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Abstract: Interest in soil health is growing, though the speed and effectiveness of management prac-
tices in improving it are uncertain. We measured biological, chemical, and physical indicators of soil
health within a working farm zero, five, and nine years after transitioning from regular applications
of inorganic fertilizers and pesticides to cover cropping, compost additions, organic amendments,
and rotational grazing. We quantified microbial biomass and composition, soil organic matter (SOM),
nutrient availabilities, and water stable aggregates in an avocado orchard, a citrus orchard, a pasture,
and a vegetable garden. We found substantial and consistent increases in SOM, water stable aggre-
gates, and microbial biomass, especially during the first five years, whereas nutrient availabilities
showed no consistent change. Fungal and bacterial communities shifted but not fungal–bacterial
biomass ratios or richness. However, fungal guilds responded differently to shifts in management.
The biomass of arbuscular mycorrhizal fungi increased in most crops, and fungal saprotroph relative
abundance and richness generally increased, whereas putative fungal pathogens showed the opposite
response. Overall, we found substantial and rapid increases in indicators associated with improved
soil health following the transition from conventional to regenerative management.

Keywords: regenerative agriculture; soil health; soil organic matter; water stable aggregates; microbial
biomass; fungal guilds; fatty acid analyses; MiSeq

1. Introduction

Mechanical innovation, crop breeding, and the advent of synthetic fertilizers and pes-
ticides have fueled a phenomenal increase in crop productivity during the last century, but
there are signs that this increase is slowing [1]. This may, at least partly, be due to environ-
mental degradation, biodiversity loss, and accelerated erosion and carbon loss associated
with high-input, conventional agriculture [2–5]. In response, there has been a growing
interest in sustainable food production, including the importance of soil health [6,7]. To
what extent, and at what rate, soil health can be rebuilt remains unclear, which affects
decisions and expectations associated with management.

The US Department of Agriculture defines soil health as “the continued capacity of
soil to function as a vital living ecosystem that sustains plants, animals, and humans” (https:
//www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 15 April 2024)).
This definition recognizes soil’s role in producing food and providing essential regulating
and supporting services, such as soil, water, and climate protection and biodiversity
conservation [8]. But assessing a soil as “healthy” or having “high quality” is complex,
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site-specific, and sometimes hotly debated [9,10]. Soil organic matter (SOM) is commonly
used as a primary indicator of soil health, as increases in SOM can enhance aggregate
stability, improve water and nutrient holding capacity, and boost soil fertility and microbial
biomass [6,11]. However, the total pool of SOM is large, and changes in SOM are challenging
to detect and may not appear until irreversible damage occurs [12]. Soil quality assessment
and monitoring tools have been emerging since the 1990s [12], incorporating dynamic
indicators such as aggregate stability [13] and microbial biomass and composition [14].
However, the focus on short-term, varied responses across different crops and management
practices has hindered our understanding of indicator relationships and their capacity to
track the effects of long-term management [13].

USDA-NRCS highlights four approaches that can optimize soil health: (1) minimize
disturbance; (2) maximize biodiversity, (3) soil cover, and (4) living roots (https://www.
nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health (accessed
on 15 April 2024)). These broadly align with the objectives of regenerative agriculture,
which—while remaining poorly defined [15]—has soil health and building SOM as core
themes [16]. Regenerative practices include crop rotation, cover cropping, livestock in-
tegration, and using manure and compost instead of chemical inputs, while reducing or
eliminating synthetic pesticides [17]. These practices contribute to soil health in comple-
mentary ways. For example, crop rotations and cover crops add organic matter and protect
soil from erosion. They may also support disease suppression by increasing temporal and
spatial crop diversity, which often promotes microbial abundance and diversity [18–20].
Compost not only increases SOM and structure but may also suppress diseases through
increased microbial activity [21–23]. Likewise, well-managed, short-duration grazing
followed by longer recovery periods encourages plant growth and root development, pro-
motes microbial biomass, and facilitates nutrient cycling via feces and urine deposition [24].
Our understanding of the rate these practices alter soil properties is limited, as is the
consistency of changes across crops.

