Reverse Logistics and Sustainability: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evolution of Reverse Logistics and Sustainability
3.2. Journals: Publications and Citations
3.3. Authors: Publications, Citations, and Cooperations
3.3.1. Publications
3.3.2. Citations
- Blockchain technology and its relationships to sustainable supply chain management, with 1888 citations.
- Soil quality: A critical review with 1462 citations.
- Literature review of Industry 4.0 and related technologies, with 1192 citations.
3.3.3. Cooperations
3.4. Geographical Distribution
3.5. Institutions
3.6. Funding Sponsors
3.7. Subject Area
3.8. Terms Analysis
4. Discussion
Managerial Implications
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Equation Search
Database | Equation Search |
Scopus * | (TITLE-ABS-KEY (“reverse logistic” OR “supply chain” OR “recycling” OR “decision making” OR “reverse logistic network” OR “green supply chain” OR “reverse supply chain” OR “closed-loop supply chain”) AND TITLE-ABS-KEY (“sustainability” OR “sustainable supply chain” OR “economic and social effects” OR “environmental impact” OR “environmental regulations”)) AND PUBYEAR > 2017 AND PUBYEAR < 2024 AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (SUBJAREA, “ENVI”) OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “ENER”) OR LIMIT-TO (SUBJAREA, “SOCI”) OR LIMIT-TO (SUBJAREA, “BUSI”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA, “AGRI”) OR LIMIT-TO (SUBJAREA, “DECI”) OR LIMIT-TO (SUBJAREA, “ECON”) OR LIMIT-TO (SUBJAREA, “MATE”) OR LIMIT-TO (SUBJAREA, “MATH”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (EXACTKEYWORD, “Sustainability”) OR LIMIT-TO (EXACTKEYWORD, “Decision Making”) OR LIMIT-TO (EXACTKEYWORD, “Economic And Social Effects”) OR LIMIT-TO (EXACTKEYWORD, “Supply Chain Management”) OR LIMIT-TO (EXACTKEYWORD, “Supply Chains”) OR LIMIT-TO (EXACTKEYWORD, “Environmental Impact”) OR LIMIT-TO (EXACTKEYWORD, “Environmental Sustainability”) OR LIMIT-TO (EXACTKEYWORD, “Circular Economy”) OR LIMIT-TO (EXACTKEYWORD, “Recycling”) OR LIMIT-TO (EXACTKEYWORD, “Waste Management”)) |
* Search strategies database. |
References
- Govindan, K.; Soleimani, H.; Kannan, D. Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. Eur. J. Oper. Res. 2015, 240, 603–626. [Google Scholar] [CrossRef]
- Kroon, L.; Vrijens, G. Returnable containers: An example of reverse logistics. Int. J. Phys. Distrib. Logist. Manag. 1995, 25, 56–68. [Google Scholar] [CrossRef]
- Carter, C.R.; Ellram, L.M. Reverse Logistics: A Review of the Literature and Framework for Future Investigation. J. Bus. Logist. 1998, 19, 85–102. [Google Scholar]
- Fleischmann, M. Reverse Logistics Network Structures and Design. 2001. Available online: https://www.erim.eur.nl/ (accessed on 4 June 2023).
- Dekker, R.; Fleischmann, M.; Inderfurth, K.; Wassenhove, L.N. Reverse Logistics. Quantitative Models for Closed-Loop Supply Chains; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Abdissa, G.; Ayalew, A.; Dunay, A.; Illés, C.B. Role of Reverse Logistics Activities in the Recycling of Used Plastic Bottled Water Waste Management. Sustainability 2022, 14, 7650. [Google Scholar] [CrossRef]
- Krikke, H.R.; Le Blanc, H.M.; Van De Velde, S. Creating Value from Returns? The Impact of Product Life Cycle Management on Circular Supply Chains and Reverse. No. 2. 2003. Available online: https://research.tilburguniversity.edu/en/publications/creating-value-from-returns-the-impact-of-product-life-cycle-mana (accessed on 4 June 2023).
