton runs
(Table 7) resulted in a very different picture than the 65 USD/ton. First, all solutions were
above the lower bound. Second, the solutions were very different for the two areas, with
Pine Creek having a positive net revenue and Bridge Creek having a negative net revenue.
The negative net revenue is the result of the requirement that at least one landing is active.
At a 45 USD/ton landing value, SA was about the same as R2R (Table 7).

Table 7. Summary statistics for the best solution at a harvest value at the landing of 45 USD/green ton.

Study
Area Algorithm Upper

Bound
Lower
Bound

Maximum
Net

Revenue

Number of
Solutions

above/below
Lower Bound

Terminating
Criteria of

Best Solution

Bridge
Creek

SA USD
9861

−USD
162,139

−USD
461 10/0 Freezing

R2R USD
9861

−USD
162,139

−USD
486 10/0 Non-

improving

Pine
Creek

SA USD
37,049

−USD
162,451

USD
17,468 10/0 Freezing

R2R USD
37,049

−USD
162,451

USD
17,315 10/0 Freezing

4. Discussion

Landscape restoration poses logistic and financial challenges, which can sometimes
be achieved simultaneously. In the case of western juniper in Eastern Oregon, the main
challenge is economic, as the terrain is flatter than in Western Oregon. To ensure that
restoration is economically feasible, we have implemented a unique approach that uses
individual trees as the elementary management unit. Because we assumed that the trees
are harvested with a boom-mounted harvesting and processing head, we grouped them
according to the arms’ reach of the feller-buncher that executes the cuttings. The complexity
induced by the usage of individual trees as elementary management units recommends
the usage of heuristic algorithms to maximize the net revenue, which is the objective
function. Among the many heuristic algorithms available, we selected simulated annealing
and record-to-record travel based on the large number of studies reporting their superior
performances [33,48,50,53–57]. Our formulation of the restoration problem showed that
SA performed 10 to 20% better than R2R travel (Table 5) when the price was USD 65 per
green ton but less than 5% when the price was USD 45 per green ton (Table 7). We believe
that the weak performance of R2R with respect to SA is that R2R runs ended with the
non-improvement stopping rule rather than reaching the preset maximum iterations. This
indicates that the R2R runs were more likely to be trapped in a sub-optimal region of the
solution space, which has more active landings in the final landing set. This outcome is
likely due to the complexity and number of steps required for the heuristic to remove a
landing in our algorithm formulation. Later in the run, when there is a higher number of
harvest units in the active set, eliminating a landing increases the skidding costs, as all
harvest units assigned to the eliminated landing are reassigned to the next closest landing.
Therefore, removing a landing can lead to a momentary reduction of net revenue, which
can subsequently yield a better overall solution. To mitigate the temporary net revenue loss,
we allowed the harvest units to have zero net revenue for a small number of moves or until
a closer landing was activated. Nevertheless, even with enhancements, the formulation of
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the scheduling problem indicates that R2R was not able to explore the solution space as
effectively as SA.

Irrespective of the area and algorithm, the solutions are separated into two classes:
one that contains solutions close to the global optima and one that encompasses solutions
trapped in a local minimum. The solutions trapped in a local minimum either contained
only one active landing or were below but close to the lower limit. Only one active landing
was a common case for a trapped solution due to the fixed cost of establishing a new
landing (USD 500), which in these cases was larger than the allowed R2R deviation. In
the case of solutions slightly below the lower bound, we observed that the solution was
trapped in a local minimum for the first 100,000 iterations, followed by a plateau near the
150,000 iterations. The runs ended around iteration 160,000 because of the stopping rule
that terminates a run after 10,000 iterations without improvement. If this rule had not been
in place, it is possible that more solutions would have exceeded the lower bound.

From the experiments with the reduced value per ton of western juniper, we see
that the value per ton has a significant effect on the final solution, which consequently is
reflected in the ability to restore the landscape or not. While USD 65 per ton supports a
strong restoration process, a drop by one-third to USD 45 per ton suggests the inability
to restore the landscape without additional support. The large drop in the solution value
produced by the USD 20 per ton reduction in juniper price suggests that a relatively small
change in juniper price may have a dramatic effect on the overall profitability of harvesting.

The method developed in the present study can be applied in other settings where the
harvest units are individual trees, such as tropical forests. The requirement for individual
trees as elementary planning units is imposed either by natural settings, the case of sparse
forest (i.e., western juniper) or by high-value individuals, like redwoods (Sequoia semper-
virens), Douglas firs (Pseudotsuga menziesii), or western red cedars (Thuja plicata). While we
used Euclidean distance to develop skidding costs, more detailed travel models could be
implemented through preprocessing of route costs and clustering techniques to keep all
route information available in random-access memory.

5. Conclusions

Restoration of the landscapes affected by the spread of western juniper through
harvesting poses a number of challenges related to the sparse spatial spread of the juniper
trees. Therefore, the development of a harvest scheduling strategy is an important step
towards viewing western juniper as a merchantable resource rather than a noxious species.
Consequently, we propose a procedure that aggregates individual trees into elementary
harvest units by considering the location of each tree. Using the location of each harvest
unit and its corresponding landing, we formulated a spatially explicit algorithm that
aims at the maximization of the net revenue while considering felling, processing, and
skidding costs. We applied the proposed landscape remediation approach to two areas
of similar size and terrain but with different tree distributions. Given the complexity of
the individual tree-level scheduling, we used two heuristics, simulated annealing and
record-to-record travel, to implement the restoration algorithm. Our results suggest that
restoration is possible when the price is USD 65 per ton. The two scenarios for juniper
value (i.e., negligible transportation costs vs. significant transportation costs) imply that
the economically feasible solutions are highly dependent on the hauling distance between
the landing and the mill; the farther the landing is from the mill, the closer to the landing
the juniper tree must be to be viable.

Ultimately, we found that the complexity of the solution space led to simulated anneal-
ing, outperforming record-to-record travel in both of our study areas. Our approach and
formulation to the restoration of landscapes invaded by western juniper could be applied
to similar problem sets where complex stand structures preclude the use of traditional
stand-level harvest scheduling and instead require a more granular system. Similarly, the
method could be used for other harvesting systems, such as manual chainsaw felling and
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the use of rubber-tired choker skidders, farm tractors or other vehicles dragging logs or
pulling small trailers.

While we examined scenarios based on the price paid at the landing, the method
could be extended to the price paid at the mill. The small log volumes per landing in these
examples suggest that a self-loading truck might be preferable to a separate loader. A
study of transport distance, truckload capacity with and without a self-loader, and landing
mobilization costs for separate loaders could focus future research.
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