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Abstract: In the process of carbon peak and carbon neutrality, prefabricated buildings have developed
rapidly, and the concept of green and low carbon has been introduced into the field of prefabricated
buildings. This paper establishes an information sharing platform based on BIM (Building Informa-
tion Modeling), RFID (Radio Frequency IDentification), and GIS (Geographic Information System)
technologies from the green supply chain of prefabricated buildings. On the basis of information
sharing, the Stackelberg two-stage game is used to analyze and compare the overall profit of the
supply chain under the centralized pricing decision and the decentralized pricing decision. Through
numerical simulation, this paper analyzes the relationship between pricing and the overall profit of
the supply chain, compares the difference of the overall profit of supply chain under two different
pricing strategies, centralized pricing and decentralized pricing, and analyzes the influence of infor-
mation sharing degree on the overall profit of the supply chain. The results show that the overall
profit of the supply chain under centralized pricing decisions is significantly higher than that under
decentralized pricing decisions. The higher the degree of information sharing, the greater the overall
profit of the supply chain.

Keywords: double carbon target; prefabricated construction; green supply chain; collaborative pricing

1. Introduction

According to the report of the 20th National Congress of the Communist Party of China
in 2022, China is actively and steadily promoting the work of peaking carbon emissions
and achieving carbon neutrality to address increasingly severe environmental challenges.
Against this backdrop, the construction industry, as one of the major sources of China’s
carbon emissions, has an annual emission of up to 5.08 billion tons, accounting for 50.9% of
the country’s total carbon emissions, demonstrating the crucial position of the construction
sector in the low-carbon transition [1]. The large amount of carbon dioxide released during
the traditional construction process not only seriously pollutes the environment, but also
conflicts with the currently advocated low-carbon development model [2]. Prefabricated
buildings, as an innovation and development of traditional building technology, provide
a new direction for the green transformation of the construction industry with their envi-
ronmentally friendly and efficient characteristics. Compared with traditional buildings,
prefabricated buildings can significantly reduce carbon emissions, accounting for nearly
one-fifth of the reduction, demonstrating their tremendous environmental potential [3]. To
further promote the development of prefabricated buildings, China has also put forward
clear policy guidance at the national level. In August 2022, the Ministry of Industry and
Information Technology, the National Development and Reform Commission, and the
Ministry of Ecology and Environment jointly issued the “Implementation Plan for Carbon
Peak in the Industrial Sector”, which explicitly proposed to establish a green and low-
carbon supply chain, providing strong policy support for the development of prefabricated
buildings’ green supply chain. However, although prefabricated buildings have significant
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environmental advantages, the development of prefabricated buildings in China still faces
many challenges. High costs, unstable supply chains, and a lack of technological innova-
tion capabilities have limited their wide application in various industries. Among them,
the pricing issues in the supply chain are particularly prominent, becoming a key factor
restricting the construction of green supply chains for prefabricated buildings. At present,
domestic scholars have conducted less research on the pricing of a green supply chain
for prefabricated buildings, and research on the pricing of green supply chains can help
promote the construction and development of the supply chain system for prefabricated
buildings in China.

Therefore, this study aims to delve into the pricing issues of the green supply chain
of prefabricated buildings in order to provide effective solutions to the challenges faced
by the development of prefabricated buildings in China. The specific research questions
include the following: How to build an effective information sharing platform to promote
the coordination of prefabricated building supply chains in the context of information
asymmetry? What are the impacts of centralized pricing and decentralized pricing strate-
gies on the profits of the green supply chain of prefabricated buildings? How does the
level of information sharing affect pricing strategies and supply chain profits? The sig-
nificance of studying these issues lies in that by optimizing the pricing mechanism of the
green supply chain of prefabricated buildings, we can reduce construction costs, improve
supply chain stability, promote technological innovation, and thus promote the widespread
application of prefabricated buildings and the green transformation of the construction
industry. At the same time, this study has important theoretical and practical value for
perfecting the theoretical system of the prefabricated building supply chain and guiding its
practical implementation.

Based on this, in order to achieve the above research objectives, this paper constructs an
information sharing platform based on BIM (Building Information Modeling), RFID (Radio
Frequency Identification), and GIS (Geographic Information System) technologies from the
perspective of green supply chains. This platform can integrate information from various
participants in the supply chain, achieve real-time information sharing and collaborative
management, and provide accurate data support for supply chain pricing. On this basis,
this paper will further adopt the two-stage Stackelberg game model to analyze the impact
of centralized and decentralized pricing strategies on the profits of the green supply chain
of prefabricated buildings, and explore the influence mechanism of information sharing
levels on pricing strategies and supply chain profits.

The contributions and innovations of this paper to research on prefabricated building
supply chains are mainly reflected in the following three aspects. Firstly, this study explores
the issue of supply chain collaborative pricing in the field of green buildings from the
perspective of the green supply chain of prefabricated buildings. This perspective is signif-
icantly innovative and forward-looking against the backdrop of current green buildings
and sustainable development. Secondly, the use of GIS technology for information sharing,
and optimizing the information sharing platform based on BIM and RFID technology, can
achieve spatial data integration and real-time monitoring, thereby controlling the overall
project progress and increasing benefits. Finally, based on the information sharing platform,
this study deeply explores the specific impact of centralized pricing and decentralized pric-
ing strategies on the profits of the green supply chain of prefabricated buildings through the
adoption of the two-stage Stackelberg game model, providing strong theoretical support
and practical guidance for the optimization of the prefabricated building supply chain.

