Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan
Abstract
:1. Introduction
1.1. Background
1.2. Synergistic Landscape Design Strategies (SLDS) for Improving Thermal Environment
1.3. Microclimate Simulation in the Urban Community
1.4. Motivation
- (i)
- To develop a three-level optimization method to systematically verify the SLDS alternatives in a pre-renew stage of the central city for both summer outdoor thermal comfort and microclimate improvement.
- (ii)
- To apply to quantify which the SLDS alternatives can affect the small-scale and the large-scale optimization community cooling demand and the summer thermal comfort more effectively multifactor improvements strategy following the optimal criteria (i.e., improvement of Ta, RH, WS, Tmrt, and PET).
- (iii)
- To investigate the effect application of urban trees in the microclimate simulation ENVI-met of sustainable Japanese communities project and resilience assessment in the Cfa-climate by comparing analysis if the hypotheses do not reach the multifactorial improvements.
2. Materials and Methods
2.1. Study Area
2.2. Climate Condition
2.3. Meteorological Monitoring
2.4. ENVI-Met and ArcGIS
2.5. The Human Thermal Comfort Index
3. Synergistic Landscape Design Strategies (SLDS) in Japanese Communities
3.1. Planting Design (L) at a Small-Scale
3.2. Green Roof (R)
3.3. Green Facade and Green Roof (F)
3.4. Water Body and Green Roof (W)
3.5. Large-Scale Synergistic Landscape Design Strategies (W-Ga-f)
4. Results
4.1. ENVI-Met Model Validation
4.2. Microclimate Conditions in Renewal Strategies
4.2.1. Air Temperature (Ta)
4.2.2. Relative Humidity (RH)
4.2.3. Wind Speed (WS)
4.2.4. Mean Radiation Temperature (Tmrt)
4.3. Mitigation Performance in Community Thermal Environments
4.3.1. Planting Design Effects on Sample Communities
4.3.2. Green Building Envelope (GBE) Design Effects on Small-Scale Communities
4.3.3. Urban Tree Effects on Large-Scale Community
5. Discussion
5.1. Implications for the Planting Design
5.2. Advantages of Green Building Envelope (GBE) Design
5.3. Urban Tree Effect on Sample Communities
5.4. Scale Adaptation for Microclimate and Thermal Comfort Mitigation
5.4.1. Small-Scale Community Models
5.4.2. Large-Scale Community Models
5.5. Limitations
6. Conclusions
- (1)
- Applying a systematic SDLS mechanism to the urban community created an optimal strategy using a water body and green roof at two scales, which proved effective in microclimate and thermal improvement in summer during the day and night, optimizing outdoor comfort all day in 85% of cases.
- (2)
- There are synergistic landscape design strategies that result from integrated water design, green roofs, and urban trees (i.e., three-level optimization method) on Japanese building-specific community forms to achieve better adaptive design for building form, landscape design, climatic characteristics, scale, and time mitigation that reduces occupant health risks in summer, especially improves thermal comfort from a very hot to warm level at 14:00.
