Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Research Methods
2.3.1. Analysis of Land Use Change
2.3.2. Calculation of Land Use Carbon Emissions
2.3.3. Calculation of Ecosystem Carbon Stocks
2.3.4. Grey Prediction Model
2.3.5. PLUS Model
3. Results
3.1. Analysis of Spatial and Temporal Changes in Land Use
3.2. Spatial and Temporal Variations in Carbon Stocks and Emissions from Land Use
3.2.1. Changes in Ecosystem Carbon Stocks
3.2.2. Changes in Carbon Emissions from Land Use
3.3. PLUS Model Simulations
3.3.1. Land Use Scenario Modelling
3.3.2. Carbon Stock Modelling under Different LUCC Scenarios
3.3.3. Modelling of Carbon Emissions under Different Scenarios
4. Discussion
4.1. Future Carbon Emission and Carbon Stock Affected by LUCC
4.2. Optimization of Land Use Patterns and Policy Recommendations
4.3. Research Limitations and Prospects
5. Conclusions
- (1)
- From 2000 to 2020, the maximum reduction in cropland area reached 17,047.18 km2. There was an increase of 11,925.05 km2 in construction land. The ECS consistently experienced a reduction, decreasing by a total of 4881.13 × 104 t over the 20-year period. Forests are the dominant carbon sink. The carbon emissions have shown a year-on-year increase, rising significantly from 8772.04 × 104 t to 49,208.48 × 104 t. The carbon emission intensity of prefecture-level cities has been increasing year by year. Among them, cropland and construction land are the primary sources of carbon emissions.
- (2)
- From 2030 to 2060, this study simulated four possible scenarios. Among them, under the HDS scenario, construction land expanded by 21,758.77 km2 over 30 years, leading to the highest LUCE and ECS. The LCS scenario is the only scenario where carbon storage increases, mainly due to a significant increase in forests and water. Under the NS scenario, the growth rates of LUCE and ECS remain consistent with those from 2000 to 2020. Under the CPS scenario, carbon storage slowly decreased by a total of 2708.81 × 104 t, while carbon emissions increased by 15,162.37 × 104 t; the increase in emissions was only higher than that of the LCS scenario.
- (3)
- Shandong Province faces significant emission reduction pressure but also possesses considerable carbon sequestration potential. Against the backdrop of carbon neutrality, it is essential for Shandong Province to implement precise control over regional LUCC and optimize existing land policies. For instance, it is crucial to delineate ecological protection zones and development exclusion zones while ensuring the preservation of arable land. Furthermore, proactive measures should be taken to expand major ecological protection areas, particularly by transitioning the planning of urban built-up areas from rapid expansion to intensification. Moreover, promoting integrated urban–rural development is imperative.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Guo, C.-H.; Chen, X.-J.; Jia, L.-Q.; Guo, X.-N.; Chen, R.-S.; Zhang, M.-S.; Chen, Z.-Y.; Wang, H.-D. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects. China Geol. 2021, 4, 720–746. [Google Scholar] [CrossRef]
- Den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, J.G.; Roelfsema, M.; van Soest, H. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy 2016, 89, 224–236. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. China’s bold climate pledge earns praise—But is it feasible? Science 2020, 370, 17–18. [Google Scholar] [CrossRef]
- Tay, A. By the numbers: China’s net-zero ambitions. Nature 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Guo, H.; Swan, I.; Gao, P.; Yao, Q.; Li, H. Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat Int. 2023, 138, 102869. [Google Scholar] [CrossRef]