Soil biota are integral to biogeochemical cycles, redox reactions, disease suppression,
and soil structure [23,25–27]. The biomass of soil biota is substantial, and one hectare of
soil can contain over a metric tonne, dominated by the microbial groups of fungi and
bacteria [28]. Soil biota also represent one of the largest reservoirs of biodiversity on Earth,
estimated to be home to 59 ± 15% of all species [29]. Advances in molecular methods allow
us to characterize this diversity and facilitate the study of non-culturable soil microbes.
Using microbial composition or function as soil health indicators promises to offer faster,
less expensive, and more informative measurements of composition and function than gross
measurements, such as microbial biomass and respiration [14]. Management practices such
as no-till and organic production systems promote soil biodiversity [8], which could increase
resilience and multifunctionality [30]. Responses may also involve shifts in functional
guilds, as illustrated by the increase in saprotrophic fungi with compost additions [31] and
lack of responses or even suppression of symbiotic mycorrhizal fungi [32]. Regenerative
practices that promote fungi over bacteria may increase SOM, soil structural and ecological
stability, and nutrient retention [33,34]. Also, if shifts in management affect the availability
of nutrients [8], this may change fungal mutualist to pathogen ratios [35]. Thus, responses
by soil biota may be multifaceted and only fully understood by extending measurements
beyond microbial biomass.

Here, we sampled a working farm in California zero, five, and nine years following
a transition from conventional use of inorganic fertilizers and pesticides to regenerative
practices that include compost additions, grazing, and cover cropping. We asked whether
this shift would (1) change microbial community richness, composition, biomass, and
potential function consistently across crops; (2) promote SOM accumulation and soil
aggregate stability; and (3) affect nutrient availability. Our goal was to determine if, and
how quickly, soils respond to shifts in management and whether responses were evident in
a range of soil health indicators.

https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health
https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health
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2. Methods
2.1. Site and Sampling Methods

Apricot Lane Farm, located in Moorpark, CA (34◦18′47.81′′ N, 118◦55′22.58 W; ele-
vation 239 m), is surrounded by mixed agricultural lands, with a historic mean annual
precipitation of 333 mm (http://www.ncdc.noaa.gov (accessed on 10 October 2023)). The
soil is a fine to gravely loamy mixture of Mollisols and Alfisols. The farm spans 87 hectares
of more than 200 varieties of fruit and vegetable crops, and held organic (CCOF), biody-
namic (Demeter), and regenerative organic (ROC) certifications during the study. The farm
was managed using conventional methods prior to 2011 (see Supplemental Material for
farm history). We sampled established Persea americana (hereafter avocado), established
Citrus sp. (citrus), a high-diversity pasture (Avena faua, Bromus caharticus, Cynodon dactylon,
Dactylis glomerata, Chenopodium album, Chicorium intybus; pasture), and a vegetable garden
(garden), for a total of 4 crop types. Compost, organic amendments, and compost tea
applications are applied annually (see Supplemental Material for inputs). Chickens, ducks,
sheep, and cattle were rotated through orchards and pastures, but not the garden (Figure 1).
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using amplicon sequencing (described below). The rest was air dried and measured for 

Figure 1. Contrasting practices with a citrus orchard under conventional management at an adjacent
farm with spaces between trees sprayed with glyphosate three times per year to maintain bare soil
with representative soil sample (a), compared to the regenerative farm in this study 10 years after
implementation of cover cropping, rotational grazing, and compost amendments with representative
soil sample (b).