The remainder of this essay is structured as follows: In Section 2, the pertinent litera-
ture is reviewed. The architecture of the information sharing platform is implemented in
Section 3. The description and model assumptions are provided in Section 4. According to
the centralized pricing model and the decentralized pricing model, respectively, Section 5
produces the pricing decisions. Section 6 gives the numerical analysis. Section 7 concludes
this paper.
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2. Literature Review

With the intensification of environmental issues, carbon emissions have become a top
concern for many countries. As the largest carbon emitter in the world, China’s construction
industry produces a significant amount of carbon emissions [4]. Compared with on-site
construction, prefabricated buildings have advantages such as shortened construction
time, improved resource efficiency, minimized construction waste, and increased safety [5].
Research results have shown that prefabrication can reduce impacts, material consumption,
and waste generation, promoting the circularity of the construction industry [6]. Based on
this, prefabricated buildings have attracted much attention in pursuing green, environmen-
tally friendly, and waste-reducing construction to improve carbon emissions [7]. However,
with the accelerated urban development in China, the construction, expansion, renovation,
and demolition of prefabricated buildings have also increased, resulting in a significant
amount of carbon emissions, posing a significant threat to the natural environment and
ecological civilization. This is contrary to the concept of creating low-carbon cities and sus-
tainable development. How to efficiently and sustainably develop prefabricated buildings
is a problem that governments and environmental protection organizations around the
world hope to solve quickly [8]. Using a mixed content analysis method, 133 policies on
prefabricated buildings issued in China from 1956 to 2018 were counted. The government
has provided various incentives to promote the development of prefabricated buildings,
but due to the financial burden on the government, incentives are considered the least
commonly used [9]. Some scholars believe that mandatory policies are suitable for the ini-
tial stage of prefabricated building development, while preferential and incentive policies
play an incentive role in the middle and late stages of development. In the later stages,
incentive policies dominate [10]. However, exploring the impact of environmental policies
on the prefabricated building supply chain from a supply chain perspective is a complex
and ambiguous issue. A reasonable combination of policies can effectively improve the
economic benefits of low-carbon development [11]. The main challenges faced by the
prefabricated building supply chain are insufficient resource and schedule planning, poor
workflow control, and insufficient information sharing between various stakeholders [12].

The above literature has laid the foundation for the study of collaborative pricing of a
green supply chain for prefabricated buildings. From the above research, it is clear that
pricing decision is one of the important contents of supply chain cooperative management,
and information sharing is the basis of realizing supply chain cooperative management.
Previous studies in the field of green supply chains, especially in terms of the integration of
information sharing technologies, have not fully addressed the two fundamental business
operations that are part of supply chain management: the first is the delivery of goods
and services from the first supplier to the ultimate customer, and the second is the flow of
market demand data backward from the last customer to the initial provider. Supply chain
collaboration is the use of information network technology to integrate these two processes.
Collaborative management of the supply chain is to realize real-time communication and
mutual collaboration and make decisions through information sharing. Many scholars
believe that if the advanced ideas of supply chain management are applied to the manage-
ment of the construction industry, new vitality will burst out. As information sharing is the
foundation for achieving collaborative supply chain management, companies in the supply
chain have paid significant attention to this aspect. Cooperation in the supply chain is built
upon high-quality information transmission and sharing among node organizations, and
Cyber-Physical Systems (CPSs) are widely used in various industries [13]. The integration
of BIM into the supply chain facilitates the integration of design, manufacturing, and
construction processes, bringing significant benefits to supply chain members [14]. Kim
and Nguyen [15] adopted the Analytic Hierarchy Process (AHP) to develop a relationship
evaluation framework and pointed out that trust communication, supply chain collabora-
tion, top management support, and risk allocation play crucial roles in the collaboration
of the construction supply chain under the standards of benefit and risk sharing. The
supply chain collaboration framework comprises collaborative performance systems, de-
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cision synchronization, information sharing, incentive alignment, and innovative supply
chain processes [16]. The key factors for achieving supply chain collaboration include
collaborative information sharing, collaborative decision synchronization, collaborative
incentive alignment, collaborative resource and skills sharing, and collaborative knowledge
management [17]. Atul and Kasun [18] proposed a BIM-based procurement framework
and believed that BIM enables information exchange and collaborative work. Some schol-
ars have applied blockchain (BC) to the construction industry and explored its potential
integration with BIM workflows [19]. Bansal [20] advocated the use of four-dimensional
GIS and BIM to promote pre-building spatial planning. To effectively share information,
BIM and GIS can be combined into a system that displays the latest status of items in
the supply chain [21,22]. Furthermore, integrating RFID technology into the construction
project work system can effectively improve efficiency and promote information flow in
the construction supply chain [23]. By integrating BIM and RFID technology to create
an information sharing platform, accurate information interaction can be achieved for
construction equipment, materials, and construction management [24]. BIM, RFID, and
GIS technologies are integrated into a system, upon which an information sharing platform
is established, realizing real-time updates of information throughout the entire process
of prefabricated building supply chains, from design to production, transportation, and
ultimately to assembly and construction, thus achieving effective information integration
and efficient coordination.

As the “invisible hand” of the free market, the price regulates the market economy,
which is mainly reflected as follows: the demand and the price change in the opposite
direction, that is, as the commodity price increases, the market demand decreases, and vice
versa. This is also a game process of production, pricing, and demand. As a result, busi-
nesses place a high value on price. In supply chain collaborative cooperation management,
the relevant research on pricing decision is also one of the most important contents, for
which, domestic and foreign scholars have made more mature research results. Scholars
have created incentive plans for coordinating supply chains by establishing three decision-
making models: decentralized decision-making, partially centralized decision-making,
and fully centralized decision-making. They compared and analyzed the decision-making
and profit outcomes of supply chain members under each model [25]. Other scholars
have also established different decision-making models to explore issues such as product
pricing in the supply chain [26,27], determining the best course of action [28], constructing
benefit-sharing mechanisms [29,30], identifying key activities to reduce overall supply
chain costs [31], and analyzing order coordination and market selection [32]. Different
scholars have used the Stackelberg dynamic game model to define different leaders and
followers among supply chain members, exploring the establishment of economic and envi-
ronmental equilibrium methods in integrated prefabricated building supply planning [33],
studying supply chain coordination pricing schemes, and establishing reasonable income
distribution mechanisms [34].

