A Comprehensive Experimental Study on the Physical Performance and Durability of Bamboo Bio-Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Isothermal Calorimetry on Bamboo Bio-Particles
2.3. Bamboo Particles Preparation
2.4. Bamboo Bio-Concrete (BBC) Fabrication and Testing
2.4.1. Bio-Concretes Production
2.4.2. Test Methods
- Water absorption by capillarity (g/cm2);
- Mass of the test specimen in contact with water (g);
- Mass of the dry specimen in constant mass (g);
- Cross-sectional area of the specimen (cm2).
- Drying shrinkage deformation (%);
- Mass loss during drying shrinkage (%);
- Length reading at time t (mm);
- Length reading after 28 days of curing (mm);
- Distance between gage studs (mm);
- Mass of the specimen at time t (kg);
- Mass initial of the specimen after 28 days of curing (kg).
3. Experimental Results
3.1. Workability
3.2. Homogeneity of Bio-Concretes
3.3. Density and Thermal Conductivity
3.4. Capillary Absorption
3.5. Drying Shrinkage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaibor, N.; Mateus, R.; Leitão, D.; Cristelo, N.; Miranda, T.; Pereira, E.N.; Cunha, V.M. Sustainability assessment of half-sandwich panels based on alkali-activated ceramic/slag wastes cement versus conventional building solutions. J. Clean. Prod. 2023, 389, 136108. [Google Scholar] [CrossRef]
- Kahawalage, A.C.; Melaaen, M.C.; Tokheim, L.-A. Opportunities and challenges of using SRF as an alternative fuel in the cement industry. Clean. Waste Syst. 2023, 4, 100072. [Google Scholar] [CrossRef]
- Curmi, L.; Weththasinghe, K.K.; Tariq, M.A.U.R. Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector. Sustainability 2022, 14, 14628. [Google Scholar] [CrossRef]
- Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. e-Prime 2021, 1, 100002. [Google Scholar] [CrossRef]
- Caldas, L.R.; Silva, M.V.; Silva, V.P.; Carvalho, M.T.M.; Toledo Filho, R.D. How Different Tools Contribute to Climate Change Mitigation in a Circular Building Environment?—A Systematic Literature Review. Sustainability 2022, 14, 3759. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Haque, M.A.; Shah, S.F.A. Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties. J. Clean. Prod. 2019, 229, 128–143. [Google Scholar] [CrossRef]
- Da Gloria, M.H.Y.R.; Toledo Filho, R.D. Innovative sandwich panels made of wood bio-concrete and sisal fiber reinforced cement composites. Constr. Build. Mater. 2021, 272, 121636. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Moisture transfer and thermal properties of hemp–lime concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Al-Tamimi, A.S.; Qasem, N.A.; Bindiganavile, V. Thermal performance evaluation of hempcrete masonry walls for energy storage in cold weather. Appl. Therm. Eng. 2024, 248, 123304. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F. (Eds.) Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; Springer: Berlin/Heidelberg, Germany, 2017; Volume 23. [Google Scholar]
- Cérézo, V. Propriétés Mécaniques, Thermiques et Acoustiques d’un Matériau à base de Particules Végétales: Approche Expérimentale et Modélisation Théorique. Doctoral Dissertation, Institut National des Sciences Appliquées, Lyon, France, 2005. [Google Scholar]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J.-E. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass-Valorization 2017, 9, 1095–1112. [Google Scholar] [CrossRef]
- Magniont, C. Contribution à la Formulation et à la Caractérisation d’un Ecomatériau de Construction à Base D’agroressources. Doctoral Dissertation, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France, 2010. [Google Scholar]
- Wei, Y.; Song, C.; Chen, B.; Ahmad, M.R. Experimental investigation on two new corn stalk biocomposites based on magnesium phosphate cement and ordinary Portland cement. Constr. Build. Mater. 2019, 224, 700–710. [Google Scholar] [CrossRef]
- Sangmesh, B.; Patil, N.; Jaiswal, K.K.; Gowrishankar, T.; Selvakumar, K.K.; Jyothi, M.; Jyothilakshmi, R.; Kumar, S. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 2023, 368, 130457. [Google Scholar] [CrossRef]
- Da Gloria, M.Y.R.; Andreola, V.M.; Santos, D.; Pepe, M.; Toledo Filho, R.D. A comprehensive approach for designing workable bio-based cementitious composites. J. Build. Eng. 2021, 4, 101696. [Google Scholar] [CrossRef]
- Sadiku, N.A.; Sanusi, A. Wood pre-treatment influence on the hydration of Portland cement in combination with some tropical wood species. Pro Ligno 2014, 10. [Google Scholar]
- Toledo Filho, R.D.; Da Gloria, M.Y.R.; Andreola, V.M. Keynote: 3rd International Conference on Bio-Based Building Materials. Durab. Bio-Based Build. Mater. 2019, 37, N°2. [Google Scholar]
- Wu, F.; Yu, Q.; Liu, C. Durability of thermal insulating bio-based lightweight concrete: Understanding of heat treatment on bio-aggregates. Constr. Build. Mater. 2020, 269, 121800. [Google Scholar] [CrossRef]
- Bambooline. Available online: https://bambooline.com.br/ (accessed on 7 June 2024).