We sampled soil in mid-September 2012, 2017, and 2021, representing 0, 5, and 9 years
after transition to regenerative management. Within each crop, we randomly selected
10 locations (>5 m apart) and collected two soil cores per location (0–10 cm depth × 10 cm
diameter), which were combined and passed through a 2 mm sieve. We use the term “crop”
hereon, although we cannot separate effects of crops and fields as we only accessed one
field per crop. We avoided areas of disturbance, compaction, feces, and edges. Surface
debris was moved aside before sampling. Orchard soil samples were collected ~80 cm
from trunks and 90◦ apart. We sampled two beds of five garden plants. Samples were
transported at 4 ◦C and processed within 48 h. A subsample (15 mL) was freeze dried for
quantification of microbial abundance using phospholipid fatty acids (PLFA) and neutral
lipid fatty acids (NLFA), as well as bacterial and fungal community characterizations using
amplicon sequencing (described below). The rest was air dried and measured for water
stable aggregates (WSA, described below) and sent to Ward Laboratories (Kearney, NE,
USA) for measurements of SOM (LOI% at 360 ◦C for 2 h, which will not affect inorganic
carbon [36]), pH (water), PMerlich, K, S, Zn, Fe, Mn, Cu, Ca, Mg, Na, and cation exchange
capacity (CEC).

http://www.ncdc.noaa.gov
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2.2. Water Stable Aggregate and Microbial Analyses

We used a modified version of the wet aggregate stability method [37]. We added 4 g
soil to a cup filled with DI H2O for 5 min, followed by 4 min of agitation using a sieve [37].
After drying and weighing the soil, we dispersed the remaining sample with 0.5% sodium
hexametaphosphate to correct for sand, washed it through a 250 um sieve, then redried
and reweighed it. Water stable aggregates were determined via this formula:

%WSA = (soil mass after aggregate disruption − sand mass)/initial soil mass × 100

We extracted PLFA [38] to quantify bacterial and fungal biomass [39] and NLFA to
quantify AMF biomass [40]. We extracted ~2 g of freeze-dried soil with a chloroform–
methanol–citrate buffer (1:2:0.8 v/v/v). We loaded extracted lipids onto silica gel columns
(Bond Elut LRC, SI 100 mg; Varian, Palo Alto, CA, USA) and eluted lipid fractions with
chloroform, acetone, and methanol. The chloroform fraction (NLFA) and the methanol
fraction (PLFA) were then subjected to mild alkaline methanolysis to form fatty acid methyl
esters (FAMEs). Samples were analyzed on an Agilent 6890N GC and Agilent 5973 MSD
(Agilent Technologies, Palo Alto, CA, USA) equipped with a flame ionization detector. The
25 m long column was an Agilent HP-1 (dimethyl-polysiloxane; Agilent Technologies). The
PLFA 18:2ω6,9 was used as an indicator for fungi; PLFA i15:0, a15:0, 15:0, i16:0, 16:1ω9,
17:1ω7t, i17:0, a17:0, 18:1w7, cy19:0 were used to indicate bacteria; and NLFA 16:1ω5 was
used to indicate AMF, with size and retention times related to the internal standard 19:0 [39].
Fatty acid concentrations were converted to bacterial and fungal biomass using conversions
in Frostegård and Bååth [39]. Finally, we divided microbial biomass with SOM to assess
potential shifts in SOM quality with the assumption that quality is higher if more microbial
biomass is detected per unit of SOM.

To determine if soils harbored distinct microbial communities, we extracted and se-
quenced bacterial and fungal DNA. Two-step PCR amplification for bacteria and fungi was
performed as described elsewhere [40,41]. Briefly, we extracted genomic DNA from 250 mg
of freeze-dried soil per sample with a DNeasy PowerSoil Pro DNA isolation kit (Qiagen,
Germantown, MD, USA). For bacteria, we amplified the V4 region of the 16S SSU rRNA
using the forward primer 515F-Y and reverse primer 806R [42,43]. For fungi, we amplified
the internal transcribed spacer 2 (ITS2) region using a 1:1 combination of the forward
primers ITS7 [44] and ITS7o [45] and the reverse primer ITS4 [46]. We attached unique
barcodes and Nextera flowcell adapters using 15 cycles and 10× diluted PCR 1 products.
Amplicons from PCR 2 were purified using AMPure XP beads (Beckman Coulter Genomics,
Brae, CA, USA) and pooled based on band strength during gel electrophoresis. Amplicon
libraries were sequenced using a MiSeq v2 kit (500 cycles) on a MiSeq sequencing platform
(Illumina Inc., San Diego, CA, USA) at the University of Montana Genomics Core Facility.