Therefore, this paper aims to expand this research field and provide new perspectives
and strategies for the development of green supply chains. Based on this, the present paper
utilizes GIS technology for information sharing, optimizes the information platform based
on BIM and RFID technology, and integrates BIM, RFID, and GIS technologies to establish
a prefabricated building green supply chain information sharing platform. In addition,
there are few relevant studies on the impact of waste recycling and treatment in the supply
chain on the cost and profit of the supply chain, so this paper considers waste recycling and
treatment into the supply chain in the research. The Stackelberg two-stage game model was
used to compare the profit of two pricing decision models of the prefabricated building
green supply chain and further study the influence of information sharing degree on the
overall profit of the supply chain.
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3. Information Sharing Platform Architecture Based on BIM, RFID, and GIS

The information sharing platform based on BIM, RFID, and GIS technologies integrates
the information of each stage of the green supply chain of prefabricated construction into
the overall information model database of the supply chain.

In the green design stage, in order to resolve design conflicts among several professions,
the designer first creates a building information model using BIM, followed by construction
simulation, collision detection, etc. Due to how changes in design may affect associated
professions’ operations and design boundaries, multiple information feedback is needed
for mutually beneficial cooperation between diverse professions. It is possible to realize the
effective transmission of information flow between all phases of the project by using BIM
technology and creating an information model. These model data can be made available
in real-time for other professions. Designers use BIM visualization technology to split
the building information model, realize the establishment of a 3D model of prefabricated
components, and produce deeper design drawings in accordance with the information
model of the building as a whole.

The creation of component parts is crucial to prefabricated building. During the green
production stage, through the information sharing platform, providers gather information
on the type, size, processing requirements, and other characteristics of prefabricated com-
ponents, and then produce and process the components accordingly. Suppliers can adjust
the production schedule of components in accordance with the real-time construction
operations on the construction side to lessen the occurrence of pending work and materi-
als by using the information sharing platform to realize timely and effective information
communication between suppliers and designers. After production is complete, RFID tags
are fixed and encoded for each component’s information, which is finally transmitted into
the application system and information sharing platform through RFID readers to help
the logistics party design the transportation plan and the construction party adjust the
construction operation plan in time according to the component production, so as to realize
the complete transmission and efficient use of information between the production stage
and the design, transportation, and construction stages.

During the green transportation stage, the logistics party can use the information
sharing platform to obtain timely information on the time nodes of component production
completion and the actual construction site progress. The logistics party can then use
this information to design the transportation plan by combining the attribute parameters
of the components in the information model. The logistics party uses GIS technology to
simulate and make decisions on the logistics network layout and transportation routes of
the transportation plan and uses RFID and GIS technologies to realize real-time tracking
and navigation of vehicles and goods.

During the green assembly stage, based on the BIM model of the information sharing
platform, the construction party can access construction simulation data and component
information. The construction party can perform lifting, deployment, and a reasonable
arrangement of the operation schedule on site in accordance with the construction simu-
lation and the arrival of component production, and upload component information to
the information sharing platform via RFID. This allows suppliers and logistics parties to
modify the production plan and transportation plan, among other things, in accordance
with the actual situation on site.

Green recycling encompasses the entire green supply chain of prefabricated construc-
tion, including waste, redundant raw materials, and subpar products in the manufacturing
process, as well as losses in the transportation process, the removal of outdated equipment,
the recycling of construction waste in the construction process, etc. Additionally, based on
the findings of Wang and Liu [35] regarding the prefabricated supply chain platform, an
information sharing platform is depicted as shown in Figure 1.
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The information sharing platform makes sure that information is effectively integrated,
applied, and collaborated upon at all stages, realizes timely information sharing and transmis-
sion, addresses the issues of ineffective management and poor information communication
in the green supply chain of prefabricated construction, raises the management standard of
assembled building projects, and makes it easier to realize collaborative management among
the node businesses of the green supply chain of prefabricated construction.

4. Problem Description and Hypothesis
4.1. Problem Description

With the increasingly prominent issues of global climate change and environmental
problems, the development of green buildings and green supply chains has become in-
creasingly important. The extensive growth model of the traditional construction industry,
which sacrifices natural resources, energy, and labor inputs, as well as the pollution and
destruction of the natural ecological environment, has harmed the national economy’s
development [36]. A green building refers to a building that reduces or eliminates the neg-
ative impacts during its design, construction, or operation and can have a positive impact
on the climate and natural environment [37]. However, the green building supply chain
involves numerous participants, including material suppliers, manufacturers, transporters,
and construction teams, and the information asymmetry and insufficient collaborative man-
agement among these parties often lead to a waste of resources, inefficiency, and increased
costs. To solve these problems, it is particularly important to build an efficient information
sharing platform. This platform can integrate information from all participants in the
supply chain and achieve real-time information sharing and collaborative management,
thereby improving the transparency and response speed of the supply chain and reducing
operational costs and risks.