- Tudubambu. Available online: https://tudubambu.com.br/ (accessed on 7 June 2024).
- Bambu de Lei. Available online: https://www.instagram.com/bambudelei/ (accessed on 7 June 2024).
- Drumond, P.M.; Wiedman, G. (Eds.) Bambus No Brasil: Da Biologia à Tecnologia; Instituto Ciência Hoje: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Kai, Z.; Chen, X. Potential of Bamboo-Based Panels Serving as Prefabricated Construction Materials. 2014. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a08705ec956dea028da21e2e9850da563afca567 (accessed on 19 June 2024).
- Da Cunha Gomes, B.M.; da Silva, N.A.; Saraiva, A.B.; Caldas, L.R.; Toledo Filho, R.D. Environmental and mechanical performance assessment of bamboo culms and strips for structural use: Evaluation of Phyllostachys pubescens and Dendrocalamus giganteus species. Constr. Build. Mater. 2022, 353, 129078. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- de Aguiar, A.L.D.; da Silva, N.A.; Gomes, B.M.C.; da Gloria, M.Y.R.; Hasparyk, N.P.; Filho, R.D.T. Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane. Materials 2023, 16, 6105. [Google Scholar] [CrossRef]
- Andreola, V.M. Durabilidade ao Intemperismo Natural e ao Ataque Biológico de Bio-Concretos de Bambu. Tese de Doutorado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2021.
- Nguyen, V.; Amziane, G.; Torrent, G.; Saidi, K.; De Baynast, H. Design of green concrete made of plant-derived aggregates and a pumice-lime binder. Cem. Concr. Compos. 2012, 34, 231–241. [Google Scholar]
- Frantz, N.; Dutra, L.F.; Nguyen, D.M.; Almeida, G.; Perré, P. Effects of phase ratios, density and particle shapes on directional thermal conductivity of vegetable concrete: A predictive model. Constr. Build. Mater. 2024, 410, 134238. [Google Scholar] [CrossRef]
- Bederina, M.; Gotteicha, M.; Belhadj, B.; Dheily, R.; Khenfer, M.; Queneudec, M. Drying shrinkage studies of wood sand concrete—Effect of different wood treatments. Constr. Build. Mater. 2012, 36, 1066–1075. [Google Scholar] [CrossRef]
- Essaghouri, L.; Mao, R.; Li, X. Environmental benefits of using hempcrete walls in residential construction: An LCA-based comparative case study in Morocco. Environ. Impact Assess. Rev. 2023, 100, 107085. [Google Scholar] [CrossRef]
- Cetris Company: Cement Bonded Particles. Available online: http://www.cetris.cz (accessed on 23 September 2023).
- Viroc—Dossier Técnico de Aplicação. Available online: http://www.viroc.pt/homepage.aspx (accessed on 23 September 2023).
- Beton Wood—Costruzioni a Secco per la Bioedilizia. Available online: https://www.betonwood.com/ (accessed on 23 September 2023).
- Rode, C. NORDTEST Workshop on Moisture Buffer Capacity—Collection of Abstracts; Departamento de Engenharia Civil, Universidade Técnica da Dinamarca (DTU): Lyngby, Denmark, 2005. [Google Scholar]
- NBR NM 52; Agregado Miúdo–Determinação da Massa Específica e Massa Específica Aparente. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2009.
- ISO 22157; Bamboo Structures: Determination of Physical and Mechanical Properties of Bamboo Culms: Test Methods. ISO: Geneva, Switzerland, 2019.
- NBR 5733; Cimento Portland com Alta Resistencia Inicial. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 1991.
