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Abstract: Monitoring soil organic carbon (SOC) is essential for assessing the sustainability of soil
usage. This study explores the spatial variability and mapping of SOC in Lithuania’s Nevėžis
Plain using various interpolation methods, with an emphasis on understanding the impacts of soil
typological units, moisture regimes, and erosion on SOC distribution. A total of 275 soil samples
were collected from agricultural croplands at depths of 0–10 cm, supplemented by 38 samples
from previous studies. The SOC map was created based on the contours of the Lithuanian soil
geodatabase. Statistical analysis revealed that the distribution of SOC in the studied area was
significantly influenced by soil moisture and the degree of erosion. Based on these findings, SOC
mapping was conducted according to the contours of Lithuanian soils. Comparing the interpolation
methods that were analyzed, it was found that the kriging, RBF, and EBK methods fail to adequately
capture the minimum and maximum values of SOC, while the IDW fails to adequately capture
only the minimum values. In summary, the integrated geographical approach is complex but
applicable to SOC mapping. This method facilitates the creation of adaptable SOC maps that are
both geographically and pedologically informed. Key principles to apply this approach for future
research and practical application should include establishing a statistically reliable data foundation,
categorizing samples based on contrasting soil moisture regime, degrees of erosion, and land use
patterns, and developing contouring principles along with a criteria algorithm that enables accurate
spatial interpolation of average SOC values.

Keywords: agricultural land; GIS; soil organic carbon (SOC); soil spatial variability; soil types

1. Introduction

The spatial variability of soil organic carbon (SOC) is an important indicator that
shows not only the conditions of pedogenesis and its nutrition but also the intensity of its
use in the context of sustainability [1]. In the context of climate change, SOC spatial research
and mapping using GIS tools are particularly relevant for assessing the sustainability of
agricultural activities and their impact on SOC sequestration. Revealing the characteristics
of SOC’s spatial pattern of SOC will provide a basis for evaluating soil fertility and assist in
the development of sound environmental management policies for agriculture [2]. Accurate
accounting of the amount of SOC in the soil and modeling and forecasting its changes are
important for sustainable development in agroecosystems.

The initial mapping of soil cover across Lithuania, conducted on a coarse scale, took
place between 1953 and 1969 [3] and relied on field data for its foundation. Subsequent
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adjustments to the soil contours were made between 1970 and 1991, incorporating new field
data to refine the mapping accuracy [3]. The activities included mapping soil typological
units according to the Lithuanian genetic classification and identifying the degree of erosion
of the topsoil layer by its thickness and color. The mapping was based on the principle of
distinguishing elementary surfaces and taking soil samples from each of them. They were
later analyzed in the laboratory to determine the exact soil typological unit. At the end of
the 20th century, this method was developed using orthography and distinguishing the
surfaces to be mapped according to the typical colors of the cultivated surfaces of the fields
using RGB sensors with a visible spectrum.

In 1999, the National Genetic Soil Classification (TDV-96) was transformed into the
Diagnostic Soil Classification of Lithuania (LTDK-99), aligned with the 1998 World Refer-
ence Base for Soil Resources. In Lithuania, the LTDK-99 classification is still in use [4] and
does not conflict with the currently used WRB 2022 classification [5]. It is easily adaptable
because it is based on the same soil classification principles.

The soil mapping efforts previously conducted laid the foundation for the creation of
Lithuania’s GIS soil database (Dirv_DR10LT) in 2012, which was revised in 2014. This soil
database has become the basis for contemporary detailed spatial studies of Lithuanian soils.
In total, the Dirv_DR10LT contains 1,482,754 soil contours, with the minimum contour size
being 0.01 ha and the average size of a contour being 4.4 ha. The Dirv_DR10LT [6] database
was constructed using 101,146 soil profiles, which are distributed throughout the country.
This database is accessible at https://www.geoportal.lt/geoportal (accessed on 25 January
2023). These data provide an important basis for the development of geospatial-based
detailed mapping techniques and contouring principles.

This database is periodically updated; for instance, in 2023, the SOC data (12,000)
points collected in 1985–1991 in different local Lithuanian regions and analyzed in the labo-
ratory were digitized. These were used to create a GIS database (DirvAgroch_DR10LT) [7].
In 2016, the SOC data from 752 points [8] for the entire Lithuanian territory were collected
following Land Use, Land-Use Change, and Forestry (LULUCF) grid points, and 383 points
were collected following the Land Use and Coverage Area frame. While these databases
cover the entire country well, the methods used by data collectors in gathering samples
varied, which means they do not fully meet the criteria of data representativeness that
underpin this study. Additionally, the possibility of conducting statistical analysis on these
data in the context of soil moisture and erosion degree is also limited.

The older databases of soil samples collected by traditional methods and the rapid
development of remote sensing technologies have made it possible to extend the boundaries
of SOC mapping [9] and to make the process partly automated. If it is required, the mapping
process now includes satellite data, multispectral or hyperspectral imagery from unmanned
aerial vehicles, proximal sensors, and machine learning models. Despite the wide choice
of remote-sensing methods, the reliability of the results remains an important issue [9].
Therefore, this study raises the debate on combining modern and classical methods to find
the optimal method for SOC spatial research.

This study is relevant as it diverges from the mainstream focus on identifying the
optimal interpolation method and its parameters, sample optimization, and the application
of remote sensing technologies and machine learning tools [10–12]. Instead, recognizing
the heterogeneous nature of soil cover, we seek to adapt classical mapping methods to the
contours of soil typological units and the information they encapsulate. This approach
aims to enhance not only data sampling but also the precision of mapping, with a particular
emphasis on highlighting extreme azonal SOC values.