- (3)
- Regarding urban trees, adding evergreen or coniferous trees is more conducive to reducing the urban heat island phenomenon in a large-scale community. The optimal strategy “W” will be applied to the Komatsu City Renewal and Maintenance Plan project.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of symbols | |
SLDS | Synergistic landscape design strategies |
Ta | Air temperature |
RH | Relative humidity |
Tmrt | Mean radiant temperature |
WD | Wind direction |
WS | Wind speed |
PMV | Predict mean voting index |
PET | Physiologically equivalent temperature |
UTCI | Universal thermal climate index |
GBE | Green building envelopes |
CFD | Computational fluid dynamics |
EBM | Energy balance modeling |
SDGs | Sustainable development goals |
UHI | Urban heat island |
HC | Single-family community |
AC | Real estate flat community |
BC | Mixed cluster community |
JMA | Japan meteorological agency |
LAD | Leaf area density index |
R2 | Coefficient of determination |
RMSE | Root-mean-square error |
L | Planting design |
R | Green roof |
F | Green facade and green roof |
W | Water body and green roof |
GBE | Green building envelopes |
Tn | Tree number |
RANS | Reynolds Averaged Navier-Stokes |
Appendix A
Simulation Runs in a Small-Scale | Code | Case | Mean Ta in HC (°C) | Mean RH in HC (%) | Mean WS in HC (m/s) | Mean Tmrt in HC (°C) | Mean Ta in AC (°C) | Mean RH in AC (%) | Mean WS in AC (m/s) | Mean Tmrt in AC (°C) |
---|---|---|---|---|---|---|---|---|---|---|
Current case | L1–4 | L1 | 29.2 | 62.5 | 0.9 | 38.0 | 29.4 | 62.2 | 0.9 | 30.9 |
Planting design case | L2 | 29.1 | 62.3 | 1.1 | 35.2 | 29.4 | 62.6 | 1.9 | 31.4 | |
L3 | 29.0 | 63.5 | 0.7 | 33.1 | 29.5 | 62.8 | 1.7 | 32.1 | ||
L4 | 29.1 | 62.5 | 1.1 | 35.0 | 29.5 | 62.9 | 1.7 | 31.5 | ||
Renewal small-scale cases | R1–4 | R1 | 29.2 | 63.0 | 0.9 | 39.1 | 29.5 | 63.0 | 1.7 | 31.4 |
R2 | 29.0 | 62.7 | 1.2 | 35.3 | 29.4 | 63.1 | 1.6 | 30.7 | ||
R3 | 29.1 | 63.8 | 0.8 | 34.7 | 29.5 | 62.7 | 1.8 | 33.0 | ||
R4 | 29.1 | 63.1 | 0.7 | 34.6 | 29.5 | 62.7 | 1.6 | 31.4 | ||
F1–4 | F1 | 29.1 | 63.3 | 0.6 | 37.3 | 29.5 | 62.6 | 1.6 | 33.5 | |
F2 | 29.1 | 63.8 | 1.1 | 35.2 | 29.5 | 62.8 | 1.9 | 32.3 | ||
F3 | 29.0 | 64.5 | 1.2 | 34.4 | 29.5 | 62.9 | 1.7 | 32.3 | ||
F4 | 29.1 | 63.1 | 1.2 | 35.2 | 29.4 | 62.7 | 0.9 | 34.2 | ||
W1–4 | W1 | 26.9 | 77.7 | 0.6 | 36.0 | 29.0 | 65.9 | 1.9 | 32.2 | |
W2 | 27.4 | 72.6 | 0.3 | 32.7 | 29.1 | 64.8 | 1.7 | 31.4 | ||
W3 | 28.2 | 67.8 | 1.0 | 34.8 | 29.0 | 65.8 | 1.7 | 31.5 | ||
W4 | 27.3 | 73.6 | 1.3 | 34.8 | 29.3 | 63.3 | 1.0 | 33.8 |
Simulation Runs in a Small-Scale | Code | Case | Mean Ta in HC (°C) | Mean RH in HC (%) | Mean WS in HC (m/s) | Mean Tmrt in HC (°C) | Mean Ta in AC (°C) | Mean RH in AC (%) | Mean WS in AC (m/s) | Mean Tmrt in AC (°C) |
---|---|---|---|---|---|---|---|---|---|---|
Current case | L1–4 | L1 | 32.1 | 54.9 | 0.8 | 57.3 | 32.3 | 53.9 | 0.9 | 43.3 |
Planting design case | L2 | 31.8 | 54.4 | 1.1 | 54.9 | 32.8 | 52.5 | 1.9 | 46.3 | |
L3 | 31.8 | 56.3 | 0.7 | 50.4 | 33.0 | 52.2 | 1.7 | 46.5 | ||
L4 | 31.8 | 55.0 | 1.1 | 54.3 | 33.0 | 52.2 | 1.6 | 46.3 | ||
Renewal small-scale cases | R1–4 | R1 | 32.1 | 55.6 | 0.8 | 57.3 | 33.0 | 52.4 | 1.7 | 45.7 |
R2 | 31.8 | 54.9 | 1.2 | 55.0 | 32.9 | 52.5 | 1.5 | 45.0 | ||
R3 | 31.9 | 56.6 | 0.7 | 53.3 | 33.0 | 52.2 | 1.8 | 47.7 | ||
R4 | 31.8 | 55.9 | 0.7 | 53.3 | 32.9 | 52.3 | 1.6 | 45.9 | ||