- Hofstrand, A.D.; Moslemi, A.A.; Garcia, J.F. Curing characteristics of wood particles from nine northern Rocky Mountain species mixed with Portland cement. For. Prod. J. 1984, 34, 57–61. [Google Scholar]
- NBR 13276; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação do Índice de Consistência. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016.
- NBR 9779; Argamassa e Concreto Endurecidos—Determinação da Absorção de Água por Capilaridade. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2012.
- ASTM International C 157; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM: West Conshohocken, PA, USA, 2006.
- Chu, S. Volume-based design of ultra-low cement concrete. Constr. Build. Mater. 2023, 391, 131405. [Google Scholar] [CrossRef]
- NBR 15220-2; Desempenho Térmico de Edificações: Parte 2: Métodos de Cálculo da Transmitância, da Capacidade Térmica, do Atraso Térmico e do fator solar de Elementos e Componentes de Edificações. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2005.
CaO | SiO2 | Al2O3 | Fe2O3 | So3 | K2O | SrO | TiO2 | MnO |
---|---|---|---|---|---|---|---|---|
68.973 | 14.955 | 4.700 | 3.500 | 4.290 | 0.980 | 0.420 | 0.140 | 0.014 |
Induction | Acceleration | ||||
---|---|---|---|---|---|
Mixtures | Duration | Beginning | Ending | Reaction Rate | Maximum Heat Flow |
(h) | (h) | (h) | (k) | (mW/g) | |
REF | 1.625 | 0.885 | 6.20 | 0.885 | 3.161 |
BP-0 | 9.116 | 0.419 | 16.58 | 0.419 | 2.127 |
BP-1 | 2.607 | 0.790 | 7.29 | 0.790 | 2.981 |
BP-3 | 2.453 | 0.771 | 7.27 | 0.771 | 2.995 |
Cement | BPs | Wh | Wc | Compressive Strength (MPa) | |
---|---|---|---|---|---|
BBC 2.5-0.40 | 1 | 0.4 | 0.4 | 0.44 | 3.46 |
BBC 2.5-0.50 | 1 | 0.4 | 0.5 | 0.44 | 3.22 |
BBC 3-0.40 | 1 | 0.33 | 0.4 | 0.36 | 4.57 |
BBC 3-0.50 | 1 | 0.33 | 0.5 | 0.36 | 3.82 |
Transitional Point (Tp1) | Sorptivity (g/cm2·h0.5) | Transitional Point (Tp2) | Sorptivity (g/cm2·h0.5) | ||||
---|---|---|---|---|---|---|---|
g/cm2 | h0.5 | S1 | S2 | g/cm2 | h0.5 | S3 | |
BBC 2.5-0.40 | 1.19 | 2.00 | 0.522 | 0.121 | 2.83 | 15.43 | 0.016 |
BBC 2.5-0.50 | 1.10 | 2.00 | 0.518 | 0.125 | 2.77 | 15.43 | 0.012 |
BBC 3-0.40 | 0.75 | 1.41 | 0.536 | 0.116 | 2.48 | 16.19 | 0.023 |
BBC 3-0.50 | 0.68 | 1.41 | 0.478 | 0.114 | 2.40 | 16.19 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreola, V.M.; da Gloria, M.Y.R.; Pepe, M.; Toledo Filho, R.D. A Comprehensive Experimental Study on the Physical Performance and Durability of Bamboo Bio-Concrete. Sustainability 2024, 16, 5334. https://doi.org/10.3390/su16135334
Andreola VM, da Gloria MYR, Pepe M, Toledo Filho RD. A Comprehensive Experimental Study on the Physical Performance and Durability of Bamboo Bio-Concrete. Sustainability. 2024; 16(13):5334. https://doi.org/10.3390/su16135334
Chicago/Turabian StyleAndreola, Vanessa M., M’hamed Y. R. da Gloria, Marco Pepe, and Romildo D. Toledo Filho. 2024. "A Comprehensive Experimental Study on the Physical Performance and Durability of Bamboo Bio-Concrete" Sustainability 16, no. 13: 5334. https://doi.org/10.3390/su16135334
APA StyleAndreola, V. M., da Gloria, M. Y. R., Pepe, M., & Toledo Filho, R. D. (2024). A Comprehensive Experimental Study on the Physical Performance and Durability of Bamboo Bio-Concrete. Sustainability, 16(13), 5334. https://doi.org/10.3390/su16135334