Grassland remains one of the main challenges when mapping SOC in agricultural
areas. The application of remote sensing techniques on these surfaces [13], which are
never fully bare, is a relevant but challenging process due to issues with interpolation
accuracy. Typically, the question of SOC content in grasslands is addressed using derivative
indices [13].

https://www.geoportal.lt/geoportal
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Currently, various technologies are used to predict SOC distribution at local, regional,
and national scales. These mostly include statistical and geostatistical approaches, satellite
images, or interpolation methods required for GIS data analysis.

Several studies have demonstrated that integrating field measurements with kriging
interpolation and GIS methods enables the production of contour maps showing the
distribution of soil texture, soil organic carbon (SOC), and the carbon/nitrogen (C/N)
ratio [14]. Furthermore, Bhunia et al. [2] compared five interpolation methods to generate
spatial distribution maps of SOC: inverse distance weighting (IDW), local polynomial
interpolation (LPI), radial basis function (RBF), ordinary kriging (OK), and empirical
Bayesian kriging (EBK). This comparison revealed that the OK interpolation method
is superior to other geostatistical and deterministic methods for predicting SOC across
relatively large geographical areas. In our study, we also applied these interpolation
methods but critically assessed their application based on the assumption that the young
geological age of our study area, characterized by complex relief and a high diversity of
soil-forming deposits, could limit accuracy.

In a different approach, Castaldi et al. [15] explored the feasibility of using Sentinel-
2-based approaches for high-resolution mapping of SOC and clay in cropland sites with
varied climates and soil types. The results indicate that the accuracy level and uncertain-
ties were primarily influenced by site-specific soil characteristics and soil management
practices. However, the overall performance of the models was reasonably accurate at
most sites. These findings highlight the potential of combining advanced remote-sensing
techniques and geostatistical methods to improve soil-property mapping, which is essential
for effective land management and agricultural practices.

The use of standard interpolation methods for mapping (as well as SOC) is predicated
on the assumption that the space for modeling is uniformly homogeneous and unaffected by
various environmental components and factors [16]. Meanwhile, soil coverage is inherently
heterogeneous and influenced by a mix of zonal and azonal factors, both natural and
anthropogenic. This heterogeneity suggests that interpolation methods are favorable and
suitable to local areas with uniform characteristics. Interpolation methods are also suitable
for large areas where soil cover is formed by dominant zonal soil-forming processes. This is
complicated for the Lithuanian territory and regional level in the context of SOC mapping,
where soil complexity and diversity become more pronounced; alternative methodologies
are necessary to accurately capture and represent the variability in SOC distributions.

The SOC levels in agricultural soils are determined by a multitude of factors, includ-
ing land management practices, land use, soil texture, origin of soil-forming deposits,
moisture content, relief, and type of vegetation cover [17,18]. Additionally, variations
in SOC amounts are linked to soil cultivation methods, especially in practices devoid of
agrochemical inputs [19,20]. Our study specifically examined how SOC content correlates
with soil type and moisture regimes. This approach mirrors similar research undertaken by
other European scholars [8,21,22] who explored the relationship between SOC levels and
soil typological units. For instance, research conducted in Estonia [22] has highlighted the
impact of soil irrigation types and carbonation on SOC quantities. Given that Lithuanian
soils develop under conditions closely resembling those in Estonia, it is hypothesized that
factors such as moisture and soil typological units, including their carbonation levels, play
crucial roles in shaping SOC distribution across Lithuanian agricultural lands.

Until recently, in Lithuania, there have been no efforts to synthesize the average SOC
content across different typological and soil groups (by classification level, moisture regime,
and degree of erosion) into broader geographical generalizations. This includes the absence
of initiatives to create comprehensive SOC maps or undertake spatial analyses based on
these values.

To address these challenges, we aim to demonstrate an integrated geographical ap-
proach (IGA) for detailed SOC mapping. This involves combining GIS and traditional
research methods to achieve a highly accurate SOC map at both the local and regional scales.
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It also addresses the issue of contouring of different SOC contents and the distribution of
SOC in the area determined by zonal and azonal soil-forming processes.

The objectives of this study are as follows: (1) to compile a representative collection of
soil samples that reflects the soil-forming conditions of the Nevėžis Plain territory, taking
into account the typological units of the soil; (2) decomposition of the name of the territorial
unit of the soil according to the groups of the first level of the soil and the nature and
degree of their wetting; (3) establishing the relationship between SOC and the decomposed
parts of the soil typological unit in addition to considering the degree of soil erosion; (4) to
develop a soil organic carbon concentration map for the Nevėžis Plain territory.

This plain accounts for about 15% of the total area of moraine plains in Lithuania
but represents the most typical of them, the absolute majority of which (about 95%) are
localized in the Central Lowlands of Lithuania. They are dominated by morainic sandy
loams typical of these plains. Therefore, the results of this study can be interpolated to
almost 38% of the territory of Lithuania.

2. Materials and Methods
2.1. Study Area

The study area is situated in the central part of Lithuania between 55◦40′–54◦57′ N
and 23◦45′–24◦31′ E (Figure 1). The selected research area covers the geomorphological
district of the Nevėžis moraine plain (430,826.64 ha) in the lowlands of Central Lithuania
between the city of Panevėžys in the north and the city of Kaunas in the south.
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Figure 1. The contours of the object of research—Nevėžis Plain location—are marked with a red line.
The gray background represents the central lowlands of Lithuania. The map on the right shows the
different agroclimatic regions of Lithuania (I—uplands region of western Lithuania, II—lowlands
region of central and western Lithuania (IIa, IIb, IIc, IId, IIe), III—uplands region of eastern Lithuania
(IIIa, IIIb, IIIc).

According to the “Environmental Stratification of Europe”, the area of study falls
within the Nemoral climate zone, which is characterized as continental and cool, with a
relatively short growing season for plants [23,24]. The southeastern territories of Estonia
and Latvia, along with the northwestern regions of Belarus, are also classified under this
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climate zone. According to the agro-climatic classification of Lithuania [25], the study area
falls within two agroclimatic zones: IIC and IID (Table 1).