Against this backdrop, this article proposes an information sharing platform based on
BIM, RFID, and GIS technologies. BIM is a process used by stakeholders in the Architecture,
Engineering, and Construction (AEC) industry, which simulates construction projects
with multi-dimensional digital models and provides numerous project benefits from the
initial stage to occupancy [38]. RFID is an effective indoor positioning technology [39] that
provides sufficient accuracy [40], is cost-effective [41], has on-board data storage capacity,
and can be used for other purposes such as building asset management [42]. GIS is a
computerized system based on geography, cartography, and remote sensing technologies
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that can collect, store, manage, calculate, analyze, display, and describe spatial information
and data about the Earth’s surface, digitizing and visualizing abstract information [43,44].

By integrating these three technologies, the platform can collect, process, and analyze
data from all participants in the supply chain in real time, providing accurate data support
for supply chain pricing. However, in choosing pricing strategies, there are often conflicts of
interest and game behaviors among participants in the supply chain. Therefore, this article
further adopts the Stackelberg two-stage game model to analyze the impact of centralized
pricing and decentralized pricing strategies on the profits of the prefabricated building
green supply chain. Additionally, based on the establishment of an information sharing
platform to achieve information sharing, the Stackelberg two-stage game model is used
to analyze and compare the overall profits of the supply chain under centralized pricing
decisions and decentralized pricing decisions. Finally, numerical simulations are used to
analyze the relationship between pricing and the overall supply chain profits, compare the
differences in the overall supply chain profits under the two different pricing strategies, and
analyze the impact of the degree of information sharing on the overall supply chain profits.

4.2. Collaborative Pricing Model Hypothesis

Each node enterprise in the green supply chain of prefabricated construction is still a
mutually independent economic entity. An enterprise at a specific node may sabotage the
cooperation stability of supply chain participants in order to further its own interests and
disconnect the upstream and downstream nodes of the supply chain. Effective collaboration
between the node businesses of the supply chain may be achieved with good information
sharing in the green supply chain of prefabricated construction, which in turn can raise the
profit level of the supply chain as a whole and of each node business. Collaborative pricing
research of the supply chain is carried out in order to encourage synergistic cooperation
among the nodal firms in the green supply chain of prefabricated construction and enhance
the benefits of the supply chain as a whole and for each participant.

It is assumed that the system of the green supply chain of prefabricated construction
is composed of a supplier, a general contractor who handles the designer, the logistics
party and the construction party, a third-party information platform service provider, and a
green recycler. We assume that a general contractor who handles the design, logistics, and
construction aspects of a building is part of the green supply chain, along with a supplier, a
green recycler, and a third-party information platform service provider. In this system, it is
presumable that the supplier and the general contractor work together based on a certain
component part. The demand for the component part is unknown and changes as the
project moves along and the component part’s price changes. As a result, in the Stackelberg
game, the component supplier is the leader and the general contractor is the follower. The
contractor fully understands the information about the building split components that
the designer uploaded to the BIM, RFID, and GIS information sharing platform and, by
fusing the fundamental project overview with the actual situation on site, provides the
supplier with the demand information for ordering. The contractor evaluates the demand
based on the supplier’s feedback price and sets the retail price, or the completed settlement
price, after the supplier provides feedback to the contractor based on the current price.
The amount of components needed in this context does not relate to the total number
of components needed for the project, but rather to the number of components that the
contractor decides to buy from the supplier in accordance with the pricing of the supplier
in the supply chain.

In the above game, both suppliers and contractors are playing for their own higher
benefits. By establishing the game model, this paper compares the impact of collabora-
tive pricing decisions and decentralized pricing decisions on the overall revenue of the
supply chain.

The following Table 1 are the fundamental presumptions and parameter notations of
the collaborative pricing model of the green supply chain of prefabricated construction
based on BIM, RFID, and GIS.
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Table 1. Parameters notations.

Notations Description

p0 Price of similar products in the market
p1 Unit price offered by supplier to contractor
p2 Contractor’s as-built unit price with owner
p3 Service prices of third-party information platform unit products
p4 Green recycler unit product disposal pricing
c1 Production unit cost of suppliers
c2 Contractor’s unit costs for design, logistics, construction, etc.
c3 Unit cost of operating third-party information platform
c4 Green recyclers’ disposal costs per unit of product

n1 p3 Third-party information platform service unit costs borne by suppliers
n2 p3 Third-party information platform service unit costs borne by contractor
w1 Scrap rate in supplier’s manufacturing process
w2 Contractor’s scrap rate during logistics and construction
Q Demand per unit cycle
a Constants, demand due to other factors
b Constants, sensitivity coefficient of demand to price, b > 0
s Information sharing degree
ks Demand caused by information sharing degree
π1 Profit of suppliers
π2 Profit of contractors
π3 Profits of third-party information platforms
π4 Profits of green recyclers
π Overall supply chain profit

Furthermore, in order for the model to be more practical and meaningful, the param-
eters must satisfy certain conditions, so we assume that p1 > c1, p0 > p1, n1 + n2 = 1,
0 ≤ n1 ≤ 1, 0 ≤ n2 ≤ 1.

