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Abstract: Land use profoundly impacts the sustainable development of the ecological environment.
Optimizing land use patterns is a vital approach to mitigate climate change and achieve carbon
neutrality. Using Shandong Province as a case study, this research evaluates the impacts of land use
and land cover change (LUCC) on regional carbon storage and emissions. Employing a coupled PLUS–
InVEST–GM(1,1) model, simulations were conducted for scenarios including the natural scenario
(NS), cropland protection scenario (CPS), high-speed development scenario (HDS), and low-carbon
scenario (LCS), to assess LUCC and changes in carbon storage and emissions from 2030 to 2060 under
these scenarios. The findings indicate that due to the expansion of construction land and significant
declines in arable and grassland areas, carbon emissions increased by 40,436.44 × 104 t over a 20-year
period, while carbon storage decreased by 4881.13 × 104 t. Notably, forests contributed the most to
carbon sequestration, while construction land emerged as the primary source of carbon emissions.
Simulating four scenarios demonstrates that measures such as protecting cropland, expanding forest,
grassland, and aquatic areas, controlling construction land expansion, and promoting intensive
development positively affect emission reductions and carbon sequestration in Shandong. These
findings underscore the importance of rational planning of land use patterns, which can enhance
contributions to carbon neutrality by harmonizing the relationships among cropland protection,
ecological conservation, and economic development.

Keywords: carbon neutrality; PLUS model; LUCC; land management; scenario prediction

1. Introduction

The continuous increase in carbon dioxide is a significant factor contributing to global
climate change. In order to mitigate the ongoing global warming, rising sea levels, and
occurrences of extreme weather events, nations worldwide need to take action to ad-
dress these challenges [1]. Since the signing of the Paris Agreement in 2015, China has
actively shouldered the responsibility of global climate governance. It has proposed to
peak carbon emissions by 2030 and achieve carbon neutrality by 2060. China’s climate
policies offer significant potential for realizing the emission reduction targets outlined in
the Paris Agreement [2]. The Climate Action Tracker (CAT) believes that China achieving
carbon neutrality will provide the greatest contribution to global climate change mitigation
efforts [3–5].

Land use patterns are among the most significant ways humans affect the climate.
Factors such as economic development and urban expansion have led to the conversion of
land that provides ecological functions into construction land. These changes have resulted
in issues such as rising temperatures, air pollution, and flood disasters [6]. The Intergov-
ernmental Panel on Climate Change (IPCC) believes that effective land management can
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facilitate carbon neutrality and mitigate global climate change [7]. As a country with vast
land resources, China’s scientific approach to land use management is crucial for achieving
global emission reduction and carbon sequestration goals [8].

In order to achieve the goals of the carbon neutrality strategy and promote the develop-
ment of low-carbon land use, scholars have conducted corresponding research focusing on
the impact of LUCC on ecosystem carbon cycling and the analysis of driving factors [9–11].
Lai et al. [12] utilized a LUCC dataset to enable the first assessment of how land manage-
ment and LUCC changes in China affect ecosystem carbon stocks (ECS). They highlighted
the necessity to optimize land use structures to enhance the carbon sequestration capacity.
Wang et al. [13] utilized the InVEST model and the logarithmic mean Divisia index (LMDI)
model to investigate the driving factors of ECS changes in the Loess Plateau region. They
revealed the impacts of both natural and social factors on LUCC and carbon storage varia-
tions. Yin et al. [14], building upon their analysis of the impacts of LUCC on ECS, conducted
an assessment of how ECS contributes to social sustainable development using an indicator
system. They emphasized the contribution of improvements in ecosystem carbon sink
services (ECSS) to achieving carbon neutrality. Regarding the research on land use carbon
emissions (LUCE), scholars have focused on the analysis of carbon emission intensity and
the achievement of carbon peak targets [15]. Zhao et al. [16] conducted calculations on the
spatiotemporal distribution of carbon emissions in the Shandong Peninsula urban agglom-
eration based on LUCC data and characterized the spatial autocorrelation of LUCE at the
urban level using Moran’s I index. Li et al. [17] utilized a carbon emission model to analyze
the intensity zoning of LUCE in Tianjin City, uncovering a positive correlation between
the expansion of construction land and the variation in LUCE intensity. Zhang et al. [18]
conducted carbon emission accounting at the township level to explore the spatial patterns
of carbon emissions at a micro-scale level, aiming to assist cities in implementing refined
governance. Overall, current research mainly focuses on improving ECS through land use
or calculating carbon emission intensity at spatial scales. Few studies have quantitatively
analyzed both. In fact, the impact of land use change on carbon stock and carbon emission
is simultaneous, and their changes are correlated. Therefore, it is necessary to unify the
calculation of LUCE and ECS to evaluate the impact of LUCC on ecosystem carbon cycling.
Additionally, due to the inability to directly obtain future regional LUCE data, most studies
use historical average values or predictions through exponential smoothing under natural
contexts, with fewer studies combining LUCE mathematical prediction models with LUCC
simulations [19]. This study couples the GM(1,1) with traditional carbon emission models,
effectively improving the accuracy of future carbon emission forecasts.

Future land use changes will have a significant impact on the ecosystem’s carbon
cycle [20]. With the development of LUCC prediction research, exploring the changes in
carbon storage and carbon emissions under future scenarios to seek reasonable land use
patterns has become a new research focus [21]. Currently, commonly used models for
predicting future land use include the CA-Markov model [22,23], the FLUS model [24], the
CLUE-S model [25], and the PLUS model developed by Liang et al. [26]. Some scholars
also recognize that, under the influence of various uncertainties in the future, different
scenarios of land use may emerge. Wei et al. [27] set up a rural revitalization scenario (RPS)
and water–energy–food scenario (WEF) to predict future ECS. Zhang et al. [28] conducted
research on the future changes in LUCE under scenarios of farmland protection and low-
carbon development. Wang et al. [29] combined the shared socioeconomic pathways and
representative concentration pathways (SSP-RCP) to further enhance the feasibility of
rational land use management and control. Overall, current research tends to focus more on
evaluating LUCC under constant driving factors, overlooking the influence of policy needs
and the characteristics of land use in the study area on future LUCC changes [30]. Compared
to traditional prediction models, the PLUS model used in this study provides higher
LUCC simulation accuracy at the Shandong Province scale. By adjusting the weights and
parameters of the driving factors, it can better adapt to the land use change characteristics
of different regions and evaluate land use changes under various scenarios.
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This study aims to predict the future LUCC in Shandong Province under different
policy scenarios, optimizing land use patterns to enhance the contribution towards the
regional carbon neutrality goal. Firstly, an analysis of LUCC from 2000 to 2020 in the study
area is conducted using a land use transfer matrix, and the spatiotemporal variations of
LUCE and ECS are calculated. Subsequently, the PLUS model is employed to forecast LUCC
under four scenarios (NS, CPS, HDS, and LCS) for the years 2030 and 2060. Additionally, the
GM(1,1) and InVEST models are utilized to evaluate changes in LUCE and ECS for the two
periods. Finally, by integrating the research findings with carbon neutrality planning, as
well as development plans and policy directions of Shandong Province, recommendations
are provided for optimizing land use patterns.