F1–4 | F1 | 31.9 | 56.3 | 0.6 | 55.8 | 32.9 | 54.2 | 1.5 | 47.6 | |
F2 | 32.2 | 54.9 | 1.1 | 54.4 | 32.9 | 52.9 | 1.9 | 46.9 | ||
F3 | 31.8 | 57.5 | 1.2 | 52.6 | 33.0 | 52.4 | 1.7 | 46.4 | ||
F4 | 31.8 | 56.1 | 1.1 | 54.2 | 32.7 | 53.3 | 1.0 | 46.0 | ||
W1–4 | W1 | 30.2 | 67.0 | 0.6 | 55.4 | 32.5 | 54.6 | 1.9 | 47.3 | |
W2 | 30.3 | 63.0 | 0.3 | 49.9 | 32.6 | 53.7 | 1.7 | 46.4 | ||
W3 | 31.0 | 60.4 | 1.0 | 53.7 | 32.5 | 54.6 | 1.7 | 46.0 | ||
W4 | 30.2 | 63.8 | 1.3 | 54.1 | 32.5 | 53.5 | 1.1 | 45.9 |
Simulation Runs in a Large-Scale | Code | Case | Mean Ta in BC (°C) | Mean RH in BC (%) | Mean WS in BC (m/s) | Mean Tmrt in BC (°C) |
---|---|---|---|---|---|---|
Current case | W-Ga-f | Ga | 29.1 | 60.8 | 0.4 | 29.6 |
Renewal large-scale cases | W-Gb | 28.6 | 64.5 | 0.5 | 31.7 | |
W-Gc | 28.3 | 66.1 | 0.3 | 28.7 | ||
W-Gd | 28.6 | 65.4 | 0.5 | 30.1 | ||
W-Ge | 28.5 | 64.9 | 0.4 | 32.0 | ||
W-Gf | 28.3 | 65.9 | 0.5 | 29.4 |
Simulation Runs in a Large-Scale | Code | Case | Mean Ta in BC (°C) | Mean RH in BC (%) | Mean WS in BC (m/s) | Mean Tmrt in BC (°C) |
---|---|---|---|---|---|---|
Current case | W-Ga-f | Ga | 31.7 | 53.4 | 0.4 | 43.6 |
Renewal large-scale cases | W-Gb | 31.2 | 57.5 | 0.5 | 47.5 | |
W-Gc | 30.6 | 60.1 | 0.3 | 41.9 | ||
W-Gd | 31.2 | 58.3 | 0.5 | 44.8 | ||
W-Ge | 31.0 | 58.5 | 0.4 | 47.3 | ||
W-Gf | 30.6 | 60.6 | 0.2 | 42.9 |
References
- Zhang, Q. Residential Energy Consumption in China and Its Comparison with Japan, Canada, and USA. Energy Build. 2004, 36, 1217–1225. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Akbari, H.; Romm, J.; Pomerantz, M. Cool Communities: Strategies for Heat Island Mitigation and Smog Reduction. Energy Build. 1998, 28, 51–62. [Google Scholar] [CrossRef]
- Peeters, L.; De Dear, R.; Hensen, J.; D’haeseleer, W. Thermal Comfort in Residential Buildings: Comfort Values and Scales for Building Energy Simulation. Appl. Energy 2009, 86, 772–780. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jiang, Z.; Yang, X.; Wang, Q.; He, Y.; Chen, S.S. Energy Savings of Block-Scale Facade Greening for Different Urban Forms. Appl. Energy 2020, 279, 115844. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Gatto, E.; Ding, W. Study of the Effect of Green Quantity and Structure on Thermal Comfort and Air Quality in an Urban-like Residential District by ENVI-Met Modelling. Build. Simul. 2019, 12, 183–194. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Zheng, T.; Qu, K.; Darkwa, J.; Calautit, J.K. Evaluating Urban Heat Island Mitigation Strategies for a Subtropical City Centre (a Case Study in Osaka, Japan). Energy 2022, 250, 123721. [Google Scholar] [CrossRef]
- Srivanit, M.; Jareemit, D. Modeling the Influences of Layouts of Residential Townhouses and Tree-Planting Patterns on Outdoor Thermal Comfort in Bangkok Suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- Liao, J.; Tan, X.; Li, J. Evaluating the Vertical Cooling Performances of Urban Vegetation Scenarios in a Residential Environment. J. Build. Eng. 2021, 39, 102313. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetali, S. Quantifying the Direct Benefits of Cool Roofs in an Urban Setting: Reduced Cooling Energy Use and Lowered Greenhouse Gas Emissions. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Levinson, R.; Akbari, H. Potential Benefits of Cool Roofs on Commercial Buildings: Conserving Energy, Saving Money, and Reducing Emission of Greenhouse Gases and Air Pollutants. Energy Effic. 