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Abstract: Reducing CO2 emissions is urgently needed to slow down the impacts of climate change.
CO2 capture using an amine solution has been developed and implemented at pilot and commercial
scales. However, amine scrubbing, in particular, produces a lot of degraded solvents as waste and
is energy intensive. Solid sorbents have been used to overcome these drawbacks. In this work,
waste biomass-derived carbon materials were developed and characterized. Advanced thermal
chemical processes, i.e., hydrothermal and pyrolysis processes, were applied to produce materials
from agrifood waste, such as soybean and okara. It was found that functional groups (-C=O and
-OH) appeared in the synthesized materials, implying the generation of surface oxygenated groups.
Preliminary results showed that synthesized activated carbons were obtained with good yields
and relatively high surface areas, which may be applied as CO2 adsorption materials to solve CO2

emission problems.

Keywords: biomass; okara powder waste; pyrolysis; hydrothermal carbonization; activated carbon;
catalysis; adsorption; CO2 adsorption

1. Introduction

CO2 emissions have been a global concern for decades [1] due to the increase in emis-
sions into the atmosphere [2–5]. For instance, in 2022, globally, fossil fuel combustion and
cement manufacturing sectors generated 36.1 ± 0.3 GtCO2 that was emitted into our global
atmosphere—an increase of 1.5% compared to the global CO2 emissions for 2021, which
amounted to 35.5 GtCO2 [6]. Many countries, stakeholders, and organizations are working
towards CO2 reductions and are committed to net-zero targets, including Vietnam. In 2022,
Vietnam’s CO2 emissions amounted to 343.61 million tons and are estimated to quadruple
by 2050 if no action is taken. To combat the climate change problem, CO2 needs to be cap-
tured and long-term stored. CO2 capture using an amine solution has been developed and
implemented at pilot and commercial scales. However, aqueous amine solutions and amine
scrubbing, in particular, produce a lot of degraded solvents as waste, are energy-intensive,
and are not very economical during the regeneration process [7]. Using solid adsorption
materials is an important approach to cutting down CO2 emissions [2], since such mate-
rials overcome the drawbacks of aqueous amine-based solutions [1]. Currently, the solid
materials that are most widely used for CO2 adsorption include zeolites, metal–organic
frameworks (MOFs), carbon materials (activated carbon, graphite, graphene, carbon nan-
otubes, biochar, and hydrochar) [2,7], and amine-skeleton solid-amine materials [8]. Some
other materials, such as alumina, amine-based materials, metal oxides [9], silica, porous
crystalline solids [10], and polymers can also be used [2,7,8,11–13].

Biomass is the major sustainable source for generating activated carbon, biochar,
hydrochar [14,15], and biomaterials [2,16]. Popular biomass sources include rice husks,
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rice straw, and coffee waste. Lately, there have been several studies on CO2 adsorption
materials derived from these common biomass sources, such as works on the synthesis of
CO2-absorbent materials derived from rice straw, lotus leaves, biomass waste, bamboo,
waste coffee grounds, and rice husks [17–22].

Okara powder waste, or soy pulp, “doufu zha” or “dou zha” in Chinese, and “bã d̄ậu
phụ” in Vietnamese, consists of insoluble residues [23] and is a by-product of soy milk
(after soy slurry is filtered into soy milk) and tofu preparation. It is estimated that for every
kilogram of dry soybeans processed into soy milk or tofu, one kilogram of okara power
is produced [24]. Okara contains crude fibers which are mainly composed of cellulose,
hemicellulose, and lignin. These fibers can be used in food industries, e.g., for making
bakery products [25].

Worldwide, most okara is utilized as food for livestock, such as hogs and cows [26].
The rest of the okara is used for making natural fertilizers or producing compost for
gardening or agricultural purposes since it is fairly rich in nitrogen. A small amount of
okara is used in cooking. Owing to the high fiber content of okara and its availability, okara
is a good raw material for producing high-fiber foods and is also used for making dietary
foods for people who want to avoid diabetes and obesity [27].

To convert common biomass and okara in particular into adsorbent materials, ther-
mochemical processes such as pyrolysis and hydrothermal carbonization are often used.
Pyrolysis is a thermal decomposition process performed in an inert, i.e., N2, environ-
ment at an elevated temperature range of 500–600 ◦C. It is commonly used for producing
carbon-rich materials from organic matter, e.g., biomass. This process produces liquids
(known as bio-oils, condensable volatiles); gases such as CO, CO2, H2, and gaseous hy-
drocarbons [6,28]; and solids (known as biochar). Biochar is a popular adsorbent for
environmental remediation, e.g., for removing heavy metal(oids) from wastewater [29,30].
Better adsorption is obtained when nanoadsorbent biochar surface areas are increased [29].
The proportion of these fractions depends on pyrolysis operation conditions, namely, heat-
ing rate, temperature [31], holding time, type of reactor [32–34], particle size, and the nature
of feedstock used [35,36]. To maximize the solid fraction, it was found [13] that the heating
rate of the pyrolysis process should be below 1.0 ◦C/min [31], the operating temperature
should be around 550 ◦C [31], and the residence time should be below 2 h [31].