2. Materials and Methods
2.1. Study Area

Shandong Province (114◦50′19′′–122◦42′28′′ E, 34◦22′15′′–38◦23′23′′ N) is located in the
eastern coastal region of China (Figure 1). The terrain is characterized by plains and hills,
with mountainous areas protruding in the central and southern parts, low-lying flatlands
in the southwest and northwest, and undulating hills in the eastern Shandong Peninsula.
The western and northern parts belong to the North China Plain. The province spans the
Yellow, Huai, and Hai river systems. The climate is classified as a warm temperate monsoon
climate, with annual average temperatures ranging from 11 to 13 ◦C and average annual
precipitation ranging from 550 to 950 mm. As of 2023, the total population of Shandong
Province reached 102 million, ranking second in the nation, and its GDP reached 9.2069 tril-
lion yuan, ranking third nationwide. As a major province in heavy industries, Shandong’s
carbon dioxide emissions rank first in the country. The presence of high-energy-consuming
industries and the traditional energy structure increase the difficulty of achieving carbon
neutrality. With the implementation of the Shandong Province Spatial Planning (2021–
2035), how to achieve the strategic goal of carbon neutrality through optimizing land
use structures is an urgent issue for Shandong Province. Utilizing multi-scenario simula-
tions to predict carbon emissions and carbon storage under different scenarios is of great
significance for low-carbon land use management and sustainable development.

Figure 1. Location of study area. (a) Location of the study area in China; (b) elevation of the study area.

2.2. Data Sources and Processing

The land cover data from 2000 to 2020 were sourced from the 30 m resolution annual
China Land Cover Dataset (CLCD) based on Landsat, produced by Wuhan University on
the Google Earth Engine (GEE) platform. This study selected the CLCD data from the
years 2000, 2010, and 2020 as the foundational data for evaluating carbon stocks, carbon
emissions, and future LUCC dynamic changes (Table 1). Considering that LUCC changes
result from the interaction of multiple driving factors, in this study, based on the work of
Liang et al. [26], 12 significant factors influencing LUCC were selected from among climate
and environmental drivers as well as socioeconomic drivers [31]. The annual average
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precipitation and temperature data were sourced from the European Centre for Medium-
Range Weather Forecasts (ECMWF). The slope and aspect were derived from the DEM
data of NASA’s 30 m SRTM dataset. Accessibility data were obtained from Open Street
Map and spatially analyzed using Euclidean distance calculations. GDP data were sourced
from the Resource and Environmental Science Data Center of the Chinese Academy of
Sciences. Population data were obtained from the LandScan data of the Oak Ridge National
Laboratory in the United States. Energy consumption data for the study area were sourced
from the China Energy Statistical Yearbook. After preprocessing the data, the coordinate
systems were unified, and the raster data spatial resolution was uniformly resampled to 100 m.

Table 1. Data sources and specifications.

Data Attribute Year(s) Spatial
Resolution Source

LUCC data 2000, 2010, 2020 30 m
https://zenodo.org/records/5816591

(accessed on 15 November 2023)

Climate
Average annual temperature

2020 1 km
https://cds.climate.copernicus.eu/

(accessed on 7 November 2023)Average annual precipitation

Terrain

SRTM-DEM

2020 30 m
http://srtm.csi.cgiar.org/srtmdata/

(accessed on 15 December 2023)Slope

Aspect

Distance

Highway distribution

2020 data
data

https://www.openstreetmap.org/
(accessed on 7 December 2023)

Railway distribution

Mainway distribution

River distribution

Social and economic
GDP

2020 1 km

https://www.resdc.cn/
(accessed on 11 December 2023)

Population https://landscan.ornl.gov/
(accessed on 11 December 2023)

2.3. Research Methods

The research framework of this study is illustrated in Figure 2 below. Firstly, based on
the LUCC data from 2000 to 2020, we analyzed the land use changes in Shandong Province
using the land use transfer matrix (LUTM). Then, we conducted spatial and temporal
analyses of LUCE and ECS for this time series separately using carbon emission models
and the InVEST model. We incorporated driving factors and the LUCC data into the PLUS
model to simulate land use for the years 2030 and 2060 under four scenarios and evaluated
LUCE and ECS under different scenarios, wherein the future carbon emission coefficient
of construction land is estimated using the grey prediction model GM(1,1). Finally, the
simulation results under various scenarios are analyzed. Guided by carbon neutrality
goals and benchmarking against Shandong Province’s policies on cropland protection and
ecological conservation, regional land use and management are optimized.

2.3.1. Analysis of Land Use Change

The land use transition matrix (LUTM) is an application of Markov models in the
context of land use change. It quantitatively analyzes the transition states and transition
rates between different land use types, aiming to characterize the quantitative changes in
the conversion of various land use types. The expression is as follows [32]:

Sij=

S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 (1)

https://zenodo.org/records/5816591
https://cds.climate.copernicus.eu/
http://srtm.csi.cgiar.org/srtmdata/
https://www.openstreetmap.org/
https://www.resdc.cn/
https://landscan.ornl.gov/
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where Sij means the land use transition matrix; i means the area of land use types at the
beginning of the study period; j means the area of land use types at the end of the study
period; and n is the number of land use types.
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2.3.2. Calculation of Land Use Carbon Emissions

The carbon emissions resulting from land use are defined as direct carbon emissions
and indirect carbon emissions [29]. Direct carbon emissions primarily stem from agricul-
tural production, biological respiration, and soil organic matter decomposition activities
occurring in cropland, forest, grassland, water, and barren land. Direct carbon emissions
can be directly calculated using carbon emission coefficients. The calculation formula is as
follows [17]:

Ci = ∑ Si × θi (2)

where Ci is the total direct carbon emissions; Si is the area of land use types; and θi is the
carbon emission factor for land use types. Based on previous studies, we determined the
direct carbon emission factors for different site types (Table 2).