- Trevisan, A.H.; Lobo, A.; Guzzo, D.; de Vasconcelos Gomes, L.A.; Mascarenhas, J. Barriers to employing digital technologies for a circular economy: A multi-level perspective. J. Environ. Manag. 2023, 332, 117437. [Google Scholar] [CrossRef]
- Presley, A.; Meade, L.; Sarkis, J. A strategic sustainability justification methodology for organizational decisions: A reverse logistics illustration. Int. J. Prod. Res. 2007, 45, 4595–4620. [Google Scholar] [CrossRef]
- Sarkis, J.; Helms, M.M.; Hervani, A.A. Reverse logistics and social sustainability. Corp. Soc. Responsib. Environ. Manag. 2010, 17, 337–354. [Google Scholar] [CrossRef]
- Gladwin, T.N.; Kennelly, J.J.; Krause, T.-S. Shifting Paradigms for Sustainable Development: Implications for Management Theory and. Acad. Manag. Rev. 1995, 20, 874–907. [Google Scholar] [CrossRef]
- Hervani, A.A.; Sarkis, J.; Helms, M.M. Environmental goods valuations for social sustainability: A conceptual framework. Technol. Forecast. Soc. Change 2017, 125, 137–153. [Google Scholar] [CrossRef]
- Romano, A.L.; Ferreira, L.M.D.F.; Caeiro, S.S.F.S. Why companies adopt supply chain sustainability practices: A study of companies in Brazil. J. Clean. Prod. 2023, 433, 139725. [Google Scholar] [CrossRef]
- Faber, N.; Jorna, R.; Van Engelen, J. The sustainability of ‘sustainability’—A study into the conceptual foundations of the notion of ‘sustainability’. J. Environ. Assess. Policy Manag. 2005, 7, 337–370. [Google Scholar] [CrossRef]
- Marín, J.M.R.; Angulo, H.O.C.; Infantes, J.A.A. Environmental Strategies for Sustainability: Challenges in the Face of the Global Crisis. Rev. Filos. 2022, 39, 375–385. [Google Scholar] [CrossRef]
- Salas-Navarro, K.; Serrano-Pájaro, P.; Ospina-Mateus, H.; Zamora-Musa, R. Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis. Sustainability 2022, 14, 6003. [Google Scholar] [CrossRef]
- Pérez Matos, N.E. La bibliografía, bibliometría y las ciencias afines. ACIMED 2002, 10, 1–2. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352002000300001&lng=es&nrm=iso&tlng=es (accessed on 4 June 2023).
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Mateus, H.; Jiménez, L.A.Q.; Lopez-Valdes, F.J.; Salas-Navarro, K. Bibliometric analysis in motorcycle accident research: A global overview. Scientometrics 2019, 121, 793–815. [Google Scholar] [CrossRef]
- Reyes, J.J.R.; Solano-Charris, E.L.; Montoya-Torres, J.R. The storage location assignment problem: A literature review. Int. J. Ind. Eng. Comput. 2019, 10, 199–224. [Google Scholar] [CrossRef]
- Meza-Peralta, K.; Gonzalez-Feliu, J.; Montoya-Torres, J.R.; Khodadad-Saryazdi, A. A unified typology of urban logistics spaces as interfaces for freight transport: A Systematic Literature Review. Supply Chain. Forum 2020, 21, 274–289. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Yu, Z.; Golpira, H.; Sharif, A.; Mardani, A. A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 2021, 278, 123357. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Huda, N.; Alavi, Z.; Islam, M.T.; Behnia, M. End-of-life photovoltaic modules: A systematic quantitative literature review. Resour. Conserv. Recycl. 2019, 146, 1–16. [Google Scholar] [CrossRef]
- Belter, C.W. Bibliometric indicators: Opportunities and limits. J. Med. Libr. Assoc. 2015, 103, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Kolotzek, C.; Helbig, C.; Thorenz, A.; Reller, A.; Tuma, A. A company-oriented model for the assessment of raw material supply risks, environmental impact and social implications. J. Clean. Prod. 2018, 176, 566–580. [Google Scholar] [CrossRef]