The hydrothermal carbonization method (known as HTC) is a thermal chemical
reaction using water as a solvent in a sealed pressured vessel in a temperature range
of 180–300 ◦C (corresponding to a pressure of 2–6 MPa) for 5 to 240 min [37–39]. The
hydrothermal technology is suitable for wet feedstock, eliminating the energy-intensive
drying step to produce carbon-rich solids known as “hydrochars” [40]. Hydrochars can
be used for pollutant treatment [41] and bioenergy [42], or as precursors for preparing
activated carbons [43]. The hydrothermal process is favorable in lowering ash contents,
as a significant proportion of inorganics are dissolved in the aqueous phase [43]. Zeolites,
which include metal and metal oxide-supported catalysts, have been proven to increase
biomass conversion selectivity and efficiency [28]. Natural zeolites can have thermally
stable carbon and higher surface areas and pore volumes, which are advantageous for the
hydrothermal carbonization of biomass [44].

Though there has been a lot of research undertaken to develop CO2-adsorbent materi-
als from biomass sources, such as corn cobs (CCs), date seeds (DSs), peanut shells (PSs),
pomegranate peels (PPs), and rice husks (RHs) in the work of Mumtaz H [19] and lotus
stalks in that of Yang P [45], no research has been carried out on the synthesis of CO2-
absorbent materials from okara powder waste. In terms of environmental implications and
cost-effectiveness, okara can be considered an ideal biomass source for activated carbon,
hydrochar, and biochar production for CO2 adsorption. This research aimed to use simple,
low-cost, and environmentally friendly methods to obtain activated carbon via a chemical
thermal process, namely, slow pyrolysis and hydrothermal synthesis of okara-derived
materials, for CO2 adsorption. In the context of global CO2 emissions and sustainable
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development [46], this research is useful since these experiments offer new insights into the
potential application of okara powder waste.

2. Materials and Methods

Okara powder waste was collected from local tofu producers in Hanoi. The okara
powder waste collected in Hanoi is naturally white in color and water-absorbing in its
powder phase and is often sold by tofu producers to livestock farmers or gardeners as
animal feed or as a supplement for flower and ornamental plant growers. Okara powder
waste was brought to the lab and dried naturally under sunlight for 7–10 days. Next, the
okara powder waste was dried in a Contherm Thermotec 2000 oven (Lower Hutt, New
Zealand) at 100 ◦C for 4–6 h, while the okara powder waste was drained of water and
turned into a solid porous phase. Then, the dried biomass was ground into small particles
to achieve uniform particles of 0.2–0.45 mm. Ethanol (C2H5OH 99%), KOH, and melamine
(C3H6N6) were purchased from Xilong Chemical Inc. (China). Potato peels, shrimp shells,
and coffee waste were collected from household sources, while rice husks and rice straw
were collected from rice fields in Hanoi municipal areas. All of these biomass sources
(shrimp shells, coffee waste, and rice straw) were washed and then dried in sunlight and
in an oven (100 ◦C) until completely dry before they were ground into particle sizes of
0.2–0.45 mm and subjected to pyrolysis or hydrothermal carbonization processes. The
shrimp shells were washed and dried in an oven (100 ◦C), while the coffee waste and rice
straw were dried in an oven and ground into particle sizes of 0.2–0.45 mm before they were
subjected to pyrolysis or HTC processes.

To achieve reliable results, several samples were replicated during the experimental
steps. Three replicates were performed for pyrolysis experiments using sample OPW3,
while two replicates were performed for samples OPW5 and OPW10.

2.1. Preparation of Activated Carbon (AC) from Okara Powder Waste
2.1.1. Pyrolysis Experimental Setup

In the experiments, several samples were coded OPWi, where i is the experiment
conducted.

The pyrolysis experiments were carried out in a tubular furnace, as shown in
Figures 1 and 2. In this research, we used N2 as an inert gas during the pyrolysis ex-
periments. A horizontal furnace (Lenton Thermal, Hope Valley, United Kingdom) was
used. The okara powder waste was injected into a tube of the furnace where a N2 flow was
supplied. In our pyrolysis experiment, dried biomass or okara was supplied, and a high
temperature of 600 ◦C was used to carbonize a significant amount of feedstock; the heating
rate was maintained at 3 ◦C/min, and the residence time was maintained for 1 h.
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Okara powder waste OPW2 Carbonization at 650 °C in a N2 gas flow for 1 h No activating agent 
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Hydrothermal carbonization at 200 °C; the weight ratio was 
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Figure 1. Schematic design of the vertical batch pyrolysis system setup (for samples OPW1–OPW6).
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Figure 2. Schematic design of the horizontal batch pyrolysis experimental setup.

The final products (i.e., biochar) were approximately the same in the two designs in
terms of outside color, structure, burn-off, and conversion ratio, since pyrolysis conditions
were maintained during the pyrolysis experiments. The vertical pyrolysis design was used
for samples OPW1–OPW6 (code explanations are given in Table 1), while the horizontal
pyrolysis design was used for the rest of the samples (OPW7–OPW10) (code explanations
are given in Table 1; see the Section 3 below).

Table 1. The synthesized samples and detailed pretreatment methods.