Table 2. Carbon emission factors for land use types.

Types Carbon Emission Coefficient
(kg·m−2·a−1) Source

Cropland 0.0422 [33]
Forest −0.0644 [16]

Grassland −0.0021 [34]
Water −0.0253 [16]

Barren land −0.0005 [34]
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Indirect carbon emissions refer to the carbon emissions generated by human activities
in construction land. Due to the uncertainty of human activities, indirect carbon emissions
cannot be characterized by a uniform carbon emission coefficient. The combustion of fossil
fuels is the primary source of carbon emissions in construction land. Therefore, we calculate
the carbon emissions from construction land based on fossil fuel consumption data [35].
The calculation formula is as follows:

E = ∑ ei = ∑ Ei × Ai × Pi (3)

where E means the total carbon emissions from construction land; ei means total fossil
energy consumption; Ei means the carbon emissions from a single fossil energy source;
Ai means the standard coal coefficient for type i of fossil fuel; and Pi means the carbon
emission coefficient for type i of fossil fuel.

This study identified the primary types of energy consumption in the research area
based on the Statistical Yearbook of Shandong Province. These include coal, coke, crude
oil, gasoline, kerosene, diesel oil, fuel oil, natural gas, and electricity, totaling nine types of
energy. Standard coal coefficients were obtained from the China Energy Statistical Yearbook
(2022), and carbon emission coefficients for various types of energy were obtained from the
IPCC National Greenhouse Gas Inventories Program (NGGIP) guidelines (Table 3).

Table 3. Standard coal coefficient and carbon emission coefficient for fossil energy.

Types Standard Coal Coefficient
(kgce·kg−1)

Carbon Emission Coefficient
(kg·kgce−1)

Coal 0.7143 0.7559
Coke 0.9714 0.8550

Crude oil 1.4286 0.5857
Gasoline 1.4714 0.5538
Kerosene 1.4714 0.5714
Diesel oil 1.4571 0.5921
Fuel oil 1.4286 0.6185

Electrical power 0.1229 0.7935
Natural gas 1.2143 0.4483

2.3.3. Calculation of Ecosystem Carbon Stocks

In this study, ECS is derived from the InVEST model’s carbon module. This model
categorizes each land use type into four fundamental carbon pools: aboveground carbon
storage, belowground carbon storage, soil organic carbon storage, and dead organic carbon
storage [36]. The specific formula for calculating carbon stocks is as follows:

C = ∑n=6
i=1 S(Ca + Cb + Cs + Cd) (4)

where C is the total carbon stock; n is the number of land use types; i is an individ-
ual land use type; S is the area of the land use type; Ca is aboveground carbon stock;
Cb is belowground carbon stock; Cs is soil organic carbon stock; and Cd is dead organic
carbon stock.

The carbon density data for this study, which are shown in Table 4, were obtained
by selecting regions with the same or similar geographical location to Shandong Province
as references. Relevant research findings in these areas were reviewed, and the carbon
density was adjusted using climate factors such as annual precipitation and average annual
temperature [19,37–39].
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Table 4. Carbon intensity of land use types.

Types C-Above C-Below C-Soil C-Dead

Cropland 33.43 3.34 107.31 0.00
Forest 101.49 26.61 146.41 13.49

Grassland 5.27 21.70 67.71 1.59
Water 10.28 0.00 19.82 0.00

Barren land 40.84 63.73 26.14 0.00
Construction land 34.15 20.24 48.71 0.00

2.3.4. Grey Prediction Model

The grey prediction model GM(1,1) is a method used for forecasting systems containing
uncertain factors. Due to the unavailability of carbon emission coefficients for construction
land in 2030 and 2060, this study relies on carbon emission data from 2000 to 2020. The
GM(1,1) model is employed to predict carbon emissions for 2030, serving as future carbon
emission coefficients for construction land [40]. The formula is as follows:

The original series is first accumulated, where the original series is expressed as follows:

X(0) =
[
X(0)(1), X(0)(2), X(0)(3), . . . X(0)(n)

]
(5)

A single summation of this original series yields the result:

X(1) =
[
X(0)(1), X(1)(2), X(1)(3), . . . X(1)(n)

]
(6)

Derive the formula:

X(1)(k) = ∑k
i=1 X(0)(i) k = 1, 2, 3, . . . , n (7)

Obtain the immediate neighborhood mean generating sequence:

z(1) =
[
z(1)(2), z(1)(3), z(1)(4), . . . z(1)(n)

]
(8)

Derive the formula:

z(1)(k) =
1
2
(X(1)(k) + X(1)(k − 1)) (9)

Construct the GM(1,1) basic formula:

b = X(0)(k) + az(1)(k) (10)

where, a is the development coefficient; and b is the grey action quantity.
To construct the grey prediction matrix, use B and vector Y:

B =


−Z(1)(2) 1
−Z(1)(3) 1

...
...

−Z(1)(n) 1

 (11)

Y =


X(0)(2)
X(0)(3)

...
X(0)(n)

 (12)

We assume the following:
â = [a, b]T (13)
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The formula obtained for grey differential equations using the method of least squares
is as follows:

â = [a, b]T =
(

BTB
)−1

BTY (14)

The whitening equation for the GM(1,1) differential equation can be expressed as follows:

b =
dx(1)

dt
+ ax(1) (15)

where x is the state variable; t is the time; a is the development coefficient; and b is the grey
action quantity.

The time response function of the whitening equation is as follows:

x̂(1)(k + 1) = (X(1)(0)− b
a
)e−ak +

b
a

(16)

where, K = 0, 1, 2 . . ., n − 1.
The formula for restoring the predicted values is as follows:

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k)= (x(0)(1)− b
a
)(1 − ea)e−ak (17)

2.3.5. PLUS Model

Liang et al. [26] proposed a rule-mining framework based on the land expansion
analysis strategy (LEAS) and a cellular automata (CA) model based on multi-type random
patch seeds (CARS). By combining LEAS and CARS, they constructed the patch-based
land use simulation (PLUS) model for generating land use simulations. This model can be
utilized to simulate changes in land use patches and to explore potential driving factors
behind land expansion and landscape changes. It demonstrates the contribution of each
driving factor to LUCC. The model offers higher precision simulations compared to other
traditional simulation models, enabling the generation of more realistic landscape patterns
to support land use decision-making.

