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Abstract: The development of the digital economy has injected new vitality into the global economy,
but the environmental issues it raises cannot be ignored. This paper analyzes the impact of the
digital economy on carbon emission levels and their coupling relationships using panel data from
30 provinces, cities, and autonomous regions in mainland China from 2013 to 2021. By employing the
coupling coordination degree model and the PVAR model, the study finds that the digital economy
in mainland China has shown an upward trend, while carbon emission levels have exhibited a
downward trend. The coupling degree between the digital economy and carbon emission levels
is relatively good, though the coupling coordination degree is still in its early stages, indicating
significant room for development. The digital economy has achieved a positive cumulative effect and
can promote itself, and it has a significant negative impact on carbon emission levels.
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1. Introduction

With the advancement of technology and the progress of globalization, the digital
economy has become a key driver of modern societal development. This development
is reflected not only in the widespread application of digital technologies but also in the
significant contribution of the digital economy to global economic value. In 2016, the global
digital economy was valued at an estimated USD 11.5 trillion [1], indicating its initial
impact on the global economy. Following this, the digital economy experienced rapid
growth, reaching an impressive USD 41.4 trillion across 51 major economies in 2022 [2].
This remarkable growth demonstrates the robust development momentum of the digital
economy and highlights its potential in driving economic growth. As one of the leaders
in the global digital economy, China saw its digital economy grow to USD 6.96 trillion in
2022 [3]. This increasing share of the national GDP underscores China’s leadership in the
global digital economy and highlights the importance and growth potential of the digital
economy in the global economic landscape. Such growth dynamics have sustained the vital-
ity of digital economic development, offering new pathways for economic transformation
and upgrading for countries worldwide and bringing new opportunities for sustainable
global economic development.

The digital economy, as an essential driver of modern society, is rapidly developing
globally, significantly impacting economic growth, social progress, and international com-
petitiveness. However, this phenomenon also brings dual effects on the environment and
climate change. On one hand, issues such as the widening digital divide, increasing cyber-
security threats, and the emergence of new carbon emission sources need to be addressed
in the development of the digital economy. Statistics show that in 2020, the global electricity
consumption of the digital sector accounted for 3.6%, contributing 1.8% of the total global
carbon emissions [1]. On the other hand, the digital economy holds enormous potential for
promoting sustainable development. By enhancing energy efficiency, optimizing industrial
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layouts, and driving green technological innovation, the digital economy can help achieve
carbon emission reductions and low-carbon development goals. However, the operation
and expansion of the digital economy will undoubtedly increase energy and resource
consumption, potentially leading to further increases in carbon emissions.

In terms of productivity effects, the digital economy can improve the productivity
and efficiency of economic entities by reducing production, transaction, and coordination
costs and enhancing the quality and diversity of products and services [4]. This can
lower the carbon emissions per unit of output but may also increase output and income,
thereby increasing the demand for energy and other carbon-emitting inputs. Regarding
dematerialization effects, the digital economy can replace physical products and activities
with digital products and activities, such as e-commerce, e-learning, e-government, and
remote work [5]. This can reduce the consumption of materials, transportation, and
infrastructure, thereby lowering carbon emissions. However, it may also generate rebound
effects, such as increasing the demand for other goods and services or shifting emissions to
other sectors or regions. In terms of innovation effects, the digital economy can foster the
development and dissemination of new technologies and business models that can reduce
carbon emissions, such as renewable energy, smart grids, electric vehicles, and the circular
economy [6]. This helps to decouple economic growth from carbon emissions and achieve
green and low-carbon development, though it may face barriers and challenges, such as
market failures, institutional constraints, and social acceptance. Regarding behavioral
effects, the digital economy can influence the preferences, attitudes, and behaviors of
economic entities towards carbon emissions by providing more information, feedback,
and incentives and promoting collective action and social learning [7]. This can lead
to voluntary and cooperative changes in behavior, such as the adoption of low-carbon
lifestyles, consumption patterns, and production practices. However, this may depend
on the availability, accessibility, and reliability of digital technologies, as well as the trust,
awareness, and motivation of economic entities.

Therefore, exploring the impact of the digital economy on carbon emission levels and
their coupling relationships is of significant theoretical and practical importance for under-
standing the inherent logic of the digital economy, formulating scientific carbon reduction
policies, and achieving the coordinated development of the digital economy and the green
economy. The existing literature on the digital economy primarily focuses on the regression
relationship between the digital economy and carbon emissions, with less attention paid
to the coupling relationship between the digital economy and carbon emission levels. In
the context of sustainable development, clarifying the driving mechanisms of the digital
economy on carbon emissions and the coupling coordination relationship between the
two, and exploring effective paths for sustainable development, have become crucial for
promoting the green development of the digital economy.

This paper analyzes the impact of the digital economy on carbon emissions using a
panel vector autoregression (PVAR) model and explores the coupling relationship between
the two using a coupling coordination degree model. It investigates the mechanisms by
which the digital economy affects carbon emissions and proposes policy recommenda-
tions to promote the coordinated development of the digital economy and low-carbon
emission reduction.