Table 1. Agro-climatic indicators of the studied area [25].

IIc IId

Sum of active temperatures (>10 ◦C), ◦C In the air 2100–2170 2190–2250

Loamy soil 2300–2400 2400–2500

Sandy loam soil 2500–2600 2500–2600

Average annual temperature, ◦C 6.3–6.6 6.7–7.1

Amount of precipitation, mm 570–700 ~610

Average absolute minimum
temperatures, ◦C −22.0 . . . −23.0 −21.7 . . . −21.9

Duration of frost-free periods on the soil surface, annual number
of days 126–139 142–143

Amount of precipitation when air
t > 10 ◦C, mm 300–310 280–320

Maximum depth of soil freezing, cm 30–35 40–45

The surface of this Nevėžis Plain was formed 13,000–14,000 years ago [26,27] in the
ground moraine deposits by the deglaciation of the Middle Lithuania phase of the Late
Nemunas (corresponding to the Late Weichselian glacier in Europe) glaciation. Marginal
morainic loam and fluvioglacial sand formations are common only at the edges of the
territory, which borders other geomorphological units.

Nevėžis moraine plain is characterized by a flat/wavy surface and ground moraine
carbonate loam soil-forming rocks [28]. Some of the most fertile soils in Lithuania are
spread in this location, where even 68.45% of the territory is used for agricultural purposes,
while the remainder, that is, 31.55%, is classified as forests, water bodies, or built-up areas.

According to the 2023 data from the Official Statistics Portal [29], in the agricultural
area analyzed, cereals (54.35%) and rapeseed (17.77%) predominated, while protein crops
accounted for only 5.59% of the total number of crops grown. All other crops accounted for
13.55% of the total area. Permanent grasslands and pastures accounted for only 8.74% of
the total. A more detailed distribution of the plants is presented in Table 2.

Table 2. Distribution of agricultural crops in the Nevėžis Plain territory in 2023 [29].

Agricultural Land Uses ha %

Winter cereals 103,665.62 40.86
Rapeseed 45,078.40 17.77

Spring cereals 34,232 13.49
Pastures/grasslands 22,181.20 8.74

Protein crops (peas, beans, etc.) 14,174.20 5.59
Sugar beet 7721.36 3.04

Maize 6091.29 2.40
Perennial grasses 5657.29 2.24

Fallow land 4181.41 1.65
Oats 2801.96 1.10

Other (vegetables, fibrous hemp,
buckwheat, berries, flax, aromatic plants,
mushrooms, gardens, other plantations)

795,116.82 3.12

The studied area is characterized by the fact that carbonates in soils are leached to an
average depth of 40–60 cm. Owing to the prevailing soil decarbonatization and lessivage
processes, the dominant soil texture in the topsoil layer was sandy loam, which accounted
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for approximately 83.73% (Table 3), whereas in the lower soil layers, the dominant soil
texture classes were sandy loam (61.34%) and loam (21.16%). According to LTDK-99
classification, the main soils in Nevėžis moraine plain are cambisols, gleysols, and luvisols,
and they cover 49.63, 21.03 and 17.64%, respectively (Table S1). In addition, it is important
to note that the aforementioned soils have varying degrees of waterlogging (from gleyic
to muck and peat gley). Soils of other typological groups (arenosols, histosols, fluvisols,
planosols, regosols, retisols, podzols, and leptosols) accounted for only 11.7% of the total
agricultural land. Peatland surfaces, which were mostly covered with forest, accounted for
approximately 3% of the analyzed area. Most of the soils in the area were characterized as
semi-hydromorphic (76.66%) or hydromorphic (3.04%) (Table S1).

Table 3. Distribution of the number of collected samples in the study area according to texture classes.

Texture Classes
Area in Agricultural Land Number of

Samples
Point Density,
Units/100 haha %

peat (P) 14,493.30 4.19 24 0.17
silty loam (SiL) 8421.74 2.43 7 0.08

silty clay loam (SiCL) * 109.29 0.03 - -
clay (C) * 237.57 0.07 - -
loam (L) 8519.34 2.46 11 0.13

clay loam (CL) 1229.76 0.36 2 0.16
sandy loam (SL) 289,372.88 83.73 229 0.08

mucky layer 16,456.33 4.75 19 0.11
sand (S) 1727.76 0.45 6 0.35

loamy sand (LS) 5300.01 1.53 15 0.28
* Texture classes for which there are no data were not studied due to their very small area.

2.2. Soil Description and Sampling

Soil samples were collected from the Nevėžis moraine plain (area—4308.27 ha) in
October 2021 and May 2022. During 8 field campaigns, 275 soil samples were collected
from agricultural croplands and from the topsoil layer at a depth of 0–10 cm. Each sample
consisted of three to four sub-samples taken within an area of 1 m in radius. In this area, the
sampling density was 0.08 per km2. Soil sampling points were selected using a Lithuanian
soil typological map, the scale of which was 1:10,000 [6]. In this map, soils are identified
using Lithuanian LTDK-99 soil classification [4]. However, it is important to note that
this LTDK-99 classification accurately reflects FAO principles. In further parts of this
paper, summaries of already converted (from the LTDK-99 classification to WRB 2022) soil
typological units are used. Sampling point coordinates were found with an accuracy of
1–2 m using a GPS receiver (Trimble Juno T41/5) with ArcPad 10.2 software (ESRI).

Additionally, we used SOC data collected from previous studies covering the Lithua-
nian National Forest Inventory [25,26]. In this study, 754 samples were collected at the
national level, but we selected only part of the data that fell within the Nevėžis moraine
plain area, and we selected only those points that were collected from cropland; thus, we
were able to use 38 soil samples [25,26] in our study. The basic statistics for SOC under
different types of soils are given in Table S1, and information about soil texture classes is
presented in Table 3.