Biomass Precursor Sample Code Pretreatment Methods Activating Agent

Okara powder waste OPW1 Carbonization at 800 ◦C in an Ar gas flow for 1 h No activating agent

Okara powder waste OPW2 Carbonization at 650 ◦C in a N2 gas flow for 1 h No activating agent

Okara powder waste OPW3 Carbonization at 600 ◦C in a N2 gas flow for 1 h No activating agent

Okara powder waste OPW4

Hydrothermal carbonization at 200 ◦C; the
heating rate was 60 ◦C/h; a temperature of

200 ◦C was maintained for 4 h; the weight ratio
of OPW/water was 12.8 g: 40 mL

No activating agent

Okara powder waste OPW5

Hydrothermal carbonization at 200 ◦C; the
weight ratio was 12.8 g OPW: 6.4 g zeolite (4 mm

in size): 40 mL water; a temperature of 200 ◦C
was maintained for 4 h; the heating rate was

60 ◦C/h

No activating agent

Okara powder waste OPW6

Hydrothermal carbonization at 200 ◦C, with a
heating rate of 60 ◦C/hour and the temperature

kept at 200 ◦C for 4 h; then, the sample was
mixed with KOH and melamine with a mass

ratio of hydrochar/KOH/melamine = 1:4:2, and
pyrolysis (a two-step process) was performed at
600 ◦C in a N2 flow for 1 h with a N2 flow rate of

1 L/min

KOH and melamine (weight
ratio of KOH/melamine = 2:1)

Okara powder waste OPW7

Carbonization was performed at 600 ◦C in N2 for
1 h to make biochar; after that, the biochar was
mixed with KOH and water; then, the sample

was kept under stirring for 48 h with a
biochar/KOH/water weight ratio of 1:4:5, after
which it was filtered and dried, then calcined at

600 ◦C in N2 for 1 h

KOH

Rice husk RH Carbonization at 600 ◦C in N2 for 1 h No activating agent
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Table 1. Cont.

Biomass Precursor Sample Code Pretreatment Methods Activating Agent

Okara powder waste OPW8

Carbonization at 600 ◦C in N2 for 1 h, followed
by a dry mixing process with KOH (ratio of

biochar/KOH = 1.3), then drying at 120 ◦C and
carbonization at 600 ◦C

KOH

Okara powder waste OPW9

Carbonization at 600 ◦C in N2 for 1 h, followed
by a dry mixing process with KOH (ratio of

biochar/KOH = 1.4), then drying at 120 ◦C and
carbonization at 600 ◦C

KOH

Okara powder waste OPW10

Carbonization at 600 ◦C in N2 for 1 h, followed
by mixing with a biochar/KOH/water ratio of

1:5:10; then, the sample was kept for 5 days,
filtered, dried, and calcined at 600 ◦C

KOH

2.1.2. Preparation of Activated Carbon via the Hydrothermal Carbonization Method

In this study, HTC was performed at 200 ◦C, during which biomass feedstocks were
submerged in water and heated in a closed system (a steel autoclave) under pressure
(2–6 MPa) for 240 min. An amount of 12.8 g of okara powder waste and 40 mL of water
(equivalent to two-thirds of the volume of a medium-sized stainless-steel autoclave) was
placed in a stainless-steel autoclave. Then this autoclave was heated up to 200 ◦C, and
this temperature was kept for 4 h; then, the stainless-steel autoclave was left to cool down
overnight. The next day, the sample was filtered with filter paper, and then the obtained
product or hydrochar was washed with distilled water to an about neutral pH. The HTC
method used to prepare the hydrochar is illustrated in Figure 3.
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2.1.3. Activation of Biochar/Hydrochar

For some samples (e.g., sample OPW6), the activated carbons were prepared from the
bichar/hydrochar of dried okara through physiochemical activation processes. The biochar,
obtained from a 600 ◦C pyrolysis temperature experiment, or hydrochar, produced by
200 ◦C hydrothermal treatment, was used for further treatment to produce a high-porosity
product with less tar impurity [47]. The biochar/hydrochar was mixed with KOH and
water with a mass ratio of biochar/KOH/water of 1:4:5. This sample was then kept in
a beaker at room temperature for 48 h. After this KOH impregnation step, the mixture
was dried in an oven at 100 ◦C overnight. Then, the dried mixture was again pyrolyzed at
600 ◦C for 1 h, with the heating rate set at 3 ◦C/min under a N2 gas flow (99.99% purity) of
1.5 L/min.
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After this pyrolysis step, the activated carbons were washed with hot, aqueous HCl to
remove excess KOH and impurities until the pH value of the drained liquid was neutral.
Finally, the activated carbons were dried in an oven and stored in zipper bags. The sizes of
the activated carbons were smaller than 0.25 mm because of the biomass precursor’s size.
A list of the synthesized samples is presented in Table 1, above.