Market demand is a function of linear correlation with price and information sharing,
that is,

Q = a − bp2 + ks. (1)

Supplier profit is sales revenue minus manufacturing cost, information sharing service
cost, and waste disposal cost in the manufacturing process. The supplier profit model is
as follows:

π1 = (a − bp2 + ks)(p1 − c1 − n1 p3)− (a − bp2 + ks)w1 p4. (2)

The contractor’s profit is sales revenue minus procurement cost, construction cost,
information sharing service cost, and waste disposal cost. The contractor’s profit model is
as follows:

π2 = (a − bp2 + ks)(p2 − p1 − c2 − n2 p3)− (a − bp2 + ks)w2 p4. (3)

The profit of the third-party information platform is the operating income minus the
operating cost. The profit model of the third-party information platform is as follows:

π3 = (a − bp2 + ks)(p3 − c3). (4)

The profit of green recyclers is the operating income minus the processing cost. The
profit model of green recyclers is as follows:

π4 = (a − bp2 + ks)(w1 + w2)(p4 − c4). (5)
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The overall profit of the supply chain is the sum of the profit of the supplier, the profit
of the contractor, the profit of the third-party information platform, and the profit of the
green recycler, which is simplified as

π = (a − bp2 + ks)(p2 − c1 − c2 − c3)− (a − bp2 + ks)(w1 + w2)c4. (6)

5. The Solution of the Model
5.1. Collaborative Pricing Decision

In collaborative pricing decisions, suppliers, contractors, third-party information
platforms, and green recyclers try to price goods in a way that benefits the supply chain as
a whole rather than maximizing their personal interests.

Proposition 1. In this section, the contractor’s optimal unit price p2 for completion settlement is

p2
∗ =

a + ks + b(c1 + c2 + c3) + bc4(w1 + w2)

2b
. (7)

At this time, the market demand Q is as follows:

Q∗ =
a + ks − b(c1 + c2 + c3)− bc4(w1 + w2)

2
. (8)

The overall profit of the supply chain π is as follows:

π∗ =
[a + ks − b(c1 + c2 + c3)− bc4(w1 + w2)]

2

4b
. (9)

Proof. The overall profit of the supply chain is

π = (a − bp2 + ks)(p2 − c1 − c2 − c3)− (a − bp2 + ks)(w1 + w2)c4. (10)

Taking the partial derivative of p2 yields

∂π

∂p2
= a + b(c1 + c2 + c3)− 2bp2 + ks + bc4(w1 + w2). (11)

At this time, ∂2π
∂p2

2 = −2b < 0, so the profit has the maximum value. Making ∂π
∂p2

= 0,

the solution is

p2
∗ =

a + ks + b(c1 + c2 + c3) + bc4(w1 + w2)

2b
. (12)

By introducing p2 into the basic model, it is then possible to obtain the market demand
Q and the overall profit π of the supply chain. □

5.2. Decentralized Pricing Decision

In decentralized pricing decisions, suppliers, contractors, third-party information
platforms, and green recyclers all strive to maximize their own interests, without con-
sidering the overall interests of the supply chain. Suppliers as leaders and contractors,
third-party information platforms, and green recyclers as followers use the Stackelberg
game for component goods pricing.

Proposition 2. In this section, the optimal unit price P1 offered by the supplier to the contractor is
as follows:

p1
∗∗ =

(a + ks − bc2)(n1w2 + 2n2w2 + 2n2w1) + bc3n2(n1w2 − 2n2w2 − 2n2w1)− bc4w2(n1w2 + 2n2w2)

bn1w2 + 4bn2w2 + 2bn2w1
. (13)
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The contractor’s optimal unit price p2 for completion settlement is as follows:

p2
∗∗ =

(a + ks)(4n1w2 + 8n2w1 + 15n2w2) + bn2w2(c1 + c2 + c3n2 + c4w2 + c3n1 + c4w1)

4b(n1w2 + 2n2w1 + 4n2w2)
. (14)

The optimal service price p3 of the unit product of the third-party information platform
is as follows:

p3
∗∗ =

(a + ks)w2 − bw2(c1 + c2 + c4w2 − c3n1) + b(4c3n2w1 + 7c3n2w2 − c4w1w2)

2b(n1w2 + 2n2w1 + 4n2w2)
. (15)

The optimal unit product pricing p4 of green recyclers is as follows:

p4
∗∗ =

(a + ks)n2 − bn2(c1 + c2 + c3n2 + c3n1) + bc4(n1w2 + n2w1 + 3n2w2)

b(n1w2 + 2n2w1 + 4n2w2)
. (16)

At this time, the market demand Q is as follows:

Q∗∗ = −n2w2(bc1 − a + bc2 − ks + bc3n1 + bc3n2 + bc4w1 + bc4w2)

4(n1w2 + 2n2w1 + 4n2w2)
. (17)

The overall profit of the supply chain π is as follows:

π∗∗ =
A1 + A2 + A3

b(w1 + w2)(n1w2 + 2n2w1 + 4n2w2)
. (18)

Among them,

A1 = (a + ks − bc2 + bc3n2)
(

n1w2
2 + n1w1w2

)
(19)

A2 = (a + ks − bc2 − bc3n2)
(

2n2w2
1 + 3n2w2

2 + 5n1w1w2

)
(20)

A3 = bw2(w1 + w2)[2c1n2 − c4w2(n1 + n2)]. (21)

Proof. Known

π2 = (a − bp2 + ks)(p2 − p1 − c2 − n2 p3)− (a − bp2 + ks)w2 p4 (22)

If we take the partial derivative of the p2 yield and make it 0, the solution is as follows:

p2
∗∗ =

a + b(c2 + p1 + n2 p3) + ks + bp4w2

2b
. (23)

When p2 is included in the profit model for π3, the profit value is

π3 = (p3 − c3)
a − b(c2 + p1 + n2 p3) + ks − bp4w2

2
. (24)

If we take the partial derivative of the p3 yield and make it 0, the solution is as follows:

p3
∗∗ =

a + ks − b(c2 + p1) + bc3n2 − bp4w2

2bn2
. (25)

Bringing p2 and p3 into the profit model of π4, the profit value is

π4 = (w1 + w2)(p4 − c4)
a + ks − b(c2 + p1)− bc3n2 − bp4w2

4
. (26)
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If we take the partial derivative of the p4 yield and make it 0, the solution is as follows:

p4
∗∗ =

a + ks − b(c2 + p1)− bc3n2 + bc4w2(w1 + w2)