2010, 3, 53–109. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Kleerekoper, L.; Van Esch, M.; Salcedo, T.B. How to Make a City Climate-Proof, Addressing the Urban Heat Island Effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and Humidifying Effect of Plant Communities in Subtropical Urban Parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Ge, J.; Wang, Y.; Akbari, H.; Zhou, D.; Gu, Z.; Meng, X. Cooling Energy Saving by Vegetation Planting in High-Density Districts: Evaluation Using the Coupled Simulation. Build. Environ. 2023, 232, 110054. [Google Scholar] [CrossRef]
- Castiglia Feitosa, R.; Wilkinson, S.J. Attenuating Heat Stress through Green Roof and Green Wall Retrofit. Build. Environ. 2018, 140, 11–22. [Google Scholar] [CrossRef]
- Herath, H.; Halwatura, R.; Jayasinghe, G. Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Eng. 2018, 213, 691–698. [Google Scholar] [CrossRef]
- Knaus, M.; Haase, D. Green Roof Effects on Daytime Heat in a Prefabricated Residential Neighbourhood in Berlin, Germany. Urban For. Urban Green. 2020, 53, 126738. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Kang, J. Temperature Reduction Effects of Rooftop Garden Arrangements: A Case Study of Seoul National University. Sustainability 2020, 12, 6032. [Google Scholar] [CrossRef]
- Medl, A.; Stangl, R.; Florineth, F. Vertical Greening Systems–A Review on Recent Technologies and Research Advancement. Build. Environ. 2017, 125, 227–237. [Google Scholar] [CrossRef]
- Eumorfopoulou, E.; Kontoleon, K. Experimental Approach to the Contribution of Plant-Covered Walls to the Thermal Behaviour of Building Envelopes. Build. Environ. 2009, 44, 1024–1038. [Google Scholar] [CrossRef]
- Jim, C.Y. Thermal Performance of Climber Greenwalls: Effects of Solar Irradiance and Orientation. Appl. Energy 2015, 154, 631–643. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, F.; Qian, F.; Zhuang, Z.; Yao, J. Summertime Thermal and Energy Performance of a Double-Skin Green Facade: A Case Study in Shanghai. Sustain. Cities Soc. 2018, 39, 43–51. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L. Green Facade for Energy Savings in Buildings: The Influence of Leaf Area Index and Facade Orientation on the Shadow Effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef]
- Cuce, E. Thermal Regulation Impact of Green Walls: An Experimental and Numerical Investigation. Appl. Energy 2017, 194, 247–254. [Google Scholar] [CrossRef]
- Perez, G.; Rincon, L.; Vila, A.; Gonzalez, J.; Cabeza, L. Green Vertical Systems for Buildings as Passive Systems for Energy Savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Hoelscher, M.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying Cooling Effects of Facade Greening: Shading, Transpiration and Insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.; Haas, E. Vertical Greening Systems and the Effect on Air Flow and Temperature on the Building Envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Relating Microclimate, Human Thermal Comfort and Health during Heat Waves: An Analysis of Heat Island Mitigation Strategies through a Case Study in an Urban Outdoor Environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.L.; Ng, E. Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Teshnehdel, S.; Akbari, H.; Di Giuseppe, E.; Brown, R.D. Effect of Tree Cover and Tree Species on Microclimate and Pedestrian Comfort in a Residential District in Iran. Build. Environ. 2020, 178, 106899. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. An Integrated School and Schoolyard Design Method for Summer Thermal Comfort and Energy Efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar] [CrossRef]