- Hannouf, M.; Assefa, G. A life cycle sustainability assessment-based decision-analysis framework. Sustainability 2018, 10, 3863. [Google Scholar] [CrossRef]
- Reddy, K.N.; Kumar, A.; Ballantyne, E.E.F. A three-phase heuristic approach for reverse logistics network design incorporating carbon footprint. Int. J. Prod. Res. 2019, 57, 6090–6114. [Google Scholar] [CrossRef]
- Gupta, S.; Czinkota, M.; Ozdemir, S. Innovation in Sustainability Initiatives through Reverse Channels. J. Bus. Bus. Mark. 2019, 26, 233–243. [Google Scholar] [CrossRef]
- Borregan-Alvarado, J.; Alvarez-Meaza, I.; Cilleruelo-Carrasco, E.; Garechana-Anacabe, G. A bibliometric analysis in industry 4.0 and advanced manufacturing: What about the sustainable supply chain? Sustainability 2020, 12, 7840. [Google Scholar] [CrossRef]
- Tseng, M.L.; Bui, T.D.; Lim, M.K.; Lewi, S. A cause and effect model for digital sustainable supply chain competitiveness under uncertainties: Enhancing digital platform. Sustainability 2021, 13, 10150. [Google Scholar] [CrossRef]
- Hanczar, P.; Azadehranjbar, Z. A Bi-Objective Sustainable Supply Chain Redesign: What Effect Does Energy Availability Have on Redesign? Energies 2022, 15, 3642. [Google Scholar] [CrossRef]
- Perotti, S.; Colicchia, C. Greening warehouses through energy efficiency and environmental impact reduction: A conceptual framework based on a systematic literature review. Int. J. Logist. Manag. 2023, 34, 199–234. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Shi, Q.; Kong, Q. An evaluation of the economic benefits of rooftop distributed photovoltaic projects in the whole county in China. J. Clean. Prod. 2023, 432, 139744. [Google Scholar] [CrossRef]
- Scimago. Scimago Journal & Country Rank. Available online: https://www.scimagojr.com/ (accessed on 12 June 2023).
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Awan, M.A.; Ali, Y. Sustainable modeling in reverse logistics strategies using fuzzy MCDM: Case of China Pakistan Economic Corridor. Manag. Environ. Qual. Int. J. 2019, 30, 1132–1151. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Luo, Z. Examining the role of logistics 4.0 enabled dynamic capabilities on firm performance. Int. J. Logist. Manag. 2020, 31, 607–628. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, S. Research on recycling benefits of spent lithium batteries with parameter uncertain: Application to adjust incentive policy. J. Energy Storage 2023, 74, 109314. [Google Scholar] [CrossRef]
- He, Y.; Hosseinzadeh-Bandbafha, H.; Kiehbadroudinezhad, M.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. Environmental footprint analysis of gold recycling from electronic waste: A comparative life cycle analysis. J. Clean. Prod. 2023, 432, 139675. [Google Scholar] [CrossRef]
- Ramos, L.; Rivas-Echeverría, F.; Pérez, A.G.; Casas, E. Artificial intelligence and sustainability in the fashion industry: A review from 2010 to 2022. SN Appl. Sci. 2023, 5, 387. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Wang, Y. A review of the criteria and methods of reverse logistics supplier selection. Processes 2020, 8, 705. [Google Scholar] [CrossRef]
- Frei, R.; Jack, L.; Brown, S. Product returns: A growing problem for business, society and environment. Int. J. Oper. Prod. Manag. 2020, 40, 1613–1621. [Google Scholar] [CrossRef]
- Nascimento, D.L.M.; Alencastro, V.; Quelhas, O.L.G.; Caiado, R.G.G.; Garza-Reyes, J.A.; Rocha-Lona, L.; Tortorella, G. Exploring Industry 4.0 technologies to enable circular economy practices in a manufacturing context: A business model proposal. J. Manuf. Technol. Manag. 2019, 30, 607–627. [Google Scholar] [CrossRef]