In this study, the driving factors are categorized into natural factors, socioeconomic
factors, soil factors, and accessibility factors. Using the random forest classification (RFC)
algorithm, this study explores the expansion of various land use types and their driving
factors (Table 5).

Table 5. Driving Factor Contributions.

Contribution Cropland Forest Grassland Water Barren Land Construction Land

Aspect 0.034 0.058 0.036 0.029 0.067 0.036
DEM 0.123 0.197 0.235 0.123 0.062 0.134
Slope 0.120 0.170 0.107 0.077 0.056 0.132
GDP 0.116 0.059 0.075 0.168 0.096 0.133
Pop 0.067 0.072 0.084 0.179 0.317 0.129
Prec 0.090 0.095 0.066 0.078 0.088 0.056

Temp 0.198 0.127 0.091 0.080 0.079 0.134
River 0.072 0.061 0.082 0.064 0.034 0.069

Railway 0.052 0.044 0.072 0.055 0.052 0.037
Highway 0.040 0.040 0.060 0.051 0.051 0.040

Nationalway 0.042 0.039 0.054 0.045 0.060 0.047
Mainway 0.045 0.037 0.038 0.051 0.037 0.054

Through further screening, the research selected 12 driving factors with a higher
contribution (>0.03), including natural factors such as DEM, aspect, slope, annual aver-
age temperature, and annual average precipitation; socioeconomic factors such as GDP
and population density; and accessibility factors such as distance to rivers, distance to
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railways, distance to highways, distance to national roads, and distance to major provincial
roads (Figure 3).
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Based on the development needs and policy constraints of Shandong Province, we
established four different land use scenarios for the years 2030 and 2060.

Natural Scenario (NS): This scenario assumes a business-as-usual situation where
there are no significant policy interventions. The land use transition probabilities from
2020 to 2060 remain consistent with those from 2000 to 2020, as predicted by Markov chains.
There are no restrictions imposed on the transition of land use types.

Cropland Protection Scenario (CPS): In this scenario, we adhere to the cropland
protection targets outlined in the Land Spatial Planning of Shandong Province (2021–2035),
aiming to limit the reduction in cropland to no more than 2% every 15 years. There are
strict restrictions on the conversion of cropland to other land use types, and reasonable
control over the transition between cropland and construction land. Additionally, due to
policies such as returning cropland to forests and the balance between cropland occupation
and compensation, areas such as forests, grassland, and water that encroach upon cropland
require compensatory measures to replenish cropland. Therefore, we allow for a slight
conversion of three land use types to cropland.

High-Speed Development Scenario (HDS): In this scenario, economic development is
set as the objective for Shandong Province. It involves expanding the central urban areas
and satellite city clusters to drive the development of the provincial capital economic zone,
the southern Shandong region, the Qingdao metropolitan area, and the Bohai Rim economic
zone. The probability of conversion from other land use types to construction land increases,
while the conversion of construction land to other land use types is restricted.

Low-Carbon Scenario (LCS): This scenario takes into account the multiple policies
and practical needs related to urban development, ecological conservation, and cropland
protection. It emphasizes harnessing the carbon sequestration function of ecological land
while restricting the conversion of forest, grassland, and water areas to other land use types.
Urban expansion is effectively constrained, and efforts are made to optimize the internal
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structure of built-up areas, accompanied by improvements in the efficiency of construction
land use and upgrades in energy structure. In ecologically protected areas and similar
regions, policies such as the conversion of cropland to forests are still being implemented.
Additionally, it is essential to consider the persistent policy of cropland protection. While
increasing the probability of conversion from the three types of ecological land to other
land use types, the reduction in cropland is reasonably controlled. The scenario targets
carbon neutrality.

3. Results
3.1. Analysis of Spatial and Temporal Changes in Land Use

The land use transfer Sankey diagram (Figure 4) illustrates the characteristics of
land use changes in the research area over a period of 20 years. During the period from
2000 to 2010, cropland primarily shifted towards construction land and water, accounting
for a total outflow of 86.78%. The rapid urbanization and urgent economic development
needs have led to continuous reduction in cropland areas. Despite the existence of ecological
fallow policies, there was still a net inflow of 204.09 km2 from forests to cropland. From
2010 to 2020, the effectiveness of ecological protection policies became apparent. The
change in forest areas shifted from a decrease to an increase. Under strict policies of
converting forests to cropland, there was a transfer of 1262.02 km2 from cropland to forests,
accounting for 63.75% of the total increase in forest areas. The cropland outflow was more
severe during this period, with a transfer of 5711.04 km2 to construction land, constituting
71.49% of the total outflow. The inflow of cropland primarily came from forest, grassland,
and water areas, reaching 478.84 km2, 876.48 km2, and 660.84 km2, respectively. This is
mainly attributed to the land balance policy for farmland in Shandong Province. Due to the
expansion plans of construction land in the Yellow River Delta region and the requirements
for the construction of water conservancy facilities across the province, the outflow of water
to construction land reached 390.69 km2.
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The LUTM (Table 6) illustrates the changes in quantities among different land types
over a period of 20 years. Overall, despite a significant outflow of cropland to construction
land totaling 11,114 km2 from 2000 to 2020, cropland remained the predominant land type in
the research area. Approximately 67.38% of the total increase in forests came from cropland.
Grassland predominantly flowed out to cropland and forests, accounting for 58.35% and
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28.85% of the total outflow, respectively. Water increased by a total of 2169.72 km2, replacing
grassland as the fourth-largest land use type. Unused land primarily transferred to water
(53.97%) and construction land (40.42%). Over the 20-year period, urbanization in Shandong
Province continued to advance, with a significant expansion of construction land, showing
a continuous growth trend, totaling an increase of 11,925.05 km2, representing a growth
rate of 52.17%.

Table 6. Land use transfer matrix 2000–2020 (Unit: km2).