Raw sequence data were processed using “Quantitative insights into microbial ecol-
ogy 2” (QIIME2 version 2022.2; https://qiime2.org/ (accessed on 15 May 2023)); [47].
For fungi, we first extracted the ITS2 region from all sequences using the ITSxpress plu-
gin [48]. Bacterial and fungal sequences were quality filtered and dereplicated using the
q2-dada2 plugin [49], which uses nucleotide quality scores to produce amplicon sequence
variants (ASVs) with 100% similarity representing the true biological variation within
each sample. For bacteria, forward and reverse reads were quality-trimmed at 220 and
200 nucleotides before pairing. All ASVs were assigned taxonomy using the QIIME2 q2-
feature-classifier-plugin (https://github.com/qiime2/q2-feature-classifier (accessed on 15
May 2023)) [50]. For fungal classification, we used the UNITE fungal database (version 8.3;
Nilsson et al., [51]) with a 94% confidence level. For bacterial classification, we used the
Genome Taxonomy Database (GTDB [52]) and a 70% confidence level [50]. Raw sequence
files were submitted to the Sequence Read Archive (PRJNA1066881). Fungal and bacterial
data were rarefied to depths of 2930 and 5100 sequences per sample, respectively.

To explore shifts in fungal guilds over time and to assess constancy across crops,
we assigned putative function to ASVs identified to at least the genus-level using the

https://qiime2.org/
https://github.com/qiime2/q2-feature-classifier
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FungalTraits database [53]. In all, an average of 65.2% of sequences per sample were
assigned to guilds. Following the method of Schmidt et al. [54], we analyzed the relative
abundance of sequences associated with saprotrophic lifestyles (soil, litter, dung, leaf, seed,
fruit, wood, and unspecified) and plant pathogens. While this may not reflect absolute
abundance due to differences in gene copy numbers among taxa and primer bias [45,55],
sequence numbers correlate reasonably well with abundant taxa [56], and discrepancies
affect samples equally.

2.3. Statistics

We used R software v.4.2.3 [57] for statistical analysis. We employed linear models with
crops and year as fixed effects to examine differences in soil nutrient and structural data,
as well as the microbial biomass, richness, and relative abundance of fungal guilds. The
DHARMa package version 0.4.6 was used for model diagnostics [58]. Non-conforming data
were log-transformed. The functions emmeans in the emmeans package version 1.4.6 [59]
and cld in the multcomp package 1.4-25 [60] were used to assess pairwise comparisons
using Tukey’s method for multiple comparisons. Relationships between WSA and SOM,
between WSA and AMF biomass, and between microbial biomass and SOM were analyzed
with Pearson correlation (α = 0.05 for all statistical analyses). To quantify differences in
soil nutrients among samples, we performed a PCA using the prcomp function (Figure S1)
and PERMANOVA using the vegan package and adonis2 function [61]. The first axis, SPC1,
primarily represented gradients in sodium, phosphorus, sulfur, and potassium, while SPC2
represented gradients in zinc, copper, and manganese.