- Kim, J.; Hong, T.; Jeong, J.; Koo, C.; Jeong, K. An Optimization Model for Selecting the Optimal Green Systems by Considering the Thermal Comfort and Energy Consumption. Appl. Energy 2016, 169, 682–695. [Google Scholar] [CrossRef]
- Ulpiani, G.; di Perna, C.; Zinzi, M. Water Nebulization to Counteract Urban Overheating: Development and Experimental Test of a Smart Logic to Maximize Energy Efficiency and Outdoor. Appl. Energy 2019, 239, 1091–1113. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S. Retrofitted Green Roofs and Walls and Improvements in Thermal Comfort. AIP Conf. Proc. 2017, 1856, 020006. [Google Scholar]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Yang, Y.; Gatto, E.; Gao, Z.; Buccolieri, R.; Morakinyo, T.E.; Lan, H. The “Plant Evaluation Model” for the Assessment of the Impact of Vegetation on Outdoor Microclimate in the Urban Environment. Build. Environ. 2019, 159, 106151. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- De Dear, R.J.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress in Thermal Comfort Research over the Last Twenty Years. Indoor Air 2013, 23, 442–461. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Evaluation of Green Infrastructure Effects on Tropical Sri Lankan Urban Context as an Urban Heat Island Adaptation Strategy. Urban For. Urban Green. 2018, 29, 212–222. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, L. Optimizing the Spatial Arrangement of Trees in Residential Neighborhoods for Better Cooling Effects: Integrating Modeling with in-Situ Measurements. Landsc. Urban Plan. 2017, 167, 463–472. [Google Scholar] [CrossRef]
- Ouyang, W.; Sinsel, T.; Simon, H.; Morakinyo, T.E.; Liu, H.; Ng, E. Evaluating the Thermal-Radiative Performance of ENVI-Met Model for Green Infrastructure Typologies: Experience from a Subtropical Climate. Build. Environ. 2022, 207, 108427. [Google Scholar] [CrossRef]
- Abdallah, A.S.H.; Mahmoud, R.M.A. Urban Morphology as an Adaptation Strategy to Improve Outdoor Thermal Comfort in Urban Residential Community of New Assiut City, Egypt. Sustain. Cities Soc. 2022, 78, 103648. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. CFD Simulations of Wind Distribution in an Urban Community with a Full-Scale Geometrical Model. Build. Environ. 2017, 117, 11–23. [Google Scholar] [CrossRef]
- Xiao, J.; Yuizono, T. Climate-Adaptive Landscape Design: Microclimate and Thermal Comfort Regulation of Station Square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Urban Design Vision Action Plan/Komatsu City Website. Available online: https://www.city.komatsu.lg.jp (accessed on 28 August 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Magic, V. WeatherSpark Website. Available online: https://weatherspark.com (accessed on 7 April 2022).
- Schmunk, R.B. Data.GISS: GISS Surface Temperature Analysis (v4): Global Maps. Available online: https://data.giss.nasa.gov/gistemp/maps/index_v4.html (accessed on 7 August 2022).
- Japan Meteorological Agency (JMA). Available online: https://www.data.jma.go.jp/risk/obsdl/index.php (accessed on 7 April 2022).