2bw2
. (27)

Substituting p3 and p4 into the contractor’s as-built unit price formula and the demand
function formula, p2 and Q can be, respectively, expressed as follows:

p2
∗∗ =

7(a + ks) + b(c2 + p1) + bc3n2 + bc4w2

8b
(28)

Q∗∗ =
a + ks − b(c2 + p1)− bc3n2 − 3bc4w2

16
. (29)

Bringing the resulting p2 and Q into the supplier profit function π1, the supplier profit
is obtained as

π1 =
(

p1 − c1 − n1(a+ks−b(c2+p1)+3bc3n2−bc4w2)
4bn2

− w1(a+ks−b(c2+p1)−bc3n2+bc4w2)
2bw2

)
∗ a+ks−b(c2+p1)−bc3n2−bc4w2

8

(30)

p1
∗∗ =

(a + ks − bc2)(n1w2 + 2n2w2 + 2n2w1) + bc3n2(n1w2 − 2n2w2 − 2n2w1)− bc4w2(n1w2 + 2n2w2)

bn1w2 + 4bn2w2 + 2bn2w1
. (31)

We can calculate p2, p3, p4, Q, and π based on the adjusted unit price offered to the
contractor by the supplier, expressed as follows:

p2
∗∗ =

(a + ks)(4n1w2 + 8n2w1 + 15n2w2) + bn2w2(c1 + c2 + c3n2 + c4w2 + c3n1 + c4w1)

4b(n1w2 + 2n2w1 + 4n2w2)
(32)

p3
∗∗ =

(a + ks)w2 − bw2(c1 + c2 + c4w2 − c3n1) + b(4c3n2w1 + 7c3n2w2 − c4w1w2)

2b(n1w2 + 2n2w1 + 4n2w2)
(33)

p4
∗∗ =

(a + ks)n2 − bn2(c1 + c2 + c3n2 + c3n1) + bc4(n1w2 + n2w1 + 3n2w2)

b(n1w2 + 2n2w1 + 4n2w2)
(34)

Q∗∗ = −n2w2(bc1 − a + bc2 − ks + bc3n1 + bc3n2 + bc4w1 + bc4w2)

4(n1w2 + 2n2w1 + 4n2w2)
(35)

π∗∗ =
A1 + A2 + A3

b(w1 + w2)(n1w2 + 2n2w1 + 4n2w2)
. (36)

Among them,

A1 = (a + ks − bc2 + bc3n2)
(

n1w2
2 + n1w1w2

)
(37)

A2 = (a + ks − bc2 − bc3n2)
(

2n2w2
1 + 3n2w2

2 + 5n1w1w2

)
(38)

A3 = bw2(w1 + w2)[2c1n2 − c4w2(n1 + n2)]. (39)

□

Proposition 3. When a + ks > b(c1 + c2 + c3) + bc4(w1 + w2), p∗2 < p∗∗2 and Q∗ > Q∗∗.

Proof.

π∗ =
[a + ks − b(c1 + c2 + c3)− bc4(w1 + w2)]

2

4b
(40)

π∗∗ =
A1 + A2 + A3

b(w1 + w2)(n1w2 + 2n2w1 + 4n2w2)
(41)
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Among them,

A1 = (a + ks − bc2 + bc3n2)
(

n1w2
2 + n1w1w2

)
(42)

A2 = (a + ks − bc2 − bc3n2)
(

2n2w2
1 + 3n2w2

2 + 5n1w1w2

)
(43)

A3 = bw2(w1 + w2)[2c1n2 − c4w2(n1 + n2)]. (44)

Hence,

π∗∗ − π∗ = −
B2

1 + B2
2

16b(n1w2 + 2n2w1 + 4n2w2)
2 . (45)

Among them,

B1 = −(a + ks)(2n1w2 + 4n2w1 + 7n2w2) + 2bn1w2(c1 + c2 + c3 + c4w1 + c4w2) (46)

B2 = 4bn2w1(c1 + c2 + c3 + c4w1) + bn2w2(7c1 + 7c2 + 8c3 − c3n2 + 7c4w2 − c3n1 + 11c4w1). (47)

□

Since b is the sensitivity coefficient of demand to price, b > 0, the denominator of the
above equation > 0 and the numerator > 0, overall π∗∗ − π∗ < 0, and so π∗∗ < π∗. In the
same way p∗2 < p∗∗2 and Q∗ > Q∗∗.

That is, in the situation of information sharing, the overall profit of the decentralized
pricing choice under the Stackelberg game model is lower than the overall profit of the
collaborative pricing decision under the cooperative game model. Under the collaborative
pricing decision, each node gives up a higher sales unit price in exchange for a larger sales
volume, which results in a higher profit for the supply chain as a whole.

6. Numerical Simulation and Results Analysis
6.1. Numerical Simulation

Each model parameter is established and then calculated in order to confirm the
model’s plausibility and graphically contrast the overall profitability of the supply chain
under the decentralized pricing choice and the collaborative pricing decision. The param-
eters are chosen to adhere to model assumptions and market laws. We assume that in
a green supply chain of prefabricated construction, which includes a supplier, a general
contractor with design, logistics, and construction, a third-party information platform
service provider, and a green recycler, the demand function is Q = 4000 − 39.6p2 + 25s,
the supplier’s production unit cost is c1 = 40, the contractor’s production unit cost is
c2 = 7, the third-party information platform’s operation unit cost is c3 = 5, and the green
recycler’s product disposal unit cost is c4 = 10. The ratio of service expenses incurred by
suppliers and contractors to the third-party information platform is n1 = 0.6 and n2 = 0.4,
respectively; the supplier production scrap rate is w1 = 0.01; the contractor production
scrap rate is w2 = 0.03; and information sharing is s = 0.52. The main parameters are taken
as shown. (See Table 2).