To evaluate differences in fungal and bacterial community composition, we performed
PERMANOVA on Bray–Curtis distances of Hellinger-transformed, rarefied sequence abun-
dances using 1000 permutations with the adonis2 function in the vegan package. Main
effects included year, crops, and their interaction. To visualize differences in microbial
composition among crops and years, we performed Nonmetric Multidimensional Scaling
(NMDS) using the metaMDS function in the vegan package and plotted results using the
ggplot2 package [62]. To assess relationships between microbial composition, soil nutrients
(SPC1 and SPC2), CEC, SOM, pH, and WSA, we used the envfit function to fit significantly
correlated (p < 0.001) characteristics onto the ordinations. To identify individual taxa that
may be driving shifts in guilds, we used ANCOM-BC2 [63,64], which controls for false
discovery rate and potential biases associated with compositional data [65]. We collapsed
fungal ASVs to genus-level and removed taxa present in fewer than 33% of samples within
each crop. We did not use relative sequence abundance to assess AMF biomass because
AMF sometimes do not amplify well with general fungal primers, especially in soil [66].
Instead, we used 16:1ω5 NLFA as this fatty acid reliably tracks AMF biomass [67]. We also
did not assess potential shifts in bacterial function based on 16S rRNA because current
databases are limited in coverage of bacterial genomes from soil [68].

3. Results
3.1. Shifts in Biological Soil Health Indicators with Management

Contrary to expectations, bacterial and overall fungal richness did not change with
management (Table S1). However, bacterial and fungal community composition shifted.
For bacteria, responses varied somewhat by crop and year (PCrop×Year < 0.001, F = 2.81,
R2 = 0.060, Figure 2a), with the bacterial community in the vegetable garden plots being
more dissimilar and also changing more over time compared to other crops/fields. Gener-
ally, directional shifts in bacterial communities were consistent among crops, were more
substantial during the first five years, and correlated with changes in bacterial biomass,
WSA, SOM, CEC, and nutrient availability (SPC1 and SPC2). Fungal community compo-
sition also responded to changes in management, and responses differed among crops
(PCrop×Year < 0.001, F = 3.62, R2 = 0.075) although fungal communities clustered more dis-
tinctly by crop/field than bacterial communities (Figure 2b). Fungal composition changes
correlated with fungal and AMF biomass, WSA, CEC, and nutrients. Biomass for both
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bacteria and fungi generally increased over time across all crops, as did AMF biomass
(Figure 2c–e). Despite these changes, there were no shifts in the fungi–bacteria ratios
(PYear = 0.44).

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 15 
 

dissimilar and also changing more over time compared to other crops/fields. Generally, 
directional shifts in bacterial communities were consistent among crops, were more sub-
stantial during the first five years, and correlated with changes in bacterial biomass, WSA, 
SOM, CEC, and nutrient availability (SPC1 and SPC2). Fungal community composition 
also responded to changes in management, and responses differed among crops (PCrop x Year 

< 0.001, F = 3.62, R2 = 0.075) although fungal communities clustered more distinctly by 
crop/field than bacterial communities (Figure 2b). Fungal composition changes correlated 
with fungal and AMF biomass, WSA, CEC, and nutrients. Biomass for both bacteria and 
fungi generally increased over time across all crops, as did AMF biomass (Figure 2c–e). 
Despite these changes, there were no shifts in the fungi–bacteria ratios (PYear = 0.44). 

 
Figure 2. Community composition of bacterial (a) and fungal (b) communities, as well as biomass 
of bacteria (c), fungi (d), and arbuscular mycorrhizal fungi (e), in avocado (circles), citrus (triangles), 
garden (squares), and pasture (cross) soil samples collected in 2012 (orange), 2017 (light green), and 
2021 (dark green). Large symbols in the ordinations represent averages, error bars represent stand-
ard errors, and vectors indicate significant (p < 0.001) variables, where CEC represents cation ex-
change capacity, SOM represents soil organic matter, WSA represents water stable aggregate, fungi, 
and bacteria, AMF represents biomass, and SPC1 and SPC2 represent the first and second axis in 
the PCA of soil available nutrients (Figure S1), where SPC1 primarily reflects P, K, S, and Na, and 
SPC2 primarily reflects Mn, Cu, and Zn. Different letters in figures (c–e) reflect significant (p < 0.05) 
differences in means within a crop. 