Table S1 shows the complete data set used in the study. The research represents 79.1%
of the studied area, i.e., agricultural land, and, respectively, 99.99% of all soil diversity in this
territory (according to the first classification level). According to the second classification
level, the representativeness reaches 99.78%. All types of soil moisture regimes are also
fully represented. On average, 1 sample/200 ha was taken in the studied area. However,
this assessment is relative since the number of points in different soil typological units at
different levels is very different. Although the density of points in the dominant soil groups
(CM, GL, LV) and moisture classes (SH(g8), SH(G), AU) is one of the lowest, the absolute
sample of points is the largest (Table S1). These differences arise because the sampling
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points were formed to achieve as even a distribution as possible in the territory and to
represent the diversity of the soil cover.

Most samples (229 points) were taken from soils whose topsoil was dominated by
sandy loam (Table 3). Since the research area is plain and its soil cover structure is dom-
inated by waterlogged soils, much attention was paid to mucky and peat soils. They
contained 19 and 24 samples, respectively. The average density of sample points was about
0.17 units/100 ha, or 1–2 units/1000 ha.

2.3. Chemical Analyses

During the laboratory analyses, the visible roots and plant residues were first removed
manually, and then the soil samples were air-dried, crushed, sieved through a 2 mm sieve,
and homogeneously mixed. For SOC analysis, the samples were passed through a 0.25 mm
sieve. SOC content was determined by a photometric procedure at a wavelength of 590 nm
using a UV–VIS spectrophotometer Cary (Varian) and glucose as a standard after wet
combustion according to the Tyurin method modified by Nikitin [30]. All chemical analyses
were conducted at the Chemical Research Laboratory of the Lithuanian Research Centre
for Agriculture and Forestry.

2.4. Data Preparation and Mapping

The SOC map was compiled based on the contours of the Lithuanian soil GIS database
(Dirv_DR10LT-1554, 2022, scale 1:10,000) [6] (Figure 2). A total of 275 samples from the
study area’s agricultural soil cover were collected during the field trip, and 38 points from
the official scientific report on which the publication was based [8,31] were used. In total,
313 points were used to create the map. The sample of soil samples is formed in such a way
that it represents the variety of soil typological units according to the soil typological group,
moisture regime, and degree of moisture prevailing in Lithuania. Anthrosols and Leptosols
were not used in the mapping because Leptosols are not identified in the studied area,
and Athrosols are identified in urbanized areas that were not mapped during this study.
Samples were taken only from agricultural land that was not covered with vegetation,
choosing the location of the point in such a way that it was at least 100 m away from roads,
forests, or other lands.
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During the analysis, each soil sample was related to the name of the soil typological
unit based on the soil contours of the Dirv_DR10LT database [6] and the refinement of their
position in the area. In the next step, the name of the soil typological unit was deconstructed
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into the type of moisture regime and degree of moisture and belonging to the level I soil
typological group (classifier is meant) (Figure 2). Three scenarios of the IGA method were
selected for analysis and mapping. In the case of the first scenario, average SOC values
were calculated for soil typological units of level II. In the case of the second scenario,
average SOC values were calculated by deconstructing soil typological unit indices of level
II into soil moisture regime types. Finally, for the third scenario, average SOC values were
calculated by additionally evaluating the degree of soil erosion. Based on these identifiers,
a statistical analysis of the SOC data was performed, during which the reliability and
statistical differences of the data were evaluated.

To compare the results of the study, the collected SOC data were used for SOC mapping
using different interpolation methods. The chosen interpolation methods included those
used in previous studies [2] and those that are easily applied within the ArcGIS spatial
analysis platform: IDW, kriging, LPI, RBF, and EBK.

IDW (inverse distance weighting) is a method of weighted distance average, the value
of which cannot exceed the highest or drop below the lowest input value [32].

Kriging is a method that assumes that the distance or direction between sample points
reflects a spatial correlation that can be used to explain variation in the surface. The kriging
tool fits a mathematical function to a specified number of points, or all points within a
specified radius, to determine the output value for each location. [33].

The LPI (local polynomial interpolation) method applies to fit many polynomials,
each within specified overlapping neighborhoods. The neighborhoods overlap, and the
value used for each prediction is the value of the fitted polynomial at the center of the
neighborhood [33].

The RBF (radial basis functions) method uses one of five basis functions to interpolate
a surface that passes through the input points exactly. RBFs are used to produce smooth
surfaces from a large number of data points [33].

EBK (empirical Bayesian kriging) is one of the geostatistical interpolation methods
that, by accounting for error, generates the underlying semivariogram. This approach
combines kriging with regression analysis to make predictions that are more accurate than
either regression or kriging can achieve on their own [33].

2.5. Statistical Analysis

Statistical analysis was performed using SAS Enterprise software, version 7.1 (SAS
Institute Inc., Cary, NC, USA). Differences among SOC samples were tested using two-
way analysis of variance (ANOVA). The probability level was set at 0.05 and grouped
according to letters by Duncan’s test. The statistical analysis was carried out according
to the following factors: factor A—soil organic carbon (SOC); factor B—first-level soil
typological groups, second-level soil typological groups, and soil moisture regime type.
Standard error (SE), minimum (Min), and maximum (Max) values were used to estimate
the deviations of soil parameters from the mean values.

The ANOVA analysis factors were selected to assess and compare the statistical
reliability of the values grouped by socio–mental factors (soils classified according to
conventional attributes, i.e., soil typological groups) and the values grouped according to
the natural zonal and azonic factors (moisture regime and degree of erosion integrated
into the moisture regime classes). The aim was to distinguish and assess the impact of
subjective (human reasoning) and objective (natural conditions) factors on the obtained
values and the statistical reliability of their correlations.