- Jones, C.D.; Askew, A.J. Emissions scenarios and targets aligned to meet climate goals. Nature 2023, 624, 46–48. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Chen, K.; Chen, Y. Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective. Sustainability 2023, 15, 7245. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Chen, R.; Mao, X.; Qi, X. The United States and China on the paths and policies to carbon neutrality. J. Environ. Manag. 2022, 320, 115785. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, P.; Cao, G.; He, D.; Cai, B. The Impact of Land-Use Structure on Carbon Emission in China. Sustainability 2023, 15, 2398. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, W.; Yang, C.; Wang, Q.; Yuan, R.; Wang, R.; Zhang, L.; Li, Z.; Luo, X. A Comparative Study of China’s Carbon Neutrality Policy and International Research Keywords under the Background of Decarbonization Plans in China. Sustainability 2023, 15, 13069. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, X.; Zhang, Z.; Pang, J. Spatiotemporal dynamics and driving factors of county-level carbon storage in the Loess Plateau: A case study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Ye, J.; Muroki, M.; Pereira, P. Ecosystem carbon sequestration service supports the Sustainable Development Goals progress. J. Environ. Manag. 2023, 330, 117155. [Google Scholar] [CrossRef] [PubMed]
- Ke, N.; Lu, X.; Zhang, X.; Kuang, B.; Zhang, Y. Urban land use carbon emission intensity in China under the “double carbon” targets: Spatiotemporal patterns and evolution trend. Environ. Sci. Pollut. Res. 2023, 30, 18213–18226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, C.-H.; Zhao, Y.-C.; Wang, Q.; Zhang, Q.-P. Spatial Correlations of Land Use Carbon Emissions in Shandong Peninsula Urban Agglomeration: A Perspective from City Level Using Remote Sensing Data. Remote Sens. 2023, 15, 1488. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y.; Wang, W. Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin. Land 2023, 12, 2160. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Hou, Y.; Chen, T.; Lu, Y.; Sun, H. Carbon Emission Patterns and Carbon Balance Zoning in Urban Territorial Spaces Based on Multisource Data: A Case Study of Suzhou City, China. ISPRS Int. J. Geo-Inf. 2023, 12, 385. [Google Scholar] [CrossRef]
- Zhong, J.-L.; Qi, W.; Dong, M.; Xu, M.-H.; Zhang, J.-Y.; Xu, Y.-X.; Zhou, Z.-J. Land Use Carbon Emission Measurement and Risk Zoning under the Background of the Carbon Peak: A Case Study of Shandong Province, China. Sustainability 2022, 14, 15130. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, C.; Wang, H.; Zhang, F.; Li, Z. Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China. Renew. Sustain. Energy Rev. 2024, 189, 113955. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Yang, H. Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target. Land Use Policy 2023, 135, 106959. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.; Wang, Z.; Ge, Y.; Islam, K.; Singh, R.P.; Niu, Z. Land Use and Land Cover Change Modeling and Future Potential Landscape Risk Assessment Using Markov-CA Model and Analytical Hierarchy Process. ISPRS Int. J. Geo-Inf. 2020, 9, 134. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Luo, G.; Yin, C.; Chen, X.; Xu, W.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, S.; Luo, P.; Zhang, S.; Wang, H.; Kong, D.; Zhang, Y.; Tang, Y.; Sun, S. A Multi-Scenario Prediction and Spatiotemporal Analysis of the Land Use and Carbon Storage Response in Shaanxi. Remote Sens. 2023, 15, 5036. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Dou, H.; Li, M.; Liu, S.; Cao, W. Optimizing the Land Use and Land Cover Pattern to Increase Its Contribution to Carbon Neutrality. Remote Sens. 2022, 14, 4751. [Google Scholar] [CrossRef]