Although overall fungal richness remained stable over time, there were contrasting 
responses among fungal guilds. Putative saprotroph richness increased across crops, and 
with increased relative abundance in the citrus orchard and vegetable garden (Figure 3a,b, 
Table S2). Conversely, the relative abundance of putative pathogens decreased over the 
sampling period (PYear < 0.001), with significant reductions in pathogen richness in the 

Figure 2. Community composition of bacterial (a) and fungal (b) communities, as well as biomass of
bacteria (c), fungi (d), and arbuscular mycorrhizal fungi (e), in avocado (circles), citrus (triangles),
garden (squares), and pasture (cross) soil samples collected in 2012 (orange), 2017 (light green),
and 2021 (dark green). Large symbols in the ordinations represent averages, error bars represent
standard errors, and vectors indicate significant (p < 0.001) variables, where CEC represents cation
exchange capacity, SOM represents soil organic matter, WSA represents water stable aggregate, fungi,
and bacteria, AMF represents biomass, and SPC1 and SPC2 represent the first and second axis in
the PCA of soil available nutrients (Figure S1), where SPC1 primarily reflects P, K, S, and Na, and
SPC2 primarily reflects Mn, Cu, and Zn. Different letters in figures (c–e) reflect significant (p < 0.05)
differences in means within a crop.

Although overall fungal richness remained stable over time, there were contrasting
responses among fungal guilds. Putative saprotroph richness increased across crops, and
with increased relative abundance in the citrus orchard and vegetable garden (Figure 3a,b,
Table S2). Conversely, the relative abundance of putative pathogens decreased over the
sampling period (PYear < 0.001), with significant reductions in pathogen richness in the
vegetable garden and a trend in the avocado orchard (Figure 3c,d, Table S2). Indicator
species driving these responses are presented in Table S3.
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Figure 3. Relative sequence abundance and ASV richness of fungal saprobes (a,b) and pathogens (c,d)
in 2012 (orange), 2017 (light green), and 2021 (dark green) in the citrus, avocado, pasture, and garden.
Different letters indicate differences (p < 0.05) within cropping types among years.

3.2. Shifts in Chemical and Physical Soil Health Indicators with Management

Management changes promoted SOM; though the extent varied by crop and year
(PCrop×Year < 0.010, Figure 4a, Table S2), it increased substantially in all crops except in the
pasture field, with the most dramatic increases in the first five years. Nutrient availabilities
differed greatly among crops/fields (Table S2) but did not change consistently over time
(Figure S1). Soil pH remained stable except in the vegetable garden, where it decreased
(Table S2). Cation exchange capacity increased in all crops except the citrus orchard
(Table S2). Shifts in WSA largely mirrored changes in SOM and depended on crop and year
(PCrop×Year = 0.012; Figure 4b).

3.3. Relationships among Indicators

Many indicators demonstrated interrelated changes. For example, the combined
biomass of fungi and bacteria correlated positively with SOM (p < 0.001, R = 0.42), likely
due to increased substrate availability. Microbial biomass per unit of SOM generally
increased over time, notably in the avocado orchard (Table S2, Figure S2), suggesting an
increased substrate quality with management changes. Aggregate stability also correlated
positively with SOM (p < 0.001, R = 0.36), overall microbial biomass (p < 0.001, R = 0.58),
and AMF biomass (p < 0.001, R = 0.39). These modest R-values likely reflect the complex
nature of soil systems, where multiple chemical and biological factors interact to influence
soil physical properties.
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4. Discussion

Increasingly, conventional agricultural practices are recognized for depleting SOM
and reducing microbial diversity, potentially impairing sustainable plant productivity
and ecosystem services [69]. Over nine years, we assessed the extent and rate that shifts
from conventional to regenerative management changed soil properties within a working
farm in California, USA. Surprisingly, estimates of bacterial and fungal diversity did not
change. However, microbial biomass, SOM, and aggregate stability—some of the most
common biological, chemical, and physical indicators of soil health [12]—increased across
most crops, whereas changes in nutrient availabilities were less consistent. We also found
shifts in bacterial communities and fungal guilds, with a general increase in mycorrhizal
biomass and saprotroph relative abundances and a reduction of putative plant pathogens,
potentially suppressing disease. Changes were more pronounced in the first five years than
in the subsequent period, suggesting rapid responses to management changes that likely
benefit soil health.