Calculated average values of SOC, according to moisture degree groups, were related
to soil contours. It was considered that the studied area contains eroded soils characterized
by different degrees of erosion (about 4% of the total contour area), and the SOC amount was
corrected in the contours of eroded soils (Figure 2). The correction is based on empirical data
showing that the amount of SOC in eroded soils cannot exceed 2% of SOC. The following
data were used for the cartographic basis of the map: National Land Service under the
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Ministry of Agriculture of the Republic of Lithuania: GDB10LT-static-4825 2021-02-24,
Dirv_DR10LT-1554 2021-02-24 [6,34].

3. Results
3.1. Comparison of the Application of Interpolation Methods

The comparative analysis of different interpolation methods (Figure 3, Table 4) showed
that there are no essential differences between these methods, and they all operate on the
principle of leveling values. None of the methods distinguished one dominant group of
SOC values, although from the data of the analyzed area discussed above (Tables S1 and 3),
it is demonstrated in Table 3 sandy loam texture class and Cambisols soil typological group
dominate in the studied area. Basically, the values of cells (10 × 10 m) are mostly concen-
trated in two SOC groups—high (1.741–2.330) corresponding ≈ one-third or 36.6–38.7%,
while the very high (2.331–5.000) group is even larger, i.e., 37.82–42.85% of the total area
(Table 4). It should also be noted that the results of the analyzed interpolation methods
differ slightly in their extremes, i.e., distribution of low/very low and extreme high/peat
soil SOC values.
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Table 4. Spatial distribution of soils in the Nevėžis Plain by SOC content using different interpolation
methods for calculating the average SOC value.

Soil Groups by, % IDW Kriging LPI RBF EBK

Qualitative
categories SOC % 1000 ha % 1000 ha % 1000 ha % 1000 ha % 1000 ha

Very low <0.580 0.01 0.046 - 0.35 1.521 0.00 0.000 -
Low 0.581–1.160 0.99 4.286 0.00 0.002 0.42 1.817 0.08 0.336 0.01 0.042

Moderate 1.161–1.740 13.48 58.077 9.14 39.391 7.9 34.048 7.29 31.405 7.74 33.334
High 1.741–2.330 37.03 159.538 38.35 165.209 36.97 159.289 38.70 166.737 36.60 157.677

Very high 2.331–5.000 37.82 162.949 39.38 169.655 42.12 181.469 42.85 184.618 42.09 181.324
Extremely high

(Muck soil) 5.000–13.000 9.49 40.897 13.13 56.566 11.60 49.986 10.94 47.135 13.52 58.231

Peat soil >13.001 1.17 5.029 - 0.63 2.693 0.14 0.592 0.05 0.215

Kriging, LPI, RBF, and EBK methods practically eliminate SOC values that are assigned
to the peat soil group (SOC > 13%). There are also very low and low values (<0.580−1.16%),
which should be associated with eroded soils. Only the interpolation performed by the
IDW method managed to show a relatively high percentage of SOC values: very low and
low—1.00%, peat soil—1.17%. Nevertheless, these values are still considerably lower than
the areas of eroded soil (1.65%) and peat soil (3.04%) isolated in this area.

3.2. Results of the Application of the Integrated Geographical Approach Method

In the conducted research, the problem of spatial discretization—the question of
the unevenness of the soil cover properties—is solved using a data layer of contours of
typological units of the soil cover. The average values typical for a specific soil typological
unit (according to genesis, type of irrigation, and erosion) were measured in field conditions
and calculated during statistical analysis.

Statistical analysis showed that the classification of mineral soils into specific typo-
logical groups (the assignment was made according to the Lithuanian soil classification
(LTDK-99) [4]) and evaluation in terms of SOC values show statistically significant differ-
ences between some soil groups. The order is as follows: for mineral soils: FL > CM ≈ LV
≈ PL ≈ PZ > AR > RG ≈ AB; for organic soils: HS > GL (Figure 4a). These differences
can be explained by their different origins. Albeluvisols (AB) formed in marginal moraine
deposits, Arenosols (AR) in sandy deposits, Cambisols (CM) in ground moraine deposits,
Fluvisols (FL) in alluvial sandy deposits, and Regosols (RG) formed due to severe erosion.
Luvisols (LV), Planosols (PL), and Podzols (PZ) also differ in origin. However, the results
of the study in terms of SOC content partially show statistically significant differences in
these soil groups.

However, we can see that more organic carbon is found in Cambisols, Fluvisols, Pod-
zols, and Gleysols (Figure 4a,b). Such results contradict the principle that more productive
soils must have more SOC because out of these groups, only Cambisols are productive,
while other groups in Lithuania are classified as less productive soils. Moreover, these
results can be explained by the fact that in these groups of mineral soils, in the analyzed
area (moraine loam plain), partly waterlogged gley soils predominate.

Of course, certain assumptions can be made regarding the differences in the average
SOC values of individual soil typological groups. Luvisols (LV), arenosols (AR), and
fluvisols (FL) in the studied area, according to the research data, are characterized by a
relatively lower amount of SOC. This is due to lower moisture content (LV) and sandy
texture (AR and FL). Cambisols (CM) are the most productive predominant soils of the
region. The analyzed SOC research data supports this. Relatively higher values of SOC
(Figure 4a,b) in cambisols are determined by the prevailing loamy texture and excess
moisture—gley or stagnic properties.
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Figure 4. Box plots illustrate the content of SOC in different groups of soils: (a)—mineral soils
and (b)—organomineral and organic soils. Box boundaries indicate the 25th and 75th percentiles
and whiskers below and above indicate minimum and maximum values, excluding outliers. RG—
Regosols, AB—Albeluvisols, FL—Fluvisols, LV—Luvisols, AR—Arenosols, CM—Cambisols, PL—
Planosols, PZ—Podzols, GL—Gleysols, HS—Histosols. a–d letters in the figures indicate a statistically
significant difference at p < 0.05.