2.2. Characterization of the Materials

The porous carbon materials were examined by scanning electron microscopy (SEM)
using a JEOL JCM-7000 microscope (Tokyo, Japan). EDS analyses were performed with
a 15 kV accelerating voltage. Brunauer–Emmett–Teller (BET) surface area values were
measured using a Micromeristics ASAP 2060 device (Norcross, GA, USA). TGA and DSC
were performed using NETZSCH (STA 449 F5 Jupiter, Germany) equipment. FTIR spectrum
analysis was performed using a Thermal Scientific NICOLET iS50 (Waltham, MA, USA).
All absorbance spectra were recorded using the transmittance method in the 4000–400 cm−1

region, with 100 sample scans and a 1.0 cm−1 resolution.

2.3. Calculation of the Biomass Conversion

Two factors that measure the efficiency of AC production and mass loss are burn-off
and carbon yield. Burn-off measures the mass lost after activation and is calculated using
Equation (1) [48].

burn off(wt.%) =
wo − wAC

wo
· 100%, (1)

where wo is the initial weight and wAC is the dry weight of resulting activated carbons after
activation (the mass of the final activated carbon).

The carbon yield of each stage is determined using Equation (2) [49,50]:

Carbonyield(wt.%) =
wC
w f

· 100% =
mass of carbon materials after pyrolysis
mass of okara powder waste feedstock

∗100%, (2)

where wC is the weight of carbon (g) and wf is the weight of the feed (g).

3. Results and Discussion
3.1. Characterizations of the Biomass Materials
3.1.1. EDX Analysis of Various Biomasses

EDX analysis was used to examine the elements of the biomasses. The elemental
composition of different biomasses is presented in Table 2. The table shows that the
biomasses had 18.91% to 57.35% Carbon weights, 42% to 55% Oxygen weights, and 1.74
to 5.77% K weights. Other elements, such as N, may also have existed in the biomasses
but in small amounts beyond the detectable limit (0.1%) of the EDX analysis equipment,
which can only penetrate a few nanometers of the surface, and therefore they may not
have been detectable here. Research has shown that the lignin percentage in biomass
contributes highly to the porous structure and surface areas of biochars. These high-C-
content biomasses are positive attributes of biochars in pyrolysis and of hydrochars in
HTC experiments [51]. Hence, the coffee waste, potato peels, and okara powder waste, as
shown in the table, had the highest C contents (57.35%, 48.12%, and 45.43%, respectively).
They are good biomass candidates for producing biochar and hydrochar by pyrolysis or
hydrothermal carbonization processes [51]. Moreover, regarding biofuel applications, the
most important elements are carbon, hydrogen, and oxygen. With high C and lower oxygen
contents, the calorific value of biomass feedstock can be improved [52].
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Table 2. EDX elemental analysis of different biomass samples.

Element
Coffee Waste Okara Powder

Waste Rice Straw Shrimp Shells Rice Husks Potato Peels

Mass% Atom% Mass% Atom% Mass% Atom% Mass% Atom% Mass% Atom% Mass% Atom%

C 57.35 64.17 45.73 53.36 37.88 56.56 44.38 53.4 18.91 26.44 48.12 56.79

O 42.65 35.83 52.53 46.02 9.97 11.18 48.9 44.17 55.48 58.24 46.62 41.31

K 1.74 0.62 5.77 2.65 5.26 1.91

Ca 6.72 2.42

Si 46.37 29.61 55.61 15.31

Total 100 100 100 100 100 100 100 100 100 100

Regarding the okara powder waste, it had a 45.73% carbon mass, a 52.53% oxygen
weight, and a 1.74% K mass. It can be seen that okara powder possesses an average carbon
mass compared to other biomasses, but it is one of the two biomasses containing K, which
may help in the activation process for improving surface area and for the adsorption of
CO2. Moreover, okara waste is abundant and has a low economic value (it is only used for
planting and fodder), so it may be a good selection for pyrolysis processes.

An EDX image of the okara waste is shown in Figure 4. The elemental composition
shows the presence of a high percentage of different oxygenated groups on the surfaces
of the raw biomass and the presence of K, whose content was 1.74%. According to the
literature, Cl, Ca, Na, Cu, Mg, K, Ni, Si, and P contents in the different biomasses are
between 0.09 and 1.21% [31,32].
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shows the presence of a high percentage of different oxygenated groups on the surfaces 
of the raw biomass and the presence of K, whose content was 1.74%. According to the 
literature, Cl, Ca, Na, Cu, Mg, K, Ni, Si, and P contents in the different biomasses are 
between 0.09 and 1.21% [31,32]. 

 
Figure 4. EDX spectrum of okara powder waste. 

  

Figure 4. EDX spectrum of okara powder waste.

3.1.2. SEM Images of Different Biomasses

SEM analysis was performed to observe the surface morphology as well as the porous
structure of the precursor materials. As shown in Figure 5, the surface morphology proper-
ties of the biomass precursors were remarkably influenced by the different types of biomass
feedstock. The surface morphology of samples (b,c,e) was intricately changed and the
pores gradually opened with deep holes, while the surface morphologies of samples (d,f)
were relatively flat and simple. Large pores and cavities were also evident in the case of
coffee waste.