Table 2. Main parameter values.

Parametric a b k s c1 c2 c3 c4 n1 n2 w1 w2

Value 4000 39.6 25 0.52 40 7 5 10 0.6 0.4 0.01 0.03

Based on the above values, the pricing and profit of each participant in the supply
chain are calculated under both decentralized and centralized decision-making models, as
shown in Table 3.
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Table 3. Comparison of results under different decision models (unit: yuan).

Project Dispersed Pricing Collaborative Pricing ∆(Collaborative Pricing −
Dispersed Pricing)

Supplier unit price 76.17
Contractor unit price 99.35 76.87 −22.48

Third-party information platform service
unit price 14.20

Green recycler treatment unit price 274.53
Demand for components 78.57 968.98 890.41

Profit of supplier 1922.40
Profit of contractor 155.87

Profit of third-party information platform 779.37
Profit of green recycler 831.33

Overall profit of supply chain 3688.97 23,710 20,021.03

According to the calculation results, there are two key differences between the collab-
orative pricing decision model and the decentralized pricing decision model. Firstly, the
product pricing under the collaborative pricing decision model is lower than that under
the decentralized pricing decision model. Secondly, the demand for components under the
collaborative pricing decision model is higher than that under the decentralized model.
Notably, the component demand in this context refers specifically to the quantity of compo-
nents selected by the contractor, rather than the total number of components required for
the project. The overall profit of the supply chain under the collaborative pricing model is
much higher than the overall profit of the supply chain under the decentralized pricing
model. The reason for this outcome is that under the collaborative pricing decision model,
all supply chain participants aim to maximize the overall profit of the supply chain. As a
result, they reduce their own pricing and significantly increase the demand for components,
ultimately achieving the objective of increasing the overall profit of the supply chain. Under
the decentralized pricing decision model, each participant in the supply chain ignores the
overall profit of the supply chain in order to maximize their own interests, resulting in high
pricing, a lower demand for components, and ultimately, low overall profit for the supply
chain. Following investigation and analysis, it was discovered that too-high pricing results
in an increase in project costs, and that most contractors will decrease the prefabricated
assembly rate of a project in order to lower construction costs and increase profit, which is
detrimental to the promotion and use of prefabricated buildings. Therefore, for the system
of the green supply chain of prefabricated construction, it is preferable to use collaborative
price decisions.

6.2. Impact of the Contractor Unit Price on the Profits of the Supply Chain

In order to further investigate the impact of the contractor unit price p2 on the profit of
the supply chain under the collaborative pricing decision model, Matlab 2021b software is
used to simulate the model under the condition of a certain degree of information sharing.
We set the parameters a = 4000, b = 39.6, k = 25, s = 0.45, c1 = 40, c2 = 7, c3 = 5, c4 = 10,
w1 = 0.01, and w2 = 0.03. The simulation results are shown in Figure 2.

According to the simulation results, under the conditions of the above parameters,
the demand Q for components decreases with the increase in p2, and the supplier’s profit
π1 decreases with the increase in p2. When p2 gradually increases from 0, the contractor’s
profit π2 gradually increases with the increase in p2. When p2 = 100, the maximum value
of π2 is 272,528.18, and when p2 continues to increase, the contractor’s profit gradually
decreases. The profit of the third-party information platform π3 decreases with the increase
in p2. The profit of green recyclers π4 decreases with the increase in p2. When it gradually
increases from 0, the overall profit of the supply chain gradually increases. When it reaches
76.85, the overall profit of the supply chain reaches the maximum of 23,667.36. When
it continues to increase, the overall profit of the supply chain gradually decreases from
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23,667.36. The reason for this is that the overall profit of the supply chain is equal to
the profit per unit product multiplied by the sales volume. When the price of a product
increases, sales will decrease, and for suppliers, third-party information platforms, and
green recyclers, sales will decrease, while their respective unit prices remain the same, and
therefore, profits will decrease. For the contractor and the supply chain as a whole, the
increase in product price will reduce the sales volume, but the profit per unit product will
increase, which will affect the total profit. When the price of the product is reduced, the
sales volume will increase, but the profit per unit product will decrease, which will affect
the total profit. Therefore, there must be an optimal price which makes the product price
and sales volume reach a balance, so as to maximize the overall profit of the supply chain.
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6.3. The Impact of the Information Sharing Degree s on the Overall Profit of the Supply Chain

The overall profit of the supply chain is also affected by the degree of information
sharing in the green supply chain of prefabricated construction under the collaborative
price decision-making model based on BIM, RFID, and GIS technologies for information
sharing. MATLAB software is used to analyze the model, with set parameters a = 4000,
b = 39.6, k = 25, c1 = 40, c2 = 7, c3 = 5, c4 = 10, w1 = 0.01, and w2 = 0.03. Some data
results are shown in Table 4, and the simulation results are shown in Figure 3.
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Table 4. Comparison of results of collaborative pricing decision models with different degrees of
information sharing.

s = 0.45 s = 0.60 s = 0.85 s = 1

Contractor unit price p2 76.85 76.89 76.97 77.02
Demand for components Q 968.11 969.98 973.11 974.98