The presence of outlier point values (Figure 4a,b) in the samples of soil groups is not
a measurement or experiment error. These SOC values indicate a large heterogeneity of
soil typological groups that can be related to moisture regime and degree of waterlogging,
erosion level, and other factors. This presupposes that the grouping and averaging of SOC
data by first-level soil typological groups is not correct in the context of SOC mapping.
Therefore, the simulation of the average SOC values was carried out by sequentially
applying the IGA method according to three different scenarios (Figure 2), the results of
which are presented in Table 5.

The analysis shows (Table 5) that when grouping SOC data according to different crite-
ria, different results are obtained. Very interesting results were obtained by grouping SOC
values according to soil typological units of classification level II (scenario I) (Figure 5a,b,
Table 3). In most cases, a statistically significant difference was found in the degree of
base saturation (dy, ha, eu, and ca) and the degree of waterlogging (non, gl) for the soil
typological units, which differ from each other according to the predominant soil-forming
process and soil-forming deposits (first-level soil group index).
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Figure 5. Soil organic carbon content according to soil typological units of level II: (a)—mineral
soils, (b)—organomineral and organic soils. Box boundaries indicate the 25th and 75th percentiles
and whiskers below and above indicate minimum and maximum values, excluding outliers. FL-
eu—Eutric Fluvisol, GL-eu—Eutric Gleysol, GL-sa—Sapric Gleysol, GL-ca—Calcaric Gleysol, GL-
dy—Dystric Gleysol, GL-mo—Mollic Gleysol, LV-gl—Gleyic Luvisol, LV-ca—Calcaric Luvisol, LV-
ha—Haplic Luvisol, PZ-gl—Gleyic Podzol, HS-sa—Sapric Histosol, PL-eu—Eutric Planosol, PL-
eu.gl—Gleyic Eutric Planosol, CM-gl—Gleyic Cambisol, CM-ca—Calcaric Cambisol, AR-gl—Gleyic
Arenosol, AR-ca—Calcaric Arenosol, AR-ha—Haplic Arenosol. a–h letters in the figures indicate a
statistically significant difference at p < 0.05.

Such results were obtained because the distribution of SOC in the soil is mostly
determined by natural (ecological) and human economic activity (socioeconomic) factors.
Meanwhile, the classification of soils into groups is considered a social/psychological
factor. Soils are grouped into groups according to agreed criteria that essentially summarize
the characteristics of soil formation. Characteristics and criteria such as humidity are
transferred to the second (e.g., CM-gl, AR-gl, etc.) and, in individual cases, to the third
level of classification (e.g., FL-eu.gl, PL-eu.gl) (Figure 5a,b).



Sustainability 2024, 16, 5157 13 of 20

Table 5. Spatial distribution of agricultural soils by SOC content using different scenarios of integrated
geographical approach (IGA) for calculating the average SOC value.

Soil Groups by % Scenario I * Scenario II * Scenario III *

Qualitative
categories SOC Humus % ha % ha % ha

Very low <0.580 <1.0 - - 0.47 1612.34
Low 0.581–1.160 1.1–2.0 - - 0.66 2242.96

Moderate 1.161–1.740 2.1–3.0 10.99 37,493.25 20.31 70,239.61 10.69 36,473.63
High 1.741–2.330 3.1–4.0 64.04 218,456.39 55.84 193,221.39 63.20 215,620.70

Very high 2.331–5.000 4.0–10.0 21.81 74,423.97 20.69 71,598.83 15.89 5420.40
Extreme high
(Muck soil) 5.000–13.000 10.0–22.0 0.08 285.84 0.08 285.84 6.01 20,505.78

Peat soil >13.001 >22.0 3.08 10,522.32 3.08 10,522.32 3.08 10,522.32

* Scenarios for calculation of SOC average values: I—according to the soil unit belonging to the group of soil
typological units of level II; II—according to the nature of the moisture regime; III—according to the nature of the
moisture regime and the degree of erosion.

Interpretation of these results is difficult. Although the results show (Figure 5a,b,
Table 3) that carbonate soils (-ca) have more SOC (1.587%) compared to non-carbonate soils
(-ha, -eu, and -dy) (1.229–1.290%) and statistically, in this case, the differences between
individual soil groups are reliable in most cases, there are exceptions. These are AR-eu,
AR-ha, LV-ha, PL-dy, FL-eu, LV-ca, and RG-ca. This shows that soil moisture, texture,
degree of erosion, and other factors play a significant role in determining the amount of
SOC in the soil. Basically, the available results illustrated in Figure 5 show that each soil
group (according to the second classification level) is unique. This presupposes that when
evaluating the amount of SOC in the soil cover according to this principle, each soil group
must be evaluated.

The grouping and averaging of SOC values according to the nature of the soil moisture
regime (scenario II) (Table 5 and Figure 6a,b) shows that the SOC values are redistributed
in relation to the moderate and high SOC content groups. The change occurs because indi-
vidual soil typological groups (due to the geographical peculiarities of their formation) are
characterized by a different ratio between automorphic and semi-hydromorphic moisture
regime subgroups, so the grouping of SOC data by soil typological units eliminates these
differences. Meanwhile, grouping according to the nature of the moisture regime highlights
one of the essential factors determining the amount of SOC—the type of moisture regime
and its amount in the soil. After adjusting the SOC values according to the soil erosion
factor (scenario III), groups of very low and low SOC values appear (Table 5). They are
formed at the expense of the moderate group of SOC values since the data of this group are
mainly formed by the data sample belonging to soils of the automorphic moisture regime.