- Ma, S.; He, L.; Fang, Y.; Liu, X.; Fan, Y.; Wang, S. Intensive land management through policy intervention and spatiotemporal optimization can achieve carbon neutrality in advance. J. Clean. Prod. 2023, 385, 135635. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chunyu, X.; Huang, F. Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018. Sustainability 2023, 15, 154. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Zhao, L.; Zhang, H.; Chen, M.-N.; Fang, R.-Y.; Yao, Y.; Zhang, Q.-P.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial correlation evolution and prediction scenario of land use carbon emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, L.; Wang, Y. Prediction of the Spatial Pattern of Carbon Emissions Based on Simulation of Land Use Change under Different Scenarios. Land 2022, 11, 1788. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sens. 2023, 15, 4645. [Google Scholar] [CrossRef]
- Noon, M.L.; Goldstein, A.; Ledezma, J.C.; Roehrdanz, P.R.; Cook-Patton, S.C.; Spawn-Lee, S.A.; Wright, T.M.; Gonzalez-Roglich, M.; Hole, D.G.; Rockström, J. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 2022, 5, 37–46. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, D.; Liu, Y. Spatio-temporal variation of ecosystem services and the response to urbanization: Evidence based on Shandong province of China. Ecol. Indic. 2023, 151, 110333. [Google Scholar] [CrossRef]
- Lu, L.; Xue, Q.; Zhang, X.; Qin, C.; Jia, L. Spatiotemporal Variation and Quantitative Attribution of Carbon Storage Based on Multiple Satellite Data and a Coupled Model for Jinan City, China. Remote Sens. 2023, 15, 4472. [Google Scholar] [CrossRef]
- Tien, T.-L. A research on the grey prediction model GM(1, n). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Wang, H.; Che, Y.; Wang, J.; Liao, Y.; Lv, S. High-carbon expansion or low-carbon intensive and mixed land-use? Recent observations from megacities in developing countries: A case study of Shanghai, China. J. Environ. Manag. 2023, 348, 119294. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-T.; Zhai, P.-M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Change Res. 2021, 12, 281–286. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Yu, R.; Cheng, H.; Ye, Y.; Wang, Q.; Fan, S.; Li, T.; Wang, C.; Su, Y.; Zhang, X. Optimization of the Territorial Spatial Patterns Based on MOP and PLUS Models: A Case Study from Hefei City, China. Int. J. Environ. Res. Public Health 2023, 20, 1804. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wei, X.; Liu, W.; Zhang, F.; Li, Z. Spatial and temporal analysis of carbon sources and sinks through land use/cover changes in the Beijing-Tianjin-Hebei urban agglomeration region. Phys. Chem. Earth Parts A/B/C 2019, 110, 61–70. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Liu, H.; Nie, J.; Cai, B.; Cao, L.; Wu, P.; Pang, L.; Wang, X. CO2 emissions patterns of 26 cities in the Yangtze River Delta in 2015: Evidence and implications. Environ. Pollut. 2019, 252, 1678–1686. [Google Scholar] [CrossRef]
- Yu, G.; Liu, T.; Wang, Q.; Li, T.; Li, X.; Song, G.; Feng, Y. Impact of Land Use/Land Cover Change on Ecological Quality during Urbanization in the Lower Yellow River Basin: A Case Study of Jinan City. Remote Sens. 2022, 14, 6273. [Google Scholar] [CrossRef]
- Williams, K. Urban intensification policies in England: Problems and contradictions. Land Use Policy 1999, 16, 167–178. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, S.P. Industry 4.0 Model for circular economy and cleaner production. J. Clean. Prod. 2020, 277, 123853. [Google Scholar] [CrossRef]