- Su, I.H.; Wu, L.; Tan, K.H. The future of the food supply chain: A systematic literature review and research directions towards sustainability, resilience, and technology adoption. J. Digit. Econ. 2023, 2, 303–316. [Google Scholar] [CrossRef]
- Dutta, P.; Mishra, A.; Khandelwal, S.; Katthawala, I. A multiobjective optimization model for sustainable reverse logistics in Indian E-commerce market. J. Clean. Prod. 2020, 249, 119348. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.P. A stochastic disaster-resilient and sustainable reverse logistics model in big data environment. Ann. Oper. Res. 2022, 319, 853–884. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Designing a sustainable dynamic collection service for WEEE: An economic and environmental analysis through simulation. Waste Manag. Res. 2019, 37, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Moosavi, J.; Fathollahi-Fard, A.M.; Dulebenets, M.A. Supply chain disruption during the COVID-19 pandemic: Recognizing potential disruption management strategies. Int. J. Disaster Risk Reduct. 2022, 75, 102983. [Google Scholar] [CrossRef] [PubMed]
- Kusch-Brandt, S. Websites informing the citizen in germany about the local recycling centre: A survey under a circular economy perspective. Int. Multidiscip. Sci. GeoConf. 2020, 20, 281–286. [Google Scholar] [CrossRef]
- Tavana, M.; Kian, H.; Nasr, A.K.; Govindan, K.; Mina, H. A comprehensive framework for sustainable closed-loop supply chain network design. J. Clean. Prod. 2022, 332, 129777. [Google Scholar] [CrossRef]
- Edalatpour, M.A.; Al-e-hashem, S.M.J.M.; Karimi, B.; Bahli, B. Investigation on a novel sustainable model for waste management in megacities: A case study in tehran municipality. Sustain. Cities Soc. 2018, 36, 286–301. [Google Scholar] [CrossRef]
- NSFC. About Us-NSFC at a Glance. Available online: https://www.nsfc.gov.cn/english/site_1/about/6.html (accessed on 13 July 2023).
- Chen, H.Y.; Sharma, K.; Sharma, C.; Sharma, S. Integrating explainable artificial intelligence and blockchain to smart agriculture: Research prospects for decision making and improved security. Smart Agric. Technol. 2023, 6, 100350. [Google Scholar] [CrossRef]
- Chakraborty, K.; Ghosh, A.; Pratap, S. Adoption of blockchain technology in supply chain operations: A comprehensive literature study analysis. Oper. Manag. Res. 2023, 16, 1989–2007. [Google Scholar] [CrossRef]
- Nobanee, H.; Al Hamadi, F.Y.; Abdulaziz, F.A.; Abukarsh, L.S.; Alqahtani, A.F.; AlSubaey, S.K.; Alqahtani, S.M.; Almansoori, H.A. A bibliometric analysis of sustainability and risk management. Sustainability 2021, 13, 3277. [Google Scholar] [CrossRef]
- Chiang, C.T.; Kou, T.C.; Koo, T.L. A systematic literature review of the it-based supply chain management system: Towards a sustainable supply chain management model. Sustainability 2021, 13, 2547. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Sinha, S.; Modak, N.M. A systematic review in recycling/reusing/re-manufacturing supply chain research: A tertiary study. Int. J. Sustain. Eng. 2021, 14, 1411–1432. [Google Scholar] [CrossRef]
- Sun, X.; Yu, H.; Solvang, W.D.; Wang, Y.; Wang, K. The application of Industry 4.0 technologies in sustainable logistics: A systematic literature review (2012–2020) to explore future research opportunities. Environ. Sci. Pollut. Res. 2022, 29, 9560–9591. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Feng, H.; de Soto, B.G. Revamping construction supply chain processes with circular economy strategies: A systematic literature review. J. Clean. Prod. 2022, 335, 130240. [Google Scholar] [CrossRef]