The data analysis shows that the more objective SOC values for mapping and modeling
of SOC content in the soil cover are those collected and calculated based on primary
natural soil properties (such as moisture and soil erosion) (Figure 6a,b) rather than those
resulting from soil classification and generalization. The grouping of soils according to
the moisture regime and their erodibility to map the amount of SOC contained is less
affected by subjective factors than the typification by the genetic groups of soils (according
to national or international classifications). The validity of the choice of moisture regime
and soil erodibility criteria is also confirmed by studies conducted in Estonia [22]. The
same regularities of SOC distribution were found in these studies. SOC distribution is
ambiguously linked to soil moisture regime, moisture content, and soil erodibility. The
obtained regularities correspond to the results presented in this publication (Figure 6a,b).
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hydromorphic (gleyic, 50–100 cm), SH(g8)—semi-hydromorphic (gleyic, up to 50 cm), SH(g5)—semi-
hydromorphic (gley, 50–100 cm), SH(G)—semi-hydromorphic (gley, up to 50 cm), SH(Gfo)—semi-
hydromorphic (folic, gley, up to 50 cm), SH(Ghi)—semi-hydromorphic (histic, gley, up to 50 cm), H—
hydromorphic (Histosols), e1—weakly eroded, e2—moderately eroded, e3—severely eroded. a–e letters 
in the figures indicate a statistically significant difference at p<0.05. 
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Figure 6. Soil organic carbon content by type of soil moisture regime: (a)—types of moisture regime
leading to humification or mineralization of soil organic matter, (b)—types of moisture regime
leading to the process of peat formation in the soil. Box boundaries indicate the 25th and 75th
percentiles and whiskers below and above indicate minimum and maximum values, excluding
outliers. AU—automorphic (gleyic, deeper than 200 cm), AU(g0)—automorphic (gleyic, 100–200 cm),
SH(g4)—semi-hydromorphic (gleyic, 50–100 cm), SH(g8)—semi-hydromorphic (gleyic, up to 50 cm),
SH(g5)—semi-hydromorphic (gley, 50–100 cm), SH(G)—semi-hydromorphic (gley, up to 50 cm),
SH(Gfo)—semi-hydromorphic (folic, gley, up to 50 cm), SH(Ghi)—semi-hydromorphic (histic, gley, up
to 50 cm), H—hydromorphic (Histosols), e1—weakly eroded, e2—moderately eroded, e3—severely
eroded. a–e letters in the figures indicate a statistically significant difference at p < 0.05.

The performed analysis confirms the principle that SOC content increases with increas-
ing amounts of moisture in the soil (Figure 6a). Statistical data analysis shows that most
soil groups are statistically significantly different from each other according to the moisture
regime. It is important to note that significant differences were found between different
groups of minerals and partially waterlogged soils (AU(g0), SH(g4), SH(g8), SH(g5), and
SH(G). These are the predominant soils of the studied area. The obtained result allows us
to state that the moisture regime as an indicator can be important in calculating the average
SOC values in the soil. (See Figure 7).
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scenario (Created by second-level soil typological units (LTDK-99) contours of agricultural areas) [35].

Histic and mollic Gleysols (organomineral soils), which are characterized by moisture
regimes SH(Ghi) and SH(Gfo), and Histosols (organic soils), which are characterized by
the H moisture regime type, strongly stand out from the overall context of SOC accumu-
lations (Figure 6b). These soils develop as hydromorphic soils, so the amount of SOC
accumulated in them is strongly different from that of mineral soils (those reviewed above,
Figure 6a). Therefore, in essence, the problem of identifying typical SOC values suitable for
mapping lies only in mineral soils. The fundamental problem of this is the agrogenic trans-
formation (cultivation, melioration) of these soils, which is a factor leveling the differences
between them.

Based on the above-discussed results and stated assumptions, the map is drawn
according to scenario III (Table 5). In the agricultural areas of the Nevėžio plain, soils with
a high (1.741–2.330%) SOC content prevail (63.20%), and soils with a high and very high
(1.741–5.000%) SOC content make up 79.09% of all soils used for agricultural purposes.
According to the categories of humus content, these soils are classified as humus soils.
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Problem soils are those with a humus content of less than 2.0% or less than 1.16% organic
carbon. There are only 1.13% of such soils in the agricultural areas of the Nevėžis Plain.
This is associated with a small area of erosion, which is formed due to relief in the valley or
on the slopes of a gully. These areas are expanding more and more due to the increasing
intensity of agricultural activities and the expansion of their areas.

The total high humus content (as well as the amount of soil organic carbon) of the
soils of the studied area is determined by natural conditions. Approximately 95% of all
agricultural areas are covered by waterlogged soils, which are characterized by varying
degrees of gley or gleyic properties (from SH(g4) to H). The performed analysis showed that
the average amount of soil organic carbon in automorphic (AU) and semi-hydromorphic
(SH (g4)–SH (Ghi)) soils is statistically significantly different, and the lack of organic carbon
in the soil in areas of normal moisture soils is related with eroded soils. The most intensively
used and largest agricultural areas are in gleyic soils (with moisture regime SH(g4)-SH(g8))
and gley soils (with moisture regime SH (G)).

4. Discussion

One of the most important indicators of soil quality is the amount of soil organic
carbon, so much attention is paid to its mapping. Creating a detailed and objective map
is a complicated task since the soil cover is complex and its structure is determined not
only by natural but also by anthropogenic factors, which requires a large amount of data.
The spatial differentiation of the amount of SOC depends not only on the continuous
(most natural factors: mineral base, relief, moisture, vegetation cover) changing natural
environment but also on discrete natural (soil material and the related layout of wetlands)
and human economic activity measures and as a result emerging land use structure. The
various interpolation methods used to solve this problem (e.g., inverse distance weighted
(IDW), kriging, LPI, RBF, EBK technique) (Figure 3) do not give a sufficiently accurate result
because these methods cannot estimate the spatial unevenness (discretion) factor of the soil
cover properties of the mapped area and the structure of land features (non-mapped land:
forests, lakes, water reservoirs, built-up areas, etc.). A study conducted in Turkey [36] also
found that land use change has a major impact on SOC distribution. However, it was also
emphasized that various interpolation methods (block kriging, co-kriging, IDW) used in
SOC mapping do not fully reveal this, and the results are highly dependent on the quality
of the data sampling design and size.