- Ren, F.; Misselbrook, T.; Sun, N.; Zhang, X.; Zhang, S.; Jiao, J.; Xu, M.; Wu, L. Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies. Sci. Total Environ. 2021, 767, 144350. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Qian, C. Analysis of the implementation effects of ecological restoration projects based on carbon storage and eco-environmental quality: A case study of the Yellow River Delta, China. J. Environ. Manag. 2023, 340, 117929. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, M.R.; Mohanta, A.; Mohapatra, U.; Mohanty, R.C.; Sahu, S.C. Carbon stock assessment and its relation with tree biodiversity in Tropical Moist Deciduous Forest of Similipal Biosphere Reserve, Odisha, India. Trop. Ecol. 2020, 61, 497–508. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Huang, L.; Liu, J.; Zhao, C. Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services. Sustainability 2021, 13, 1668. [Google Scholar] [CrossRef]
- Salunkhe, O.; Khare, P.; Kumari, R.; Khan, M. A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol. Process. 2018, 7, 17. [Google Scholar] [CrossRef]
- Ying, Z.; Xiaoge, L.; Yali, W. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization. J. Beijing For. Univ. 2022, 44, 38–47. [Google Scholar] [CrossRef]
Data | Attribute | Year(s) | Spatial Resolution | Source |
---|---|---|---|---|
LUCC data | 2000, 2010, 2020 | 30 m | https://zenodo.org/records/5816591 (accessed on 15 November 2023) | |
Climate | Average annual temperature | 2020 | 1 km | https://cds.climate.copernicus.eu/ (accessed on 7 November 2023) |
Average annual precipitation | ||||
Terrain | SRTM-DEM | 2020 | 30 m | http://srtm.csi.cgiar.org/srtmdata/ (accessed on 15 December 2023) |
Slope | ||||
Aspect | ||||
Distance | Highway distribution | 2020 | data data | https://www.openstreetmap.org/ (accessed on 7 December 2023) |
Railway distribution | ||||
Mainway distribution | ||||
River distribution | ||||
Social and economic | GDP | 2020 | 1 km | https://www.resdc.cn/ (accessed on 11 December 2023) |
Population | https://landscan.ornl.gov/ (accessed on 11 December 2023) |
Types | Carbon Emission Coefficient (kg·m−2·a−1) | Source |
---|---|---|
Cropland | 0.0422 | [33] |
Forest | −0.0644 | [16] |
Grassland | −0.0021 | [34] |
Water | −0.0253 | [16] |
Barren land | −0.0005 | [34] |
Types | Standard Coal Coefficient (kgce·kg−1) | Carbon Emission Coefficient (kg·kgce−1) |
---|---|---|
Coal | 0.7143 | 0.7559 |
Coke | 0.9714 | 0.8550 |
Crude oil | 1.4286 | 0.5857 |
Gasoline | 1.4714 | 0.5538 |
Kerosene | 1.4714 | 0.5714 |
Diesel oil | 1.4571 | 0.5921 |
Fuel oil | 1.4286 | 0.6185 |
Electrical power | 0.1229 | 0.7935 |
Natural gas | 1.2143 | 0.4483 |
Types | C-Above | C-Below | C-Soil | C-Dead |
---|---|---|---|---|
Cropland | 33.43 | 3.34 | 107.31 | 0.00 |
Forest | 101.49 | 26.61 | 146.41 | 13.49 |
Grassland | 5.27 | 21.70 | 67.71 | 1.59 |
Water | 10.28 | 0.00 | 19.82 | 0.00 |
Barren land | 40.84 | 63.73 | 26.14 | 0.00 |
Construction land | 34.15 | 20.24 | 48.71 | 0.00 |
Contribution | Cropland | Forest | Grassland | Water | Barren Land | Construction Land |
---|---|---|---|---|---|---|
Aspect | 0.034 | 0.058 | 0.036 | 0.029 | 0.067 | 0.036 |
DEM | 0.123 | 0.197 | 0.235 | 0.123 | 0.062 | 0.134 |
Slope | 0.120 | 0.170 | 0.107 | 0.077 | 0.056 | 0.132 |
GDP | 0.116 | 0.059 | 0.075 | 0.168 | 0.096 | 0.133 |
Pop | 0.067 | 0.072 | 0.084 | 0.179 | 0.317 | 0.129 |
Prec | 0.090 | 0.095 | 0.066 | 0.078 | 0.088 | 0.056 |
Temp | 0.198 | 0.127 | 0.091 | 0.080 | 0.079 | 0.134 |
River | 0.072 | 0.061 | 0.082 | 0.064 | 0.034 | 0.069 |
Railway | 0.052 | 0.044 | 0.072 | 0.055 | 0.052 | 0.037 |
Highway | 0.040 | 0.040 | 0.060 | 0.051 | 0.051 | 0.040 |
Nationalway | 0.042 | 0.039 | 0.054 | 0.045 | 0.060 | 0.047 |
Mainway | 0.045 | 0.037 | 0.038 | 0.051 | 0.037 | 0.054 |
Type | Cropland | Forest | Grassland | Water | Barren Land | Construction Land | Total |