- Wu, H.W.; Kumar, P.; Cao, S.J. Implementation of Green Infrastructure for Improving the Building Environment of Elderly Care Centres. J. Build. Eng. 2022, 54, 104682. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, C.; Zheng, Y.; Ng, E. Mapping the Urban Microclimatic Spatial Distribution in a Sub-Tropical High-Density Urban Environment. Archit. Sci. Rev. 2016, 59, 370–384. [Google Scholar] [CrossRef]
- Forouzandeh, A. Prediction of Surface Temperature of Building Surrounding Envelopes Using Holistic Microclimate ENVI-Met Model. Sustain. Cities Soc. 2021, 70, 102878. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating Surface-Plant-Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Cui, L.; Rupprecht, C.D.D.; Shibata, S. Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens. Sustainability 2021, 13, 2736. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.P.; Matzarakis, A. Tourism Climate and Thermal Comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Getter, K.; Rowe, D. The Role of Extensive Green Roofs in Sustainable Development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef]
- Herrera-Gomez, S.; Quevedo-Nolasco, A. The Role of Green Roofs in Climate Change Mitigation. A Case Study in Seville (Spain). Build. Environ. 2017, 123, 575–584. [Google Scholar] [CrossRef]
- Hunter, A.; Williams, N.; Rayner, J.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the Thermal Performance of Green Façades: A Critical Review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 1983, 50, 885–990. [Google Scholar] [CrossRef]
- Hong, B.; Lin, B. Numerical Studies of the Outdoor Wind Environment and Thermal Comfort at Pedestrian Level in Housing Blocks with Different Building Layout Patterns and Trees Arrangement. Renew. Energy 2015, 73, 18–27. [Google Scholar] [CrossRef]
- Lalošević, M.D.; Komatina, M.S.; Miloš, M.V.; Rudonja, N.R. Green Roofs and Cool Materials as Retrofitting Strategies for Urban Heat Island Mitigation: Case Study in Belgrade, Serbia. Therm. Sci. 2018, 22, 2309–2324. [Google Scholar] [CrossRef]
- Nishimura, N.; Nomura, T.; Iyota, H.; Kimoto, S. Novel Water Facilities for Creation of Comfortable Urban Micrometeorology. Sol. Energy 1998, 64, 197–207. [Google Scholar] [CrossRef]
- Zhang, G.; He, B.; Zhu, Z.; Dewancker, B. Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates. Int. J. Environ. Res. Public Health 2016, 16, 179. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Bai, X.; Luo, T.; Zou, M. Effects of Green Roofs’ Variations on the Regional Thermal Environment Using Measurements and Simulations in Chongqing, China. Urban For. Urban Green. 2018, 29, 223–237. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jiang, Z.; Yang, X.; He, Y.; Xu, T.; Chen, S.S. Cooling Effects of Block-Scale Facade Greening and Their Relationship with Urban Form. Build. Environ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A. Comparative Analysis of Green Actions to Improve Outdoor Thermal Comfort inside Typical Urban Street Canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar] [CrossRef]
- Abdi, B.; Hami, A.; Zarehaghi, D. Impact of Small-Scale Tree Planting Patterns on Outdoor Cooling and Thermal Comfort. Sustain. Cities Soc. 2020, 56, 102085. [Google Scholar] [CrossRef]