- Sahu, A.; Agrawal, S.; Kumar, G. Integrating Industry 4.0 and circular economy: A review. J. Enterp. Inf. Manag. 2022, 35, 885–917. [Google Scholar] [CrossRef]
- Karmaker, C.L.; Bari, A.M.; Anam, Z.; Ahmed, T.; Ali, S.M.; Pacheco, D.A.d.J.; Moktadir, A. Industry 5.0 challenges for post-pandemic supply chain sustainability in an emerging economy. Int. J. Prod. Econ. 2023, 258, 108806. [Google Scholar] [CrossRef]
- Ribeiro, M.P.L.; Tommasetti, R.; Gomes, M.Z.; Castro, A.; Ismail, A. Adoption phases of Green Information Technology in enhanced sustainability: A bibliometric study. Clean. Eng. Technol. 2021, 3, 100095. [Google Scholar] [CrossRef]
- Yu, Z.; Waqas, M.; Tabish, M.; Tanveer, M.; Haq, I.U.; Khan, S.A.R. Sustainable supply chain management and green technologies: A bibliometric review of literature. Environ. Sci. Pollut. Res. 2022, 29, 58454–58470. [Google Scholar] [CrossRef]
- Khan, A.H.; López-Maldonado, E.A.; Khan, N.A.; Villarreal-Gómez, L.J.; Munshi, F.M.; Alsabhan, A.H.; Perveen, K. Current solid waste management strategies and energy recovery in developing countries—State of art review. Chemosphere 2022, 291, 133088. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D. The Industry 5.0 framework: Viability-based integration of the resilience, sustainability, and human-centricity perspectives. Int. J. Prod. Res. 2023, 61, 1683–1695. [Google Scholar] [CrossRef]
- Mhatre, P.; Panchal, R.; Singh, A.; Bibyan, S. A systematic literature review on the circular economy initiatives in the European Union. Sustain. Prod. Consum. 2021, 26, 187–202. [Google Scholar] [CrossRef]
- Oliveira, L.S.; Machado, R.L. Application of optimization methods in the closed-loop supply chain: A literature review. J. Comb. Optim. 2021, 41, 357–400. [Google Scholar] [CrossRef]
- Khanfar, A.A.A.; Iranmanesh, M.; Ghobakhloo, M.; Senali, M.G.; Fathi, M. Applications of blockchain technology in sustainable manufacturing and supply chain management: A systematic review. Sustainability 2021, 13, 7870. [Google Scholar] [CrossRef]
- Böckel, A.; Nuzum, A.K.; Weissbrod, I. Blockchain for the Circular Economy: Analysis of the Research-Practice Gap. Sustain. Prod. Consum. 2021, 25, 525–539. [Google Scholar] [CrossRef]
- Mageto, J. Big data analytics in sustainable supply chain management: A focus on manufacturing supply chains. Sustainability 2021, 13, 7101. [Google Scholar] [CrossRef]
Topics | Keywords |
---|---|
Reverse Logistics | Supply Chain, Recycling, Decision-Making, Reverse Logistic Network, Green Supply Chain, Reverse Supply Chain, Closed-Loop Supply Chain. |
Sustainability | Sustainable Supply Chain, Economic and Social Effects, Environmental Impact, Environmental Regulations. |
No | Source | Documents | Country | Publisher | SJR-2023 | H-Index SJR | JCR-2022 | Subject Area and Category |
---|---|---|---|---|---|---|---|---|
1 | Sustainability Switzerland | 2972 | Switzerland | MDPI | 0.67 | 169 | 3.9 |
|
2 | The Journal of Cleaner Production | 1848 | United Kingdom | Elsevier | 2.06 | 309 | 11.1 |
|
3 | Science of the total environment | 551 | Netherlands | Elsevier | 2.0 | 353 | 9.8 |
|
4 | Resources Conservation and Recycling | 482 | Netherlands | Elsevier | 2.77 | 196 | 13.2 |
|
5 | The Journal of Environmental Management | 363 | United States | Elsevier | 1.77 | 243 | 8.7 |