2. Literature Review

The issue of carbon emissions has become a focal point of global concern, as global
warming and climate change are direct consequences of these emissions. According to the
Sixth Assessment Report (AR6) by the IPCC, ongoing carbon emissions have exacerbated
global warming, leading to the increased frequency of extreme weather events, rising
sea levels, and glacier melting [8]. These changes have profound impacts on ecosystems,
including biodiversity loss and shifts in agricultural production patterns [9]. B. Ekwurzel
has found that a significant portion of the increase in atmospheric CO,, surface tempera-
tures, and sea levels is attributable to the carbon emissions of 90 carbon producers from
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industrialized and developing countries [10]. Neslihan Iyit discovered that increased
carbon emissions are linked to a higher percentage of COVID-19 pandemic deaths [11].
Additionally, climate change induced by carbon emissions has negatively impacted the
global economy, causing resource shortages, reduced productivity, and damage to infras-
tructure, thereby threatening economic development [12]. Climate change also causes
health problems, migration, and security risks, which particularly affect vulnerable groups
and developing countries [13].

As carbon emissions are the primary driver of global climate change, their reduction is
crucial for balancing environmental protection and economic development. The rise of the
digital economy offers new possibilities for reducing carbon emissions. The digital economy,
which is based on digital technologies and is driven by innovation, creates, exchanges, and
distributes value through online platforms, forming a new economic paradigm following
agricultural and industrial economies [14]. It is characterized by unprecedented reliance
on digital technologies in the production, distribution, and consumption of goods and
services, transforming traditional economic models [15]. The proliferation of the internet,
advancements in data analytics, and the widespread use of mobile devices have played
key roles in this transformation, enabling new business models and efficiencies [16].

With the development of artificial intelligence and big data, the digital economy has
further promoted the optimization and upgrading of production and service methods,
reducing resource consumption and waste generation [17]. Companies use technologies like
cloud computing and the Internet of Things (IoT) to improve resource utilization and reduce
energy consumption in production processes [18]. Meanwhile, the growth of e-commerce
has led to reductions in paper usage, and smart logistics have reduced carbon emissions
during transportation [19]. Similarly, the rise of remote work and online education has
decreased the travel demand, reducing urban traffic congestion and effectively alleviating
greenhouse gas emission pressures [20].

However, while recognizing the positive impacts of the digital economy on envi-
ronmental protection and economic development, we must also be cautious of potential
rebound effects. These effects refer to the possibility that efficiency gains may lead to
increased overall consumption, potentially offsetting environmental benefits [21]. Data cen-
ters are central to the digital economy, but their substantial energy demands and associated
carbon emissions have raised concerns among scholars. Some studies indicate that while
digitization promises efficiency gains and energy savings, the underlying infrastructure and
operational processes may result in significant carbon emissions. Operations of data centers,
cloud computing services, and the production and use of network equipment are energy-
intensive activities, increasingly contributing to global energy consumption [22-25]. As
data traffic increases and cloud services become more widespread, the energy consumption
of data centers is expected to continue growing [26].

Moreover, the digital economy’s influence on energy consumption is not only direct but
also structural. The expansion of digital labor division and the application of automation
technologies have prompted profound changes in employment structures. As robots and
artificial intelligence gradually replace labor-intensive jobs in production processes, this
may trigger changes in energy demand and consumption patterns at the macroeconomic
level, further affecting total carbon emissions [27].

The relationship between the digital economy and carbon emissions has garnered
widespread attention from academia and policymakers and is characterized by its mul-
tifaceted and complex interactive nature. Hilty et al. (2017) pointed out that digitization
can reduce unnecessary resource consumption by optimizing resource allocation [28].
Dong et al. (2022) revealed, through an empirical analysis of 60 countries, that the digital
economy has both direct and indirect effects on carbon emissions [29]. Li et al. (2021)
explored the relationship between the digital economy, energy structure, and carbon emis-
sions, highlighting the potential role of the digital economy in reducing energy consumption
and carbon emissions [30]. Zhu et al. (2022) further analyzed the impact of digital economy
development on carbon emissions in China, using the entropy method to assess the level of
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digital economy development, and found that the digital economy can effectively curb the
growth of carbon emissions [31]. Additionally, Zhang et al. (2022) studied the interactions
between the digital economy, energy efficiency, and carbon emissions, offering new per-
spectives on how the digital economy can reduce carbon emissions by enhancing energy
efficiency [22].

In summary, the existing literature has actively explored the factors influencing the
digital economy’s impact on carbon emissions, but less attention has been paid to the cou-
pling relationship between the digital economy and carbon emissions. Therefore, this paper
first constructs a measurement system for the digital economy and carbon emissions, quan-
titatively analyzing the development levels of the digital economy and carbon emissions in
China in recent years. It then