Time | Ta (°C) | RH (%) | WD (°) | WS (m/s) |
---|---|---|---|---|
00:00 | 26.5 | 74.0 | 112.5 | 0.8 |
01:00 | 28.7 | 62.0 | 180.0 | 3.2 |
02:00 | 27.1 | 70.0 | 247.5 | 1.1 |
03:00 | 28.5 | 66.0 | 180.0 | 3.0 |
04:00 | 28.3 | 66.0 | 180.0 | 2.9 |
05:00 | 27.6 | 66.0 | 180.0 | 1.2 |
06:00 | 26.9 | 70.0 | 135.0 | 1.6 |
07:00 | 29.3 | 62.0 | 180.0 | 2.0 |
08:00 | 29.7 | 58.0 | 202.5 | 2.4 |
09:00 | 31.4 | 58.0 | 180.0 | 2.9 |
10:00 | 32.5 | 52.0 | 180.0 | 4.6 |
11:00 | 33.0 | 55.0 | 180.0 | 4.4 |
12:00 | 34.1 | 52.0 | 202.5 | 3.5 |
13:00 | 33.6 | 55.0 | 202.5 | 4.2 |
14:00 | 32.2 | 59.0 | 202.5 | 3.3 |
15:00 | 31.8 | 62.0 | 202.5 | 3.7 |
16:00 | 31.3 | 62.0 | 202.5 | 2.1 |
17:00 | 28.2 | 79.0 | 202.5 | 2.2 |
18:00 | 27.2 | 84.0 | 202.5 | 2.0 |
19:00 | 27.0 | 84.0 | 202.5 | 0.7 |
20:00 | 27.0 | 84.0 | 225.0 | 0.3 |
21:00 | 27.0 | 84.0 | 157.5 | 0.3 |
22:00 | 25.7 | 94.0 | 270.0 | 1.2 |
23:00 | 25.8 | 89.0 | 135.0 | 1.2 |
Sample Site/Setting | HC | AC | BC | |
---|---|---|---|---|
Time setting | Total simulation time (h) | 24 | ||
Output time interval (min) | 60 | |||
Start of simulation date and time | On 22 August 2021; at 00:00 | |||
Create model | Model dimensions (X × Y × Z) (m) | 38 × 43 × 15 | 63 × 69 × 45 | 160 × 75 × 36 |
Grid size (m) | 2 × 2 × 2 | 2 × 2 × 2 | 2 × 2 × 2 | |
Telescoping factor (%) | 6% | - | - | |
Start telescoping after height (m) | 7 | - | - | |
Number of nested grids | 5 | - | - | |
Meteorological parameters | Minimum–maximum air temperature (°C) | 25.7–34.1 | ||
Minimum–maximum relative humidity in 2 m (%) | 52–94 | |||
Wind speed measured at 10 m height (m/s) | 2.3 | |||
Wind direction (°) | 189 | |||
Roughness length at the measurement site | 0.01 | |||
Soil | Soil layer (0–200 cm) humidity (%) and temperature (°C) | 65, 20 | ||
70, 20 | ||||
75, 19 | ||||
Cloud | Fraction of cloud (x/8) | 6 | ||
Force mode | Simple force/Full force | Simple force |
SDLS | Code | Case | Tree Number (Tn) | Tree Number (Tn) | Planting Design | Adding GBE Design | Adding Urban Tree | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HC/BC | AC | L1 | L2 | L3 | L4 | R | F | W | Ga | Gb | Gc | Gd | Ge | Gf | |||
Current cases/ Planting design cases | L1–4 | L1 | 34 | 54 | ◎ | ||||||||||||
L2 | 0 | 0 | ◎ | ||||||||||||||
L3 | 32 | 76 | ◎ | ||||||||||||||
L4 | 0 | 0 | ◎ | ||||||||||||||
Renewal small-scale cases | R1–4 | R1 | 34 | 54 | ◎ | ◎ | |||||||||||
R2 | 0 | 0 | ◎ | ◎ | |||||||||||||
R3 | 32 | 76 | ◎ | ◎ | |||||||||||||
R4 | 0 | 0 | ◎ | ◎ | |||||||||||||
F1–4 | F1 | 34 | 54 | ◎ | ◎ | ||||||||||||
F2 | 0 | 0 | ◎ | ◎ | |||||||||||||
F3 | 32 | 76 | ◎ | ◎ | |||||||||||||
F4 | 0 | 0 | ◎ | ◎ | |||||||||||||
W1–4 | W1 | 34 | 54 | ◎ | ◎ | ||||||||||||
W2 | 0 | 0 | ◎ | ◎ | |||||||||||||
W3 | 32 | 76 | ◎ | ◎ | |||||||||||||
W4 | 0 | 0 | ◎ | ◎ | |||||||||||||
Current cases/ Renewal large-scale cases | W-Ga-f | Ga | 126 | ◎ | ◎ | ||||||||||||
W-Gb | 126 | ◎ | ◎ | ◎ | |||||||||||||
W-Gc | 208 | ◎ | ◎ | ◎ | |||||||||||||
W-Gd | 208 | ◎ | ◎ | ◎ | |||||||||||||
W-Ge | 208 | ◎ | ◎ | ◎ | |||||||||||||
W-Gf | 208 | ◎ | ◎ | ◎ |
(a) | ||||||
Simulation runs in a small-scale | Code | Case | Mean PET in HC (°C) | Mean deviation relative to L1 (ΔPET) in HC (°C) | Mean PET in AC (°C) | Mean deviation relative to L1 (ΔPET) in AC (°C) |