Sustainability 2024, 16, 5495 8 of 20

Sustainability 2024, 16, 5495 8 of 20 
 

3.1.2. SEM Images of Different Biomasses 
SEM analysis was performed to observe the surface morphology as well as the porous 

structure of the precursor materials. As shown in Figure 5, the surface morphology 
properties of the biomass precursors were remarkably influenced by the different types of 
biomass feedstock. The surface morphology of samples (b,c,e) was intricately changed and 
the pores gradually opened with deep holes, while the surface morphologies of samples 
(d,f) were relatively flat and simple. Large pores and cavities were also evident in the case 
of coffee waste. 

    
(a) (b) 

 
 

 
 

(c) (d) 

 
 

  

(e) (f) 

Figure 5. SEM images of (a) okara powder waste, (b) rice husk, (c) coffee waste, (d) shrimp shell, (e) 
rice straw, and (f) potato peel. 
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3.1.3. SEM Images of Activated Carbons Synthesized from Different Biomasses

SEM images of activated carbons obtained after pyrolysis experiments are shown in
Figure 6.

The SEM images exhibited clear pores and shapes on the biochar surfaces. The okara
biochar surface structure looks more porous, rough, and wrinkled, which makes the surface
area greater and possibly enhances the adsorption capacity. This is possibly because of the
development of internal pores, while tars were removed from inside the biochar by the
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activating agents via physicochemical activation. Higher porosity is crucial and expected
for the latter CO2 uptake processes of our study, and these images demonstrate the porous
surface area of the biochar. It could also be observed that this biochar presented as a
conglomeration of spheres. The surface topology differed strongly between raw okara
powder waste and biochar, which is in good correlation with previous publications [33].
The surfaces of the biochar materials, particularly the okara biochar, were shown to be
layered; the increase in the surface areas created perfect surface pores for CO2 diffusion
and adsorption inside the structure of the materials in the latter phase of the research.
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biochar, and (f) shrimp shell biochar at 1000 magnifications.
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3.1.4. FTIR Analysis

Infrared spectrum analysis was performed to determine the functional groups and
complexes present in the biomasses. The FTIR spectra of different raw biomasses are shown
in Figure 7.
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Figure 7. The FTIR spectra of different raw biomasses.

The absorption bands at 1800–1600 cm−1 (centered at 1567 cm−1) correspond to the
stretching vibrations of νC=O and νC=C [53] in the biomass samples. These vibrations
around 1800–1600 cm−1 were observed not only for okara but for all the investigated
biomass samples. The peaks at 1000 cm−1 (centered at 1000 cm−1) were recorded as νC–O
stretching vibrations, which may be attributed to the C-H, R-CO-OR, and R-O-R’ functional
groups in the biomass samples [53]. Figure 7 displays different biomasses containing some
different vibrations, confirming the chemical structures of the different biomasses. Around
the 892 cm−1 band, all six investigated biomass samples showed a broad peak that belongs
to the glucosic structure of cellulose and C-H deformation of cellulose.

Figure 7 also shows that, though the six biomass fractions were inherently different,
their FTIR features in the 4000–400 cm−1 region were interestingly quite similar visually.
This is possibly due to all six analyzed raw natural biomasses being mainly composed
of various kinds of carbohydrates, such as cellulose, hemicellulose, lignins, and other
organic/inorganic components. The appearance of C-O stretching vibration bands (around
1000 cm−1) was detectable for all biomasses. Furthermore, though these six biomasses
exhibited quite similar FTIR spectra comparatively, their positions and intensities were
different. For instance, in the high-frequency band around 2900 cm−1, there was an obvious
peak related to the stretching vibration of alkyl groups in the coffee and okara samples,
which decreased gradually in intensity, while no peak or very small peaks appeared
in the samples of rice straw, rice husks, shrimp shells, and potato peels. In the region
around 1000 cm−1, the intensity of rice straw seems to be stronger than that of the other
investigated biomasses.

Also, in Figure 7, around 1500 cm−1, there are several clear peaks in the spectra of
shrimp shells, okara, and coffee, while, around this band, no peak appears in the spectrum
of rice straw. In the range of 1600 cm−1 to 1100 cm−1, several small peaks that occur in the
spectra of shrimp shells, okara, and coffee were associated with the bending and stretching
of C-H in these samples, while, in this range, only weak peaks were shown in rice husk,
rice straw, and potato peel samples.
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Figure 8 illustrates the Fourier transform infrared spectra of okara biomass and okara
biochar. The spectra of both samples were recorded using the transmittance method in the
4000–500 cm−1 region, and, visually, the FTIR spectra of these two samples look different,
implying that absorbance patterns in the infrared region are different. From the FTIR
spectrum of okara biochar, we can see O-H stretching vibrations (alcohol and ketones) at
3310 cm−1 [54], and these are only detectable in the okara biochar sample, while, around
this band, almost no peak appears in the okara sample. The peak at 3010 cm−1 in the okara
biochar sample corresponds to the stretching vibrations of =C-H groups [55]. At around
1500 cm−1, both the okara biochar and okara samples display some peaks but with different
intensities; in the okara sample, in particular, several peaks are quite weak, while in the
okara biochar sample, the peaks are strong. Around 851 cm−1, there is a strong peak in the
case of okara biochar, while, around this band, corresponding to vibration of C-H groups,
no or very broad peaks occur in the case of the okara sample.
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In Figure 8, the small peaks at 1570 and 1480 cm−1 may be attributed to the vibrations
of C=O groups (acetyl or esters) of the hemicellulose present in the okara and the aromatic
C=C bonds of lignin [54,56]. The presence of a peak at 1640 cm−1 evidenced a weak
C=C bond of alkene and aromatics present in the biochar [54,57]. The absorption peaks
at 1040 cm−1 may correspond to C-O-C pyranose ring stretching vibrations and C-O
stretching in lignin, cellulose, and hemicellulose [54,56,57]. By contrast, with the original
okara powder, before any treatment, the peaks rarely appeared, showing the changes in
chemical structure after the pyrolysis.