4.1. Shifts in Management Changed Biological Indicators in Ways That Appear Beneficial

We observed a 38–178% increase in overall microbial biomass across crops and years.
Contrary to expectations, however, we did not observe an increased fungal dominance
with shifts from conventional to more regenerative practices [33] as both bacterial and
fungal biomass rose. This stability in fungal–bacterial ratios suggests trait overlap between
the groups, challenging the reliability of this ratio as a soil health metric [70,71]. What
specifically caused the increase in overall microbial biomass is unknown as several man-
agement practices were bundled. However, organic amendments have promoted microbial
biomass across a range of agricultural studies previously [22], and the substantial compost
additions likely played a primary role. Sustaining higher microbial biomass might require
frequent amendments, as effects may be fleeting [21]. However, even small quantities
of amendments can yield significant benefits [22]. Beyond quantity, SOM quality could
change. In this study, management shifts coincided with increased microbial biomass per
unit SOM in most crops, suggesting improved SOM quality. Since many studies measure
microbial biomass and SOM, incorporating this ratio could provide a valuable additional
metric to assess changes in soil health.

Maximizing biodiversity is often highlighted as one key aspect of promoting soil health
because higher microbial richness is associated with increased functional diversity and
resilience [30]. While richness can be higher in organic than in conventional systems [8,72],
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we found no change in bacterial and fungal richness despite substantial increases in biomass
and altered composition. At least for fungi, this may be due to opposite responses among
guilds because saprotroph richness increased while pathogen richness generally declined.
This, incidentally, indicates that aggregate richness estimates can obscure guild-level re-
sponses and therefore provide limited information related to soil health. The increase in
saprotroph richness coincided with increased relative abundance, which was likely driven
by the increased substrate availability and complexity from the compost additions and
cover crops [31]. The reduced pathogen relative abundance and richness may result from
improved plant health or antagonistic interactions with other soil biota [23]. AMF biomass
also increased, except in the vegetable garden, where high soil P and frequent tillage may
have suppressed abundance [73] (Table S2). Although AMF, as obligate symbionts, do
not derive carbon from compost, additions can promote AMF abundance [74], possibly
because AMF scavenge nutrients from organic-rich patches [75]. Overall, the increase in
mutualist abundance relative to putative pathogens observed in most crops here aligns with
predictions [76] and previous studies reporting reduced disease incidence following the
implementation of regenerative practices [77,78]. Given that synthetic pesticides are seldom
used in regenerative production systems [17], disease suppression, though underlying
mechanisms are not fully understood [77], could be an important component of soil health.

4.2. Rapid and Consistent Shifts in Chemical and Physical Soil Health Indicators

Changes in SOM pools are predicted to be hard to detect [12], yet we recorded a
13–100% increase across crops within five years, suggesting that changes can be substantial
and rapid. The smallest increase was in the pasture, where initial SOM levels were highest.
This increase in SOM likely promoted nutrient holding capacity and aggregate stability
directly, as well as indirectly by feeding soil biota [6,11]. As an increase in SOM from 1% to
3% can double plant water availability and retention [78], this represents an increasingly
important ecosystem service given California’s water restrictions and erratic weather
associated with climate change.