Current case | L1–4 | L1 | 32.1 | - | 29.2 | - |
Planting design cases | L2 | 32.1 | 0.0 | 30.5 | 1.3 | |
L3 | 30.4 | −1.7 | 28.7 | −0.5 | ||
L4 | 29.7 | −2.4 | 28.1 | −1.1 | ||
(b) | ||||||
Simulation runs in a small-scale | Code | Case | Mean PET in HC (°C) | Mean deviation relative to L1 (ΔPET) in HC (°C) | Mean PET in AC (°C) | Mean deviation relative to L1 (ΔPET) in AC (°C) |
Current case | L1–4 | L1 | 43.0 | - | 37.9 | - |
Planting design cases | L2 | 41.4 | −1.6 | 39.9 | 2.0 | |
L3 | 41.1 | −1.9 | 37.5 | −0.4 | ||
L4 | 40.5 | −2.5 | 37.5 | −0.4 |
(a) | ||||||
Simulation runs in a small-scale | Code | Case | Mean PET in HC (°C) | Mean deviation relative to L1 (ΔPET) in HC (°C) | Mean PET in AC (°C) | Mean deviation relative to L1 (ΔPET) in AC (°C) |
Renewal of the small-scale cases | R1–4 | R1 | 32.4 | 0.3 | 28.2 | −1.0 |
R2 | 30.0 | −2.1 | 28.0 | −0.2 | ||
R3 | 28.4 | −3.7 | 28.5 | −0.8 | ||
R4 | 29.6 | −2.5 | 28.2 | −1.0 | ||
F1–4 | F1 | 31.9 | −0.2 | 29.3 | 0.1 | |
F2 | 29.8 | −2.2 | 28.4 | −0.8 | ||
F3 | 29.9 | −2.2 | 29.4 | 0.2 | ||
F4 | 29.7 | −2.4 | 28.4 | −0.8 | ||
W1–4 | W1 | 29.9 | −2.1 | 29.0 | −0.2 | |
W2 | 29.0 | −3.1 | 27.8 | −1.4 | ||
W3 | 27.1 | −5.0 | 29.1 | −0.1 | ||
W4 | 28.6 | −3.5 | 27.9 | −1.3 | ||
(b) | ||||||
Simulation runs in a small-scale | Code | Case | Mean PET in HC (°C) | Mean deviation relative to L1 (ΔPET) in HC (°C) | Mean PET in AC (°C) | Mean deviation relative to L1 (ΔPET) in AC (°C) |
Renewal of the small-scale cases | R1–4 | R1 | 43.4 | 0.4 | 37.4 | −0.5 |
R2 | 41.1 | −1.9 | 36.9 | −1.0 | ||
R3 | 37.5 | −5.5 | 37.6 | −0.3 | ||
R4 | 40.4 | −2.6 | 37.5 | −0.4 | ||
F1–4 | F1 | 42.9 | −0.1 | 38.4 | 0.5 | |
F2 | 40.9 | −2.1 | 37.6 | −0.3 | ||
F3 | 40.1 | −2.9 | 38.3 | 0.4 | ||
F4 | 40.4 | −2.6 | 36.5 | −1.4 | ||
W1–4 | W1 | 41.4 | −1.6 | 38.1 | 0.2 | |
W2 | 40.4 | −2.6 | 37.1 | −0.8 | ||
W3 | 37.9 | −5.1 | 37.7 | −0.2 | ||
W4 | 39.5 | −3.5 | 37.2 | −0.7 |
(a) | ||||
Simulation runs in a large-scale | Code | Case | Mean PET in BC (°C) | Mean deviation relative to Ga (ΔPET) in BC (°C) |
Current case | W-Ga-f | Ga | 30.4 | - |
Renewal of large-scale cases | W-Gb | 29.5 | −0.9 | |
W-Gc | 28.1 | −2.3 | ||
W-Gd | 30.5 | 0.1 | ||
W-Ge | 28.2 | −2.2 | ||
W-Gf | 29.0 | −1.5 | ||
(b) | ||||
Simulation runs in a large-scale | Code | Case | Mean PET inBC (°C) | Mean deviation relative to Ga (ΔPET) in BC (°C) |
Current case | W-Ga-f | Ga | 40.1 | - |
Renewal of large-scale cases | W-Gb | 38.6 | −1.5 | |
W-Gc | 36.4 | −3.7 | ||
W-Gd | 39.3 | −0.8 | ||
W-Ge | 35.4 | −4.7 | ||
W-Gf | 37.8 | −2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Yuizono, T.; Li, R. Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan. Sustainability 2024, 16, 5582. https://doi.org/10.3390/su16135582
Xiao J, Yuizono T, Li R. Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan. Sustainability. 2024; 16(13):5582. https://doi.org/10.3390/su16135582
Chicago/Turabian StyleXiao, Jing, Takaya Yuizono, and Ruixuan Li. 2024. "Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan" Sustainability 16, no. 13: 5582. https://doi.org/10.3390/su16135582
APA StyleXiao, J., Yuizono, T., & Li, R. (2024). Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan. Sustainability, 16(13), 5582. https://doi.org/10.3390/su16135582