Structural changes could also be seen in other biomass samples, e.g., rice husk biochar,
as seen from the FTIR spectra of rice husks in Figure 9. Figure 9 shows that the FTIR
spectra of rice husks and rice husk biochar in the region of 4000 cm−1 to 500 cm−1 are quite
different due to different vibrations arising from different structures. At 1047.40 cm−1, a
deep peak corresponding to alcohol groups appears in the FTIR spectrum of the rice husk
sample, while a very low peak also occurs around this band in the FTIR spectrum of the
rice husk biochar. At 795.76 cm−1, one more deep peak appears which corresponds to the
aromatic group in the rice husk sample, while almost no peak appears in the rice husk
biochar sample. In contrast, the FTIR spectrum of rice husk biochar shows that a small
peak appears at 1074.43 cm−1, corresponding to alcohol groups.
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3.1.5. TG-DSC Analysis

The thermogravimetry (TG) method was used to measure the mass change of okara
powder under pyrolysis conditions. A sample weighing 3–4 mg was placed in a crucible,
which was placed on a sling balance. The analysis parameters were set to an initial
temperature of 25 ◦C, a heating rate of 10 ◦C/min, a termination temperature of 600 ◦C,
and a nitrogen flow of 50 mL/min. The mass changes were recorded continuously to form
thermogravimetric curves. DSC measurement was performed at the same time.

The TGA-DSC profile of the okara powder waste is presented in Figure 10. It can
be seen that the sample mass decreases slightly during the first minutes of measurement
when temperatures are lower than 200 ◦C (the first stage), decreases significantly from
the temperature of 200 ◦C up to 400 ◦C (the second stage), and slightly decreases again
when the temperature rises from 400 ◦C up to 1000 ◦C (the third stage). The first stage
is the drying stage, when free water and crystal water inside the okara fibers evaporate.
The second stage, or carbonization stage, happens due to the thermal decomposition or
degradation of cellulose and hemicellulose in the okara. The third stage, or combustion
stage, happens when the temperature exceeds 400 ◦C, and the thermogravimetric curve
becomes stable due to the gradual decomposition of the residual sample into carbon and
ash [6]. Thus, at a pyrolysis temperature of 600 ◦C, the decomposition of the biomass is
considered to be complete. The total mass lost is about 75%.
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DSC analysis was performed as a complementary and supplementary technique to
TGA to determine the transition temperatures of the samples as a function of heat flow. The
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DSC plot in Figure 10 indicates that the okara sample displayed some endothermic peaks.
The first peak appears at 319.8 ◦C, −0.8254 mW/mg, and a deep peak occurs at 542.8 ◦C,
−1.665 mW/mg. The formation of the endothermic peaks evidenced the decomposition of
functional groups inside the okara sample. The heat flow values also indicate that before
542 ◦C, the heat flow reduces significantly, while from this transition temperature at 542 ◦C
upward, the heat flow increases gradually [58].

The TGA-DSC profile of hydrochar obtained from okara powder waste by the HTC
method (OPW4) is presented in Figure 11. The DSC analysis performed on the okara pow-
der waste hydrochar displays an evident endothermic peak. The very large endothermic
peak appearing in the high-temperature region (over 500 ◦C) is linked to the decomposition
of remaining functional groups inside the okara sample after the HTC treatment. No
exothermic peak is displayed. The results suggest that the DSC curves of dried okara
biomass and its hydrochar samples, as shown, are significantly different and that the HTC
treatment was not able to decompose all of the functional groups inside the okara sample,
while the temperature for the pyrolysis of okara should be more than 550 ◦C to decompose
functional groups completely.
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Thermogravimetric experiments on okara powder waste showed that okara powder
waste is a quite reactive material compared to its hydrochar obtained by HTC, as the total
mass lost due to the decomposition of hydrochar was only 32%, while it was 75% for the
okara waste powder. This means that during the HTC process, about 43% of the mass is
lost and that the decomposition of the materials during calcination at high temperatures in
N2 flow is less heavy.