The combination of several management practices on this farm prevents us from
assessing their relative importance. However, the doubling of SOM in the garden, where
cover crops were rare and grazers absent, suggests the large compost additions were
especially important. This is supported by findings from seven California farms, where
similar compost applications resulted in soil carbon values three times higher than controls
and increased microbial activity and water holding capacity [79]. SOM cannot increase
in perpetuity, however, and depending on the quantity and quality of inputs, as well as
soil structure and texture [80,81], the soil will become saturated. The slower accumulation
and even slight declines between 2017 and 2021 across all crops may indicate saturation,
though SOM could still increase in deeper layers, as observed in no-till agriculture [82].
Because soil contains twice as much carbon as the earth’s atmosphere [83], soil carbon
sequestration could be an important regulating service. Whether the increase in SOM
seen here represents sequestration requires knowledge about long-term stability, which
depends on the input, aggregate stability, level of disturbance, and microbial composition
and activity among other things [84]. Nonetheless, organic amendments applied to the soil
surface were incorporated and coincided with rapid shifts in other parameters.

Increased aggregate stability likely improved the soil environment for roots and soil
biota and increased infiltration. This will reduce crusting, ponding, and surface runoff
during large storm events, leading to increased resilience to drought. The effect of organic
matter additions on aggregate stability depends on the chemical composition, with short-
term benefits likely deriving from decomposition of labile litter and microbial binding
agents, whereas longer-term effects likely involve humified compounds [85]. The positive
correlation between AMF abundance and aggregate stability suggests a potential role of
these fungi as well, as documented previously [27].

Converting from inorganic fertilizer additions to systems reliant on organic matter
turnover may alter nutrient availability, although previous work is inconsistent. For
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example, Ca, K, Mg, and Mn were higher with organic amendments compared with
synthetic fertilizers in on-farm trials in Maryland and Virginia [86], and Ca, S, N, and P
were higher in regenerative almond orchards in California [87]. But organic production
systems had lower soil fertility than conventional production systems in experiments in
Switzerland [8]. We observed differences in nutrient availabilities among crops, likely
reflecting crop-specific needs, with no consistent overall shift over time. This aligns with a
Norwegian study, which found that nutrient management in regenerative systems needs to
be tailored to crops to optimize nutrient availability [88]. We also observed no directional
shift in soil pH—arguably the most important driver of biogeochemical processes and
microbial communities in soil [25,89]—as it remained stable except for the vegetable garden
where it decreased. CEC, however, increased over time, which was likely driven by the
increase in organic matter [90]. Overall, the promotion of SOM and aggregate stability
without dramatic changes in nutrient availabilities is encouraging, as balancing nutrient
supply and demand becomes challenging with non-synthetic fertilizers [91].

4.3. Limitations and Future Directions

This study was conducted on a working farm, which lends realism and limitations.
First, the inclusion of multiple crops helped assess the generality of responses, but crops
were not replicated and were spatially confounded, which means comparisons among crops
should be interpreted cautiously. Second, without control areas maintaining conventional
practices, we could not directly compare the effects of management changes on soil function,
leaving open the possibility that observed shifts might be temporal rather than management-
related. However, there is no reason to expect SOM to increase solely over time given that
the avocado and citrus orchards were more than 20 years old. Finally, our focus was on soil
health and thus we do not have information about yield responses. Yields are known to
decrease, at least initially, when converting from conventional to regenerative practices,
although the increased market value of crops may offset losses in income [8].

5. Conclusions

The importance of soil health is increasingly being recognized, but to what extent
and at what rate soil health can be rebuilt remains uncertain. We show that conversion
from conventional to regenerative practices can result in rapid and sustained shifts in
many abiotic and biotic soil properties important for soil health, including soil organic
matter, aggregate stability, and microbial biomass. Our results also highlight the potential
of molecular tools—still underrepresented in soil health assessments [7,12]—to detect
potential shifts among fungal guilds that could influence soil function.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su16135509/s1: Supplementary text: Farm history and inputs;
Table S1: Fertilizer and amendments to the various crops over the study period; Table S2: Means
(±SE) and statistics of abiotic and biotic properties in the four crops over time; Table S3: Indicator
species analysis of fungal genera and lifestyles in the four crops; Figure S1: PCA of soil nutrient
availabilities in the four crops over time; Figure S2: Microbial biomass per unit SOM in the four crops
over time.
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