Type Cropland Forest Grassland Water Barren Land Construction Land Total

Cropland 103,554.57 1259.28 587.10 1330.28 20.78 11,114.00 117,866.01
Forest 689.83 5955.26 48.20 0.76 0.11 63.75 6757.91

Grassland 1229.14 607.66 1562.24 39.27 11.22 219.12 3668.65
Water 316.87 1.56 0.45 2345.56 18.58 399.65 3082.67

Barren land 106.10 0.00 1.10 1031.38 224.15 772.47 2135.20
Construction land 131.18 0.37 0.08 505.14 7.17 22,214.44 22,858.38

Total 106,027.69 7824.13 2199.17 5252.39 282.01 34,783.43 156,368.82

Figure 5 illustrates the spatial changes in land use from 2000 to 2020. In accordance
with the requirements outlined in the “Land Spatial Planning of Shandong Province
2006–2020”, forests and grassland have been concentrated in Central-South Shandong
and East Shandong. The expansion of water primarily focuses on the Yellow River Delta
in the northern part of Shandong, owing to stringent government policies on ecological
conservation and scientific development in this region. Within this area, there has also
been a shift in water towards construction land, indicating a parallel expansion of construc-
tion land and ecological conservation policies. The changes in construction land in the
study area align with the demands of the “New Urban Planning of Shandong Province
(2014–2020)”, with significant expansion observed in the core urban agglomerations of
Jinan and Qingdao, as well as in the Yellow River Delta Economic Development Zone and
the urban development areas in southern Shandong.
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3.2. Spatial and Temporal Variations in Carbon Stocks and Emissions from Land Use
3.2.1. Changes in Ecosystem Carbon Stocks

This study assessed the changes in ECS in Shandong Province from 2000 to 2020.
The results indicate (Table 7) that the total ECS decreased by 2.22% over the 20-year
period, totaling 4881.13 × 104 t. Among these, the ECS reduction in cropland accounted
for 81.62% of the total decrease, amounting to a reduction of 17,047.18 × 104 t. Carbon
stocks notably increased in construction land and forests, with construction land increasing
by 12,282.80 × 104 t. Forests exhibited a fluctuating pattern of decrease and subsequent
increase over the 20 years, proportional to changes in forest area, resulting in a total increase
of 3070.71 × 104 t. According to carbon pool data, both above ground carbon stocks and
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soil organic carbon are identified as the primary sources contributing to ECS among various
land use types.

Table 7. Carbon stock changes 2000–2020 (Unit: 1 × 104 t).

Types
2000–2010 2010–2020 2000–2020

ECS Rate ECS Rate ECS Rate

Cropland −8365.95 −4.93% −8681.23 −5.38% −17,047.18 −10.04%
Forest −311.01 −1.60% 3381.72 17.66% 3070.71 15.78%

Grassland −609.12 −17.30% −801.58 −27.52% −1410.70 −40.06%
Water 482.50 52.17% 168.42 11.97% 650.92 70.38%

Barren land −480.97 −17.20% −1946.71 −84.05% −2427.68 −86.79%
Construction land 5470.34 23.23% 6812.46 23.48% 12,282.80 52.17%

Total −3814.22 −1.73% −1066.91 −0.49% −4881.13 −2.22%

Figure 6 depicts the spatial characteristics of ECS over the past 20 years. The results
indicate that high carbon stocks are primarily concentrated in the central region and the
eastern peninsula of Shandong Province. These areas are characterized by large contiguous
forest areas, which largely correspond to the ecological barriers of the Central and Southern
Shandong mountainous and hilly ecological barrier and the Eastern Shandong low moun-
tainous and hilly ecological barrier regions designated in the ecological restoration plan of
Shandong Province. Carbon stocks in the Yellow River Delta region experienced a signifi-
cant decrease over the 20-year period. Overall, influenced by the development plans in the
Yellow River Delta region, the decrease in carbon stocks is mainly attributed to cropland,
while the increase in carbon stocks mainly comes from water and construction land.
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3.2.2. Changes in Carbon Emissions from Land Use

Table 8 presents the changes in LUCE from 2000 to 2020. The results indicate that over
the 20-year period, total carbon emissions increased from 8772.04 × 104 t to 49,208.48 × 104 t.
Construction land contributed the most to the growth in carbon emissions, increasing from
8326.84 × 104 t to 48,825.19 × 104 t. These figures represent 94.92%, 98.78%, and 99.22% of
Shandong Province’s total carbon emissions for the years 2000, 2010, and 2020, respectively.
Forests served as the primary carbon sink, with carbon sequestration reaching 50.39 × 104 t
by 2020, reflecting a 15.79% increase compared to 2000.

This study classified the carbon emission intensity of various prefecture-level cities in
Shandong Province into five levels using the natural breakpoint method. These levels are as
follows: low emission (<913.86 × 104 t), relatively low emission (913.87–1932.89 × 104 t), mod-
erate emission (1932.90–3015.95 × 104 t), relatively high emission (3015.96–4635.92 × 104 t),
and high emission (>4635.93 × 104 t). Figure 7 illustrates the changes in carbon emission
intensity and total emissions over the past two decades. The increase in carbon emissions
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is concentrated in the eastern and southern regions of the study area. As key cities for
industrial and agricultural development, Weifang and Linyi have reached high levels of
carbon emission intensity. Although carbon emissions from construction land in the Jinan
and Qingdao metropolitan areas have increased, the presence of the Eastern Shandong
Ecological Protection Zone and contiguous forests in the southern mountainous regions
has somewhat constrained the overall increase in carbon emissions in these areas. Overall,
there is a noticeable increase in carbon emission intensity across prefecture-level cities in
Shandong Province, with higher levels observed in the eastern and southern regions and
lower levels in the western and northern regions.

Table 8. Carbon emissions changes 2000–2020 (Unit: 1 × 104 t).

Types 2000 2010 2020

Cropland 497.39 472.88 447.44
Forest −43.52 −42.83 −50.39

Grassland −0.77 −0.64 −0.46
Water −7.80 −11.87 −13.29

Barren land −0.11 −0.09 −0.01
Construction land 8326.84 33,927.99 48,825.19

Total 8772.04 34,345.45 49,208.48
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3.3. PLUS Model Simulations
3.3.1. Land Use Scenario Modelling

Before conducting LUCC simulations using the PLUS model, it is necessary to val-
idate the accuracy of the model [41]. This study conducted LUCC simulations for the
year 2020 based on land use data from 2010 using the PLUS model. A comparison with
actual LUCC data for 2020 was performed for validation, and the results are presented in
Figure 8. The kappa coefficient was found to be 0.7705, with an overall accuracy (OA) of
88.96%. These results demonstrate that the PLUS model exhibits high simulation accuracy,
indicating its suitability for land use prediction under various scenarios.