|
6 | Energies | 319 | Switzerland | MDPI | 0.65 | 152 | 3.2 |
|
7 | Environmental Science and Pollution Research | 250 | Germany | Springer Nature | 1.01 | 179 | 5.8 |
|
8 | Sustainable Production and Consumption | 222 | Netherlands | Elsevier | 2.36 | 76 | 12.1 |
|
9 | Computers And Industrial Engineering | 200 | United Kingdom | Elsevier | 1.7 | 161 | 7.9 |
|
10 | The International Journal of Environmental Research and Public Health | 198 | Switzerland | MDPI | 0.81 | 198 | 4.614 |
|
Author | Documents | Country | Total of Citations | Average Citations per Year | Number of Citations as First Author |
---|---|---|---|---|---|
Tseng, M.L. | 63 | Taiwan | 2556 | 365 | 24 |
Govindan, K. | 56 | Denmark | 4161 | 594 | 14 |
Sarkis, J. | 55 | United States | 7425 | 1061 | 4 |
Luthra, S. | 49 | India | 3659 | 523 | 6 |
Mangla, S.K. | 49 | India | 4150 | 593 | 7 |
Raut, R.D. | 44 | India | 2270 | 324 | 5 |
Ren, J. | 44 | Hong Kong | 1283 | 183 | 9 |
Lim, M.K. | 42 | United Kingdom | 2097 | 300 | 1 |
Kumar, A. | 39 | United Kingdom | 2143 | 306 | 5 |
Garza-Reyes, J.A. | 37 | United Kingdom | 2398 | 343 | 1 |
No | Citation | Title | Times Cited | Average Citations per Year | Institution | Journal | Country (1st Author) | SJR-2023 | Main Topic (Subject Area and Category) |
---|---|---|---|---|---|---|---|---|---|
1 | [36] | Blockchain technology and its relationships to sustainable supply chain management | 1888 | 270 | Worcester Polytechnic Institute | The International Journal of Production Research | United States | 2.67 |
|
2 | [37] | Soil quality: A critical review | 1462 | 209 | Research Institute of Organic Agriculture FiBL | Soil Biology and Biochemistry | Switzerland | 3.45 |
|
3 | [38] | Literature review of Industry 4.0 and related technologies | 1192 | 170 | Marmara University | The Journal of Intelligent Manufacturing | Turkey | 2.07 |
|
4 | [39] | Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy | 1137 | 163 | Swansea University | The International Journal of Information Management | United Kingdom | 5.78 |
|
5 | [40] | Waste mismanagement in developing countries: A review of global issues | 1035 | 148 | The University of Insubria | The International Journal of Environmental Research and Public Health | Italy | 0.81 |
|
6 | [41] | Smart Manufacturing | 852 | 122 | The University of Iowa | The International Journal of Production Research | United States | 2.67 |
|
7 | [42] | Circular economy: From review of theories and practices to development of implementation tools | 807 | 115 | Chalmers University of Technology | Resources, Conservation and Recycling | Sweden | 2.77 |
|
8 | [43] | The Relevance of Circular Economy Practices to the Sustainable Development Goals | 791 | 113 | The University of Sussex | Journal of Industrial Ecology | United Kingdom | 1.7 |
|
9 | [44] | How do scholars approach the circular economy? A systematic literature review | 765 | 109 | Roma Tre University | The Journal of Cleaner Production | Italy | 2.06 |
|
10 | [45] | A review of recycled aggregate in concrete applications (2000–2017) | 733 | 105 | Western Sydney University | Construction and Building Materials | Australia | 2.0 |
|
Affiliation | Documents | Country |
---|---|---|
Chinese Academy of Sciences | 305 | China |
Ministry of Education of the People’s Republic of China | 270 | China |
The Hong Kong Polytechnic University | 256 | Hong Kong |
University of Tehran | 213 | Iran |
Wageningen University & Research | 193 | Netherlands |
CNRS Centre National de la Recherche Scientifique | 172 | France |