The TGA-DSC profile of another biomass, namely, rice husks (sample RH), is illustrated
in Figure 12. The sample mass decreases slightly during the first minutes of measurement
when temperatures are lower than 250 ◦C (the first stage, also known as the initial mass loss
phase, when moisture is released inside the rice husk sample). After this stage, the mass
decreases significantly from the temperature of 250 ◦C up to 350 ◦C (the second stage, or
the decomposition phase, when the maximum weight loss is obtained). And then the mass
again slightly decreases when the temperature rises from 350 ◦C up to 800 ◦C (the third
stage). The DSC analysis performed on the rice husk sample demonstrates two evident
endothermic peaks. The first endothermic peak appearing in the temperature region of
460 ◦C is linked to the decomposition of remaining functional groups inside the rice husk
sample. It can be seen that the decomposition of rice husks is quite similar to that of okara;
at the pyrolysis temperature of 600 ◦C, most of the organic bonds have been broken to
form biochar.
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Figure 12. DSC and TGA analysis of rice husks under N2 flow (sample RH). 
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3.2. Biomass Pyrolysis Products and Their Properties

Biomass pyrolysis produces several bioproducts. These include condensable vapors
like bio-oil or tar, carbon-rich solid residues or biochar, and non-condensable gases known
as pyro-gases [28,59]. Bio-oil is the key constituent of pyrolysis substances, also known as
pyrolysis liquid; it is a dark brown liquid made up of 15–30% water and organic matter
like acids, aldehydes, phenols, ethers, and nitrogen compounds, and it has a strong odor.
Bio-oil is extremely polar, hydrophilic, and has a high oxygen content. Biochar is the
porous carbonaceous substance left over from biomass pyrolysis. The pyrolysis process
conditions, as well as the biomass precursors used, will determine the biochar properties.
The non-condensable gases include carbon dioxide, carbon monoxide, methane, ethylene,
hydrogen, and others. These pyro-gases have heating values of about 6.4–9.8 MJ/kg.
Lower-temperature pyrolysis will produce higher levels of CO2 and CO [28].

3.2.1. Biochar and Hydrochar Yield and Burn-Off

The carbon yield is commonly used to measure the effectiveness of a process conver-
sion. Carbon yield and burn-off results of several pyrolysis experiments are presented in
Figure 13.
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Regarding the samples used in this study, the burn-off values of samples OPW 3,
OPW4, and OPW5 were 60.49 ± 9.0, 29 ± indefinite, and 73.8 ± 1.6, respectively. The
yield values of samples OPW 3, OPW4, and OPW5 were 39.5 ± 9.0, 70.7 ± indefinite, and
26.1 ± 1.6, respectively. For the OPW3 sample, the result was in good agreement with
the TGA result. For the hydrothermal process without zeolite (OPW4), the burn-off was
much less, indicating that the carbonization was not completed. However, with the use of a
zeolite catalyst, the burn-off increased significantly to the same value as the carbonization
at 600 ◦C. Thus, the use of zeolite enhances the carbonization to help the process occur at
lower temperatures.

3.2.2. Surface Areas (SBET) and Pores

Several samples were analyzed to verify their surface areas. Table 3 is a summary
of the samples we tested and their SBET values in comparison with results reported in
the literature.

Table 3. Comparison of this study’s experimental details with those of other studies in the literature.

Biomass Precursor Sample Code Pretreatment Methods Activating Agent SBET (m2/g) References

Okara powder waste OPW2 Carbonization at 650 ◦C in a N2 gas flow
for 1 h No activating agent 1.06 This work

Okara powder waste OPW1 Carbonization at 800 ◦C in an Ar flow
for 1 h No activating agent 1.16 This work

Lotus leaves - Carbonization at 500 ◦C in N2 flow for 1 h No activating agent 3.82 [17]

Lotus leaves - Carbonization at 500 ◦C in N2 flow for 1 h Melamine 4.32 [17]

Okara powder waste OPW4

Hydrothermal carbonization at
200 ◦C; heating rate of 60 ◦C/h;

temperature of 200 ◦C, maintained for 4 h;
weight ratio of OPW/water of 12.8 g:

40 mL

No activating agent 7.01 This work

Okara powder waste OPW5

Hydrothermal
carbonization at

200 ◦C; weight ratio of 12.8 g OPW: 6.4 g
zeolite 4 mm: 40 mL water; temperature of
200 ◦C, maintained for 4 h; heating rate of

60 ◦C/h

Zeolite (4 mm in size) 14.0 This work

Okara powder waste OPW3 Carbonization at 600 ◦C in a N2 gas flow
for 1 h No activating agent 20.73 This work

Okara powder waste OPW6

Hydrothermal carbonization at 200 ◦C
and then pyrolysis (two-step process) at
600 ◦C, with a low N2 flow for 1 h and a

N2 flow rate of 1 L/m

KOH and melamine 22.04 This work

Okara powder waste OPW7

Carbonization at 600 ◦C in N2 for 1 h to
make biochar; after that, biochar was
mixed with KOH and water; then, the

sample was kept for 48 h, dried at 120 ◦C,
and calcined at 600 ◦C in a N2 flow

(1 L/min)

KOH (weight ratio of
biochar/KOH/water

was 1:4:5)
104.32 This work

Okara powder waste OPW9 Carbonization at 600 ◦C in N2 for 1 h; dry
mixing process with KOH

KOH (mass ratio of
OPW:KOH = 1/4) 147.85 This work

Rice husk RH Carbonization at 600 ◦C in N2 for 1 h No activating agent 175.48 This work

Okara powder waste OPW8 Carbonization at 600 ◦C in N2 for 1 h; dry
mixing process with KOH

KOH (mass ratio of
OPW: KOH = 1/3) 212.60 This work

Banana peels - Hydrothermal treatment at 200 ◦C for 24 h No activating agent 294.6 [60]

Elephant grass, - Carbonization at 600 ◦C in a N2 flow
for 1 h KOH 407 [47]
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Table 3. Cont.