---|---|---|---|---|---|---|---|
Cropland | 103,554.57 | 1259.28 | 587.10 | 1330.28 | 20.78 | 11,114.00 | 117,866.01 |
Forest | 689.83 | 5955.26 | 48.20 | 0.76 | 0.11 | 63.75 | 6757.91 |
Grassland | 1229.14 | 607.66 | 1562.24 | 39.27 | 11.22 | 219.12 | 3668.65 |
Water | 316.87 | 1.56 | 0.45 | 2345.56 | 18.58 | 399.65 | 3082.67 |
Barren land | 106.10 | 0.00 | 1.10 | 1031.38 | 224.15 | 772.47 | 2135.20 |
Construction land | 131.18 | 0.37 | 0.08 | 505.14 | 7.17 | 22,214.44 | 22,858.38 |
Total | 106,027.69 | 7824.13 | 2199.17 | 5252.39 | 282.01 | 34,783.43 | 156,368.82 |
Types | 2000–2010 | 2010–2020 | 2000–2020 | |||
---|---|---|---|---|---|---|
ECS | Rate | ECS | Rate | ECS | Rate | |
Cropland | −8365.95 | −4.93% | −8681.23 | −5.38% | −17,047.18 | −10.04% |
Forest | −311.01 | −1.60% | 3381.72 | 17.66% | 3070.71 | 15.78% |
Grassland | −609.12 | −17.30% | −801.58 | −27.52% | −1410.70 | −40.06% |
Water | 482.50 | 52.17% | 168.42 | 11.97% | 650.92 | 70.38% |
Barren land | −480.97 | −17.20% | −1946.71 | −84.05% | −2427.68 | −86.79% |
Construction land | 5470.34 | 23.23% | 6812.46 | 23.48% | 12,282.80 | 52.17% |
Total | −3814.22 | −1.73% | −1066.91 | −0.49% | −4881.13 | −2.22% |
Types | 2000 | 2010 | 2020 |
---|---|---|---|
Cropland | 497.39 | 472.88 | 447.44 |
Forest | −43.52 | −42.83 | −50.39 |
Grassland | −0.77 | −0.64 | −0.46 |
Water | −7.80 | −11.87 | −13.29 |
Barren land | −0.11 | −0.09 | −0.01 |
Construction land | 8326.84 | 33,927.99 | 48,825.19 |
Total | 8772.04 | 34,345.45 | 49,208.48 |
Type | Cropland | Forest | Grassland | Water | Barren Land | Construction Land |
---|---|---|---|---|---|---|
NS2030 | 100,285.03 | 8727.00 | 1718.12 | 5054.62 | 94.00 | 40,490.05 |
NS2060 | 84,989.78 | 10,405.19 | 1126.35 | 4553.71 | 59.06 | 55,234.73 |
CPS2030 | 104,577.00 | 7788.05 | 1214.17 | 4425.58 | 88.99 | 38,275.02 |
CPS2060 | 97,950.45 | 7248.27 | 511.22 | 3036.61 | 41.00 | 47,581.27 |
HDS2030 | 97,597.69 | 8679.02 | 1688.01 | 4696.84 | 79.52 | 43,627.73 |
HDS2060 | 76,229.38 | 10,066.94 | 1030.38 | 3610.45 | 45.18 | 65,386.50 |
LCS2030 | 101,257.92 | 9542.60 | 2146.02 | 5803.56 | 71.57 | 37,547.15 |
LCS2060 | 89,158.19 | 13,671.16 | 1933.00 | 6620.90 | 54.93 | 44,930.64 |
Scene | 2020–2030 | 2030–2060 | 2020–2060 | |||
---|---|---|---|---|---|---|
ECS | Rate | ECS | Rate | ECS | Rate | |
NS | −558.78 | −0.26% | −2769.10 | −1.29% | −3327.87 | −1.55% |
CPS | −43.04 | −0.02% | −2665.77 | −1.24% | −2708.81 | −1.26% |
HDS | −1490.11 | −0.69% | −5363.88 | −2.51% | −6853.99 | −3.19% |
LCS | 766.01 | 0.36% | 2090.55 | 0.97% | 2856.56 | 1.33% |
Scene | 2020–2030 | 2030–2060 | 2020–2060 | |||
---|---|---|---|---|---|---|
LUCE | Rate | LUCE | Rate | LUCE | Rate | |
NS | 17,205.05 | 34.96% | 23,982.04 | 36.11% | 41,187.10 | 83.70% |
CPS | 13,617.08 | 27.67% | 15,162.37 | 24.13% | 28,779.45 | 58.48% |
HDS | 22,314.08 | 45.35% | 35,403.29 | 49.50% | 57,717.36 | 117.29% |
LCS | 12,400.56 | 25.20% | 11,966.52 | 19.42% | 24,367.08 | 49.52% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.-Y.; Xu, Y.-F.; Sun, Q.; Liu, W.-J.; Qi, W. Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model. Sustainability 2024, 16, 5180. https://doi.org/10.3390/su16125180
Ma X-Y, Xu Y-F, Sun Q, Liu W-J, Qi W. Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model. Sustainability. 2024; 16(12):5180. https://doi.org/10.3390/su16125180
Chicago/Turabian StyleMa, Xiang-Yi, Yi-Fan Xu, Qian Sun, Wen-Jun Liu, and Wei Qi. 2024. "Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model" Sustainability 16, no. 12: 5180. https://doi.org/10.3390/su16125180
APA StyleMa, X. -Y., Xu, Y. -F., Sun, Q., Liu, W. -J., & Qi, W. (2024). Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model. Sustainability, 16(12), 5180. https://doi.org/10.3390/su16125180