Overall profit of supply chain π 23,667 23,759 23,912 24,005

An analysis of the data in Table 4 and Figure 3 shows that the degree of information
sharing affects the overall profit of the supply chain under the collaborative pricing decision
model of the information sharing platform based on BIM, RFID, and GIS technologies
in the green supply chain of prefabricated construction. Under the condition of other
parameters, the higher the information sharing degree, the higher the overall profit of the
supply chain. In this model, the green supply chain of prefabricated construction is more
effective when the degree of information exchange is 1. At this level, the supply chain’s
overall profit reaches its maximum level. By creating a green supply chain information
sharing platform for prefabricated construction based on BIM, RFID, and GIS technologies,
the general contractor is encouraged to split the building information model of the designer
and share the information about the components to the platform, which helps with efficient
production and construction. The logistics information about the components is shared
in real time, which helps with scheduling at the construction site. The construction site
information is shared in real time, which helps to adjust the production and transportation
plan. This encourages suppliers to share production information in real time so that
design and construction plans can be improved. Based on the shared information, green
recyclers will quickly recycle waste, unused raw materials, and subpar products created
during production, transportation, and construction stages to support production and
construction. Through the information sharing platform, the effective transmission of
logistics and information flow between each stage and each nodal enterprise of the supply
chain is realized. With the goal of maximizing the overall profit of the supply chain, a
collaborative pricing decision is made, and all nodal enterprises are encouraged to actively
share information, improve the degree of information sharing, increase the overall profit of
the supply chain, and realize information sharing and collaborative management of the
green supply chain of prefabricated construction.

7. Conclusions

This article delves into the application of GIS technology to achieve information shar-
ing and optimizes the information sharing platform based on BIM and RFID technologies,
aiming to improve the overall efficiency of the supply chain. Through the optimization
of this platform, we can not only obtain various data in the supply chain in real time,
and accurately so, but also effectively promote information exchange and collaboration
among enterprises at each node of the supply chain. Based on this, this article utilizes the
Stackelberg game model to conduct an in-depth analysis of two pricing decision models:
decentralized pricing and collaborative pricing. This model provides us with a clear frame-
work to compare the impact of different pricing strategies on supply chain profits. The
results indicate the following:

(1) Under the premise of information sharing, when enterprises in the supply chain
adopt collaborative pricing decisions aimed at maximizing the overall interests of
the supply chain, the overall profit of the supply chain is significantly greater than
that under decentralized pricing decisions aimed at maximizing individual interests.
This finding emphasizes the importance of collaboration among enterprises in the
supply chain and the possibility of achieving overall interest maximization through
information sharing.

(2) Further analysis reveals that the prefabricated green building supply chain system
performs more outstandingly under collaborative pricing decisions. This is mainly due
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to the fact that collaborative pricing decisions can promote close cooperation among
enterprises at various nodes of the supply chain, thus achieving optimal allocation
of resources and cost reductions. At the same time, this also verifies the tremendous
potential of GIS, BIM, and RFID technologies in improving supply chain management.
It should be noted that while collaborative pricing decisions can increase the overall
profit of the supply chain, there are also some potential risks. On the one hand,
collaborative pricing requires a high level of trust and cooperation among enterprises
at different nodes of the supply chain. A lack of trust or willingness to cooperate
may lead to the failure of cooperation. On the other hand, collaborative pricing may
involve issues of profit distribution among enterprises. If the profit distribution is
unfair, it may lead to conflicts and disputes among enterprises. Therefore, when
implementing collaborative pricing strategies, it is necessary to fully consider these
potential risks and take corresponding measures to prevent and address them.

(3) In addition, this article also finds a positive correlation between the degree of infor-
mation sharing and the overall profit of the supply chain. Specifically, the higher the
degree of information sharing, the greater the overall profit of the supply chain. This
finding underscores the crucial role of information sharing in enhancing supply chain
efficiency, reducing costs, and increasing profits. Therefore, encouraging enterprises
at various nodes of the supply chain to actively share information will help improve
the competitiveness of the entire supply chain.

The results of this study have contributed to the development of supply chain man-
agement theory, in particular, regarding information sharing and collaborative pricing.
They demonstrate that information sharing and collaborative decision-making among
enterprises can bring significant efficiency gains in supply chain management. This aligns
with the importance of supply chain collaboration and information sharing in existing
theories and provides new support for subsequent research. In addition, the significance of
this study lies in verifying the importance of information sharing and collaborative pricing
in enhancing the overall profit of the supply chain. This suggests that in the context of
globalization and digitization, cooperation and collaboration between enterprises have
become crucial to improve competitiveness. At the same time, it validates the authors’
hypothesis that optimizing information sharing and pricing strategies can enhance supply
chain efficiency and increase profits.

This study provides an effective information sharing and collaborative pricing strategy
that can help enterprises optimize supply chain management and increase overall profits. In
practice, enterprises can utilize the information sharing platform constructed in this study
to achieve rapid information flow and sharing, promoting collaboration among enterprises
at various nodes of the supply chain. This will help enterprises reduce inventory costs, im-
prove production efficiency, shorten delivery cycles, and enhance market competitiveness.
Certainly, due to the universality of GIS, BIM, and RFID technologies, this information
sharing platform is not only applicable to the prefabricated green building supply chain but
can also be expanded to other industries that require efficient information management and
supply chain collaboration. For example, the automotive industry can utilize this platform
to achieve precise tracking of parts and supply chain collaboration, reducing inventory
backlog and improving production efficiency. Additionally, the food industry can use this
platform to monitor the entire process from production to sales, ensuring food safety and
optimizing inventory.

While this study provides new ideas and methods for studying the profits of the
prefabricated green building supply chain, it also has certain limitations. For instance, this
study has not yet deeply explored how to effectively incentivize enterprises at various nodes
of the supply chain to actively share information. Simultaneously, it is also meaningful
to conduct research considering other factors that may affect supply chain profits, such
as market demand and technological advancements, providing a more comprehensive
reference for research in the field of supply chain management.
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