Biomass Precursor Sample Code Pretreatment Methods Activating Agent SBET (m2/g) References

Okara powder waste OPW10

Carbonization at 600 ◦C in N2 for 1 h, then
mixed with KOH, with a

biochar/KOH/water mass ratio of 1:5:10,
and the sample kept for 5 days

KOH (with a
biochar/KOH/water
ratio of 1:5:10, with
the sample kept for

5 days)

594.08 This work

Lotus leaf - Carbonization at 500 ◦C in N2 for 1 h Melamine and KOH 687 [17]

Firewood - Carbonization at 850 ◦C Na2CO3/K2CO3 818 [61]

The results show that the pyrolysis temperature influences the surface area of biochar;
when the temperature exceeds 600 ◦C, the surface area is very small (about 1 m2/g). A
surface area of 20.73 m2/g was obtained for the sample carbonized at 600 ◦C; however, it
was still too small to be used as an adsorbent.

The surface area of hydrochar is a little higher than that of biochar obtained at high
temperatures (above 650 ◦C), especially when zeolite and KOH and melamine are used to
catalyze the decomposition, but the surface area is only 14 m2/g.

Regarding the 10 samples analyzed and the SBET results listed above, the OPW10
sample achieved the highest SBET value (594.08 m2/g). The second-highest SBET value
was achieved with sample OPW8 (212.60 m2/g). In contrast, the sample OPW2 had the
smallest SBET value (1.06 m2/g). The second-smallest SBET value was attributed to the
OPW1 sample (1.16 m2/g). The other samples, OPW4, OPW5, OPW3, OPW6, OPW7,
OPW9, and RH, provided low to medium SBET values.

The addition of KOH to biochar possibly created small holes deep in the activated
carbon surface. Thus, the SBET results for the porous ACs after activation increased up to
104 m2/g (OPW7) compared to the pre-activated carbon process, for which the SBET values
were only 14 and 20 m2/g. When the ratio of KOH increased, the surface area increased
(OPW10), since KOH reacted with C to form CO2 [18,62], resulting in more pores for the
ACs, so with a suitable amount of KOH, the surface area can reach almost 600 m2/g.

KOH was also mixed with okara biochar without using water and stabilized for a few
days (OPW8 and OPW9). In these cases, the surface areas of ACs were also improved but
only reached around 200 m2/g; therefore, it is important to stabilize biochar and KOH for
several days to allow the KOH to interact homogenously with the whole carbon sample to
make it convenient for the following reaction during the next calcination at 600 ◦C:

4KOH + C → K2CO3 + K2O + 2H2

For comparison, rice husks were also simply carbonized at 600 ◦C (without activation
with KOH), but the surface area of the obtained ACs only reached the medium value—
175.48 m2/g. With the highest surface area of 594.08 m2/g, it was revealed that okara waste
could produce ACs with a suitable surface area to serve as adsorbents, but it may not be an
excellent candidate to produce extremely high-surface-area adsorbents.

4. Conclusions and Outlook

In the context of global warming mitigation, sustainable development, and net-zero
targets [63], agricultural residues are promising sources for synthesizing biomaterials with
various applications, such as energy storage, aqueous environmental remediation, biofuels,
and CO2 capture [2,16,29,64–67]. This study utilized biomass sources for synthesizing use-
ful products, namely, porous carbon materials—CO2 adsorbents—using the slow pyrolysis
and hydrothermal processes. More importantly, okara powder waste was chosen to be
focused on because it is cheap, very available in Asian countries, and easy to collect.

The adsorbent materials synthesized by pyrolysis and hydrothermal processes in this
study showed porous characteristics. To investigate the adsorption of the activated carbon,
thermal chemical activation was performed. When no activating agent was used, the surface
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areas of the adsorbents were small, but when activated agents were added in a combined
pyrolysis and chemical activation method, the SBET values of the adsorbents significantly
increased. Carbon yields ranged from 30% to 70% for slow pyrolysis processes. Pyro-gases
included mainly CO2, CO, CH4, and H2. Regarding the pyrolysis and HTC methods,
we conclude that HTC is not sufficient; solid acid catalysts (zeolite) could accelerate the
carbonization in HTC (as evidenced by the TGA analysis). Pyrolysis without an activating
agent (or activator) resulted in low surface areas. Activator addition (wet vs. dry thermal
chemical processes) increased surface areas. The addition of a suitable amount of a wet
activator (KOH) increased the BET surface area.

The results on activated carbons synthesized from okara and other biomasses having
been reported here, future research should continue to examine CO2 uptake in these
materials. Okara waste, which has never been studied previously, can produce ACs with a
suitable surface area (about 600 m2/g) to serve as adsorbents, but they may not be excellent
candidates to produce extremely high-surface-area adsorbents. Further studies on CO2
capture using the activated carbon materials developed are needed.
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