Since the soil cover is formed by natural zonal pedogenetic processes that lead to
dominant mean SOC values and are transformed by azonal processes (both natural and
anthropogenic) that cause significant fluctuations in SOC values, the direct application of
interpolation methods has both advantages and disadvantages.

The best results with IDW are obtained when a dense sample is formed, taking into
account the local characteristics of soil cover. Optimal outcomes are achieved when the
sampling is directly linked to soil contours and their configuration. This aligns with the
theoretical concept of this method. If the number of input points is sparse or heterogeneous,
the results may not accurately represent the desired surface, leading to an underestimation
of localized extremes in SOC variation [32].

LPI is most effective when the samples are taken on a grid, and the data values within
the search neighborhood are normally distributed, as per [33].

Therefore, as can be seen from the results of the study, compared to the IDW method,
the local extreme values of the SOC are even more smoothed.

The RBF method produces good results for gently varying soil surfaces such as el-
evation. However, the techniques are inappropriate when large changes in the surface
values occur within short distances. This method is ideal for interpolating soil cover prop-
erties in lowland agricultural areas but not when the area includes zones with extreme
SOC values—high or low—formed by azonal soil-forming processes, such as peat soils or
eroded soils.
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The EBK method, which combines kriging with regression analysis, offers predictions
that are more accurate than regression or kriging alone [33]. It effectively integrates average
and extreme values, leading to a relative increase in the occurrence of extreme SOC values
in the area (Figure 8). This method also provides standard errors that are more accurate than
other kriging methods and allows for precise prediction of moderately fluctuating data.
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Figure 8 illustrates the distribution of statistical cells (10 × 10 m) (in percent) in the
analyzed territory. The comparative analysis of the results (Figure 8) shows that standard
interpolation methods are not suitable for SOC mapping on a regional scale when the
territory is characterized by different relief, texture, and moisture conditions. Although this
was not analyzed during the research, we would think that the application of different point
arrangement principles (regular and irregular) in mapping would also have a significant
impact on the results.

The soil cover is not a continuous object in terms of its properties (including SOC). It is
characterized by different dominant (average) SOC values in individual geomorphological
regions. Also, depending on the peculiarities of the relief, extreme values (eroded and/or
waterlogged surfaces) can be characteristic. SOC mapping needs to reflect all of this. When
evaluating the suitability of the methods, the following conditions of the territory were
considered: eroded soils—1.65%, peat soils—3.04%, dominant soil—Gleyic Cambisol (CM-
gl) (average SOC—2.15%)—42.27%, dominant soil moisture conditions—SH(g4-8) (average
SOC–1, 9–2.0%). Of the IGA scenarios, the third scenario met all the criteria (especially soil
erosion) and was therefore assessed.

The main weakness of interpolation methods in the context of our research is neigh-
boring data averaging to interpolate uncertain values. As a result, the “leveling” of the
analyzed area and the elimination of extreme SOC values will take place. From this
perspective, the map generated by the IDW method retained the most extreme values.
Nevertheless, the percentage of cells falling into the <0.580 and >13.001 ranges remained
very low. However, when using kriging or EBK methods in mapping, the values of these
intervals completely disappeared, or their percentage was close to zero.

Another important problem is that although soils with a high SOC content (1.741–2.330)
predominate in the studied area, two SOC groups (high (1.741–2.330) and very high
(2.331–5.000)) were dominant in the maps that were compiled using the interpolation
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method. The area of cells of the dominant group (high) decreased strongly, while the area
of cells of the non-dominant (very high, about 15%) group more than doubled. The SOC
group associated with very local areas (extremely high) also increased strongly, although
the SOC values of this group are attributed to very local areas such as Mollic Gleysols
(GL-mo) and Sapric Gleysols (GL-sa). They are characterized by a very localized, point-
like spread. This shows that interpolation methods, in addition to the existing samples,
without an additional specific layer of contours of “extemal” soils, cannot reliably model
SOC distribution.

5. Conclusions

The formed and analyzed sample of 313 research points allowed us to calculate
the average SOC concentration values of different soil typological units using different
approaches. Most of these values are statistically significantly different from each other,
so they can be considered representative of the soil cover of the moraine loam area of the
Nevėžis Plain.

It is appropriate to structure the SOC data set according to two main factors: moisture
regime and erosion, as these are the main factors determining the regularities of SOC
differentiation in terrane surfaces. The application of this principle is relevant in order the
SOC content in agricultural soils objectively to mapping.

The results show that the structuring of the SOC data set by soil classification units
is appropriate only if soil moisture and erosion factors are coded in the indices of soil
typological units.

The application of interpolation methods in SOC mapping can only be applied at a local
scale, for example, in the territory, which is homogeneous in terms of soil forming factors,
farming, and land use. The application of the interpolation methods (e.g., IDW, kriging)
in the territory, which is characterized by the diversity of the conditions of soil formation,
relief, and land use, is debatable because the localization and boundary discreteness of
organic and organomineral soils (histosols, gleysols), soil erosion area, and forests are not
evaluated. Therefore, the resulting image may be misleading.

The proposed IGA method is complex and knowledge-intensive, but its application
can help create a geographically and pedologically-based SOC map and be adaptable to
geographic conditions.

The results of the study suggest a recommendation that would increase the practical
feasibility of the IGA approach and the research. In order to apply the IGA approach in
SOC modeling, the following principles should be followed: the formation of objective,
differential-density spatial statistical samples for data collection; the formation of samples
according to soil moisture regime, degree of erosion, and land use; the development of
contouring principles and a criteria algorithm that allows correct spatial interpolation of
mean SOC values.
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determined SOC concentrations (%) under different soil types and moisture regimes.
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