Tsinghua University | 161 | China |
Universidade de Lisboa | 159 | Portugal |
Delft University of Technology | 154 | Netherlands |
Politecnico di Milano | 151 | Italy |
Funding Sponsor | Documents | Country |
---|---|---|
National Natural Science Foundation of China | 2154 | China |
Horizon 2020 Framework Programme | 560 | European Union |
European Commission | 463 | Belgium |
National Science Foundation | 451 | United States |
Fundamental Research Funds for the Central Universities | 408 | China |
National Key Research and Development Program of China | 383 | China |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | 328 | Brazil |
Conselho Nacional de Desenvolvimento Científico e Tecnológico | 323 | Brazil |
European Regional Development Fund | 307 | European Union |
Fundação para a Ciência e a Tecnologia | 277 | Portugal |
Criterion | Integrating Explainable Artificial Intelligence and Blockchain to Smart Agriculture: Research Prospects for Decision Making and Improved Security [64] | Adoption of Blockchain Technology in Supply Chain Operations: A Comprehensive Literature Study Analysis [65] | Reverse Logistics and Sustainability: A Bibliometric Analysis |
---|---|---|---|
Objective | Provide a bibliometric description to identify trends and visualize the integration of two promising technologies, Explainable Artificial Intelligence (XAI) and Blockchain, in smart agriculture. | Apply a systematic review of the literature through a bibliometric analysis of Blockchain to relate key areas of management, practical challenges, limitations, and opportunities. | Analysis of the evolution of the issue of reverse logistics and sustainability addressed from the bibliometric review for the understanding of collaboration networks and relevant indicators. |
Subject area | The combination of XAI, blockchain, and smart agriculture improves food security. It allows for rapidly detecting contaminants, machine learning to monitor and manage crops, and Blockchain data logging, avoiding intermediaries and costs between transactions. | Blockchain secures information exchanges to improve business processes and customer service, specifically in the supply chain, for traceability, trust, sustainability, profitability, and transparency. | Reverse logistics and sustainability are vital criteria for designing, manufacturing, and managing companies that seek to reduce their environmental impact and transition to the circular model. |
Main Results |
|
|
|
Future Lines of Research |
|
|
|
Limitations |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Navarro, K.; Castro-García, L.; Assan-Barrios, K.; Vergara-Bujato, K.; Zamora-Musa, R. Reverse Logistics and Sustainability: A Bibliometric Analysis. Sustainability 2024, 16, 5279. https://doi.org/10.3390/su16135279
Salas-Navarro K, Castro-García L, Assan-Barrios K, Vergara-Bujato K, Zamora-Musa R. Reverse Logistics and Sustainability: A Bibliometric Analysis. Sustainability. 2024; 16(13):5279. https://doi.org/10.3390/su16135279
Chicago/Turabian StyleSalas-Navarro, Katherinne, Lia Castro-García, Karolay Assan-Barrios, Karen Vergara-Bujato, and Ronald Zamora-Musa. 2024. "Reverse Logistics and Sustainability: A Bibliometric Analysis" Sustainability 16, no. 13: 5279. https://doi.org/10.3390/su16135279
APA StyleSalas-Navarro, K., Castro-García, L., Assan-Barrios, K., Vergara-Bujato, K., & Zamora-Musa, R. (2024). Reverse Logistics and Sustainability: A Bibliometric Analysis. Sustainability, 16(13), 5279. https://doi.org/10.3390/su16135279