We incorporated driving factors and constraints from different scenarios into the PLUS
model to simulate land use patterns for the four scenarios. The results indicate (Table 9) that
from 2030 to 2060, there is a decrease in cropland under all four scenarios. The HDS scenario
experiences the greatest reduction in cropland, declining from 97,597.69 km2 in 2030 to
76,229.38 km2 in 2060, a total decrease of 21.89%. The CPS scenario shows the smallest
change in cropland, decreasing by a total of 6626.55 km2 over the 30-year period. The area
of construction land significantly increases under all four scenarios, with the HDS scenario
witnessing the most substantial growth from 43,627.73 km2 in 2030 to 65,386.50 km2 in
2060, a 49.87% increase. Conversely, expansion of construction land is constrained under
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the LCS scenario, with a total growth of 7383.49 km2. Apart from a reduction of 539.78 km2

in forests under the CPS scenario, the area of forests increases to varying degrees under
the other three scenarios. However, there is a significant decrease in grassland area across
all scenarios.
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Table 9. Land use area changes under four scenarios 2030–2060 (Unit: km2).

Type Cropland Forest Grassland Water Barren Land Construction Land

NS2030 100,285.03 8727.00 1718.12 5054.62 94.00 40,490.05
NS2060 84,989.78 10,405.19 1126.35 4553.71 59.06 55,234.73
CPS2030 104,577.00 7788.05 1214.17 4425.58 88.99 38,275.02
CPS2060 97,950.45 7248.27 511.22 3036.61 41.00 47,581.27
HDS2030 97,597.69 8679.02 1688.01 4696.84 79.52 43,627.73
HDS2060 76,229.38 10,066.94 1030.38 3610.45 45.18 65,386.50
LCS2030 101,257.92 9542.60 2146.02 5803.56 71.57 37,547.15
LCS2060 89,158.19 13,671.16 1933.00 6620.90 54.93 44,930.64

Figure 9 illustrates the different land use patterns under four future scenarios. Crop-
land remains the predominant land use type in Shandong Province, but it consistently
decreases over the 30-year period, significantly shifting towards construction land and
forests. Construction land under all scenarios expands outward from Jinan and Qing-
dao, with a noticeable increase in the number of medium-sized and small urban clusters.
Changes in forests, grasslands and water are primarily concentrated in the Yellow River
Delta region. Changes in forests and grasslands are concentrated in key ecological con-
servation areas such as the central and southern Shandong mountainous region, Yimeng
mountainous region, and eastern Shandong region as outlined in the Shandong Province
Ecological Restoration Plan 2021–2035.
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3.3.2. Carbon Stock Modelling under Different LUCC Scenarios

This study evaluated the variation in ECS under different LUCC scenarios from
2030 to 2060. The results indicate (Table 10) that compared to 2020, carbon stocks decreased
under the NS, CPS, and HDS scenarios. Among these, the HDS scenario experienced the
most significant loss in carbon stocks, totaling 6853.99 × 104 t. Under the NS scenario,
carbon stocks decreased by 3327.87 × 104 t. The reduction in carbon stocks under the CPS
scenario was concentrated between 2030 and 2060, with an average annual decrease in ECS
of 0.41%. Conversely, the LCS scenario was the only one where carbon stocks increased,
with a total increment of 2856.56 × 104 t from 2020 to 2060, representing an average annual
increase of 0.33%.

Table 10. Carbon stock projections for four scenarios (Unit: 1 × 104 t).

Scene
2020–2030 2030–2060 2020–2060

ECS Rate ECS Rate ECS Rate

NS −558.78 −0.26% −2769.10 −1.29% −3327.87 −1.55%
CPS −43.04 −0.02% −2665.77 −1.24% −2708.81 −1.26%
HDS −1490.11 −0.69% −5363.88 −2.51% −6853.99 −3.19%
LCS 766.01 0.36% 2090.55 0.97% 2856.56 1.33%

According to the research findings (Figure 10), in the NS, CPS, and HDS scenarios, low-
carbon storage areas are concentrated in regions where there is a reduction in cropland area
and in the Yellow River Delta region. In the LCS scenario, the increase in carbon storage is
closely associated with the expansion of forests, while the growth in ECS is concentrated in
the eastern Shandong region and the southeastern mountainous areas. The relatively low
carbon sequestration capacity in the Yellow River Delta under all four scenarios is attributed
to the extensive expansion of water areas in that region. In terms of the ecological and
economic development zoning of Shandong Province, areas with high ECS are concentrated
in the ecological barrier zones of the central and southern mountainous regions and the low
hills of eastern Shandong. Conversely, areas with decreased carbon storage are consistent
with changes in construction land and water areas, focusing on the urban areas of Jinan and
Qingdao metropolitan circles, as well as the Yellow River Delta water conservation area.
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3.3.3. Modelling of Carbon Emissions under Different Scenarios

In the absence of future indirect carbon emission data, we predicted the carbon
emission coefficient of construction land after reaching the carbon peak in 2030 using the
GM(1,1) model. By calculating energy consumption data and construction land area, we
obtained the carbon emission coefficients of construction land for the years 2000, 2010,
and 2020, which were 3.643 kg/hm2, 12.044 kg/hm2, and 14.037 kg/hm2, respectively. By
applying this information, we obtained a carbon emission coefficient for construction land
in 2030 as 16.3150 kg/hm2. With an average relative error of 1.61%, this confirms the high
accuracy of the prediction results. Using this coefficient, we can calculate the total carbon
emissions from 2030 to 2060 (Table 11).

Table 11. Carbon emissions projections for four scenarios (Unit: 1 × 104 t).

Scene
2020–2030 2030–2060 2020–2060

LUCE Rate LUCE Rate LUCE Rate

NS 17,205.05 34.96% 23,982.04 36.11% 41,187.10 83.70%
CPS 13,617.08 27.67% 15,162.37 24.13% 28,779.45 58.48%
HDS 22,314.08 45.35% 35,403.29 49.50% 57,717.36 117.29%
LCS 12,400.56 25.20% 11,966.52 19.42% 24,367.08 49.52%

Overall, carbon emissions continue to increase across all four scenarios, with construc-
tion land being the primary source of carbon emissions. Under the HDS scenario, LUCE saw
a significant increase of 117.29%, rising from 49,208.48 × 104 t in 2020 to 106,925.84 × 104 t
in 2060. Under the LCS scenario, LUCE saw an increase of 49.52% over the 40-year pe-
riod, reaching a total carbon emission of 73,575.56 × 104 t in 2060. During the period
from 2030 to 2060, LUCE only increased by 19.42%, which is significantly lower than the
increases observed in the other three scenarios. Under the CPS scenario, carbon emissions
increased by a total of 58.48%, over the 40-year period, second only to the LCS scenario. All
four scenarios were subject to the carbon peak policy in 2030, resulting in a slowdown in
the rate of carbon emissions growth after 2030.

Figure 11 illustrates the spatial variations of carbon emission intensity under the four
scenarios. In the NS and CPS scenarios, the carbon emission intensity remains largely
consistent, with the increase in emissions primarily concentrated in the northern and
southern regions of Shandong Province. By 2060, the carbon emissions across the province
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are predominantly at high and relatively high intensity levels. The spatial variations
in LUCE align with urban expansion areas. In the HDS scenario, carbon emissions in
Shandong Province are mainly at the high intensity level, with only Weihai, Rizhao, Zibo,
Liaocheng, and Zaozhuang classified as higher intensity. In the LCS scenario, the high
intensity areas in 2030 and 2060 continue to be concentrated in the eastern and southern
parts of Shandong, while the central and southern regions benefit from increased forest area,
enhancing carbon sequestration capacity and thus mitigating carbon emissions. Overall,
high carbon emission areas are consistent across all scenarios. Yantai, Weifang, and Linyi
consistently exhibit high intensity levels from 2030 to 2060, while Heze, Jining, Qingdao,
and Dezhou also reach high intensity levels by 2060.
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4. Discussion
4.1. Future Carbon Emission and Carbon Stock Affected by LUCC

Effective and sustainable management of land resources is a key initiative for achieving
carbon peaks and carbon neutrality [42,43]. This study evaluates LUCE and ECS simultane-
ously to determine how to optimize land use patterns under the carbon neutrality target.
Unlike previous studies that often use the FLUS model or the CLUE-S model [44], the PLUS
model used in this study provides higher accuracy in large-scale land use prediction and
is applicable to simulation requirements under different scenarios [45,46]. Coupling the
InVEST model with the GM(1,1) model allows for a better quantitative assessment of future
carbon storage and emissions in the study area. Determining carbon emission intensity at
the prefectural level is of great significance for zoning management of land use.

The research findings indicate that changes in carbon stock are largely consistent with
changes in land use (Figure 6). In the central and eastern regions of Shandong Province,
high carbon storage areas correspond to regions with concentrated forests, while low carbon
storage areas correspond to regions with significant increases in water and construction
land. For example, the Yellow River Delta region, influenced by regional spatial planning,
has seen significant increases in water areas and construction land areas, leading to a
corresponding decrease in carbon sequestration capacity. The change in carbon emissions
is influenced by changes in the area of construction land and forests. The results show
that in regions where carbon emission intensity is rising, there is significant expansion of
construction land while forest areas experience notable reduction (Figures 9 and 11). For
example, in Weifang and Linyi, key industrial cities in Shandong Province, the urbanization
rate reaches 65.2%. However, these areas lack land types such as forests and grasslands,
leading to higher carbon emission intensity. The mitigation of carbon emission growth
relies on changes in the area of forests, grasslands, and water bodies. For instance, Tai’an in
the central-southern region of Shandong and Dongying in the Yellow River Delta region
have large areas of forests and water bodies, resulting in significantly lower carbon emission
intensity compared to other prefecture-level cities. Overall, the impact of LUCC on LUCE
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and ECS in the study area is generally consistent with previous studies [47–49]. The research
findings indicate that the increase in carbon storage in the study area primarily stems from
cropland, forests, and grassland. In the central-southern and eastern regions of Shandong,
extensive forest land serves as the main contributor to ECS. This is largely attributed to the
Shandong Province Ecological Barrier Construction Plan. However, cropland and grassland
in the study area continue to diminish, resulting in the inability of the increased carbon
sink in forest land to offset the decrease in carbon storage. Additionally, due to the rapid
economic development and increasing urbanization levels over the 20-year period, the
area of construction land in Shandong Province has continuously expanded. Industrial
activities, energy consumption, and human activities within construction land are the main
sources of carbon emissions [50]. The expansion of urban clusters is directly proportional
to the increase in carbon emissions. From 2000 to 2020, the increment in ECS in Shandong
Province significantly lagged behind the decrement, while there was a notable increase in
LUCE. This has led to significant pressure in Shandong Province for emission reduction
and carbon sink enhancement.

4.2. Optimization of Land Use Patterns and Policy Recommendations

After simulating LUCC under four different scenarios, we found significant impacts
of different land use types on LUCE and ECS. In the HDS scenario, driven by the need
for economic development and substantial population growth, there was an expansion of
construction land at the expense of cropland, forests, grassland, and water. This scenario
resulted in a substantial increase in carbon emissions. Cropland served as the primary
source of expansion for construction land; thus, the cropland protection policy under the
CPS scenario had a certain inhibitory effect on construction land expansion, leading to only
a slight increase in LUCE compared to the LCS scenario. In the LCS scenario, economic
development is no longer the primary concern, and the increase in forest area can offset the
carbon emissions generated by the expansion of construction land. In the HDS scenario,
there was a notable decrease in carbon sequestration capacity and a significant increase
in LUCE. LCS is the only scenario where carbon storage increases, and it also has the
lowest carbon emissions. This suggests that achieving carbon neutrality targets by 2030 or
even 2060 may be challenging if rapid expansion of construction land continues. Limiting
the conversion of cropland to construction land effectively restricts the increase in carbon
emissions. Additionally, the growth of ecological land, particularly forests, maximizes carbon
sinks. Therefore, we need to consider cropland protection and ecological conservation as
management strategies for emission reduction and carbon sink enhancement.

The expansion of construction land is concentrated in the Jinan economic circle and
the Qingdao economic circle (Figure 12). The “Shandong Province Land Spatial Planning
(2021–2035)” designates the Jinan and Qingdao metropolitan areas as economic centers,
with Yantai, Linyi, and Weifang serving as secondary economic centers. This planning is
largely consistent with the expansion areas of construction land in our simulation results.
Constrained by ecological protection red lines and cropland protection red lines, the Qing-
dao economic circle chooses to expand around Jiaozhou Bay, while the Jinan economic
circle opts for lateral expansion from east to west [51]. The results of the HDS scenario
indicate that the expansion of construction land should be subject to a certain degree of
restraint and control. Future urban development requires efficient utilization and intensive
management of built-up areas [52]. The ongoing implementation of urban–rural integration
development in Shandong Province, along with the strict demarcation of the scale and
expansion boundaries of urban construction land, represents a significant policy for the
efficient utilization of construction land. Such policies play a crucial role in enhancing
regional economic development and improving residents’ living standards [53]. Construc-
tion land is the primary source of carbon, and fossil energy consumption is the main cause
of carbon emissions from construction land. Therefore, industrial transformation and green
production will be the key to reducing emissions and increasing carbon sinks on urban
land in the future [54].
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Shandong Province is a major agricultural production region and a key area for crop-
land protection in China, ranking third in total grain output nationwide. Considering the
positive role of cropland protection in carbon balance under the CPS scenario, it is necessary
to ensure the quantity of cropland within the government-designated cropland protection
red line. Rational cropping systems and the improvement of cropland quality can increase
soil organic carbon reserves [55], thus enhancing cropland’s carbon sequestration capacity.
Research indicates a decrease in cropland area across all four scenarios, highlighting the
need for strict implementation of policies ensuring a balance between the occupation and
compensation of cropland. Emphasis should be placed on the restrictive role of cropland
protection policies in curbing the expansion of construction land [56].

Research findings indicate that ecological protection efforts in Shandong Province are
concentrated in the Yellow River Delta, the hills and low mountains of eastern Shandong,
and the hilly areas of south-central Shandong (Figure 13). The ongoing Ecological Restora-
tion Project (ERP) in the Yellow River Delta has demonstrated significant effectiveness [57].
Preservation of biodiversity and enhancement of water conservation capacity in the Yellow
River Delta have positive impacts on increasing regional carbon storage [58]. The eastern
Shandong region, including the hills and low mountains, constitutes one of the province’s
two major ecological barriers, boasting extensive natural forests, economic forests, and
timber forests. Protecting forested areas in the hills and low mountains of eastern Shandong
maximizes the carbon sequestration capacity of forest ecosystems [59,60]. However, this
research indicates significant reduction in forest areas in the region under the HDS scenario,
highlighting the vulnerability of these forests to policy changes. Therefore, it is essential
to continue implementing strict specialized protection measures based on existing ecolog-
ical conservation plans in order to safeguard these valuable ecosystems. South-central
Shandong possesses extensive areas of pristine forests and afforestation land. As the most
crucial ecological barrier zone in Shandong Province, there remains a pressing need to
significantly increase afforestation areas in mountainous regions. It is imperative to manage
the relationship between urban development boundaries and ecological protection red
lines effectively. This will not only enhance ecosystem services but also to some extent
restrain the unrestricted expansion of the Jinan metropolitan area while improving the ECS.
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4.3. Research Limitations and Prospects

Our study has several limitations that need to be addressed in future research. Firstly,
considering the large extent of the study area, the base data resolution we used is not the
highest available, which could impact the accuracy of LUCC predictions. Secondly, the
multi-source data used in this study vary in precision and quality, affecting the reliability
of the results. In the multi-scenario simulations of land use, the PLUS model’s results
depend on the setting of model parameters and weight adjustments. The parameters we
set are based on historical research and experience, which may lead to errors and lag
in different scenario simulations. Additionally, scenario simulations cannot predict the
drastic changes brought by natural disasters and policy shifts, resulting in an inability to
fully represent the actual land use situation. Lastly, the GM (1,1) model we used is for
calculating increasing sequences, providing better accuracy in obtaining future carbon
emission coefficients for construction land [61]; it cannot determine the mitigating effects
of future industrial upgrades and the use of clean energy on carbon emissions. In future
studies, we will explore the impact mechanisms of LUCC coupled with energy structures
and soil carbon sinks on LUCE and ECS based on high-resolution datasets. This will enable
us to optimize land use patterns more effectively.

5. Conclusions

This study explores the impacts of LUCC on LUCE and ECS. Based on LUCC data
and driving factor data, a coupled PLUS–InVEST–GM(1,1) model is used to analyze carbon
emissions and carbon storage changes in Shandong Province from 2000 to 2020 and predict
four different scenarios for the period 2030 to 2060. Finally, through comparing these
scenarios and considering the current spatial planning of Shandong Province, policy rec-
ommendations are provided for optimizing land use patterns under the context of carbon
neutrality. The results of this study are as follows:

(1) From 2000 to 2020, the maximum reduction in cropland area reached 17,047.18 km2.
There was an increase of 11,925.05 km2 in construction land. The ECS consistently
experienced a reduction, decreasing by a total of 4881.13 × 104 t over the 20-year
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period. Forests are the dominant carbon sink. The carbon emissions have shown a
year-on-year increase, rising significantly from 8772.04 × 104 t to 49,208.48 × 104 t.
The carbon emission intensity of prefecture-level cities has been increasing year
by year. Among them, cropland and construction land are the primary sources of
carbon emissions.

(2) From 2030 to 2060, this study simulated four possible scenarios. Among them, under
the HDS scenario, construction land expanded by 21,758.77 km2 over 30 years, leading
to the highest LUCE and ECS. The LCS scenario is the only scenario where carbon
storage increases, mainly due to a significant increase in forests and water. Under the
NS scenario, the growth rates of LUCE and ECS remain consistent with those from
2000 to 2020. Under the CPS scenario, carbon storage slowly decreased by a total of
2708.81 × 104 t, while carbon emissions increased by 15,162.37 × 104 t; the increase in
emissions was only higher than that of the LCS scenario.

(3) Shandong Province faces significant emission reduction pressure but also possesses
considerable carbon sequestration potential. Against the backdrop of carbon neutral-
ity, it is essential for Shandong Province to implement precise control over regional
LUCC and optimize existing land policies. For instance, it is crucial to delineate
ecological protection zones and development exclusion zones while ensuring the
preservation of arable land. Furthermore, proactive measures should be taken to
expand major ecological protection areas, particularly by transitioning the planning
of urban built-up areas from rapid expansion to intensification. Moreover, promoting
integrated urban–rural development is imperative.

The research findings provide a new pathway for Shandong Province to actively
promote carbon peak and carbon neutrality through land low-carbon management. By
balancing the relationships among ecological protection, cropland preservation, and urban
development, carbon balance can be facilitated in terrestrial ecosystems. Additionally, this
study offers valuable insights for other regions to address climate issues through optimizing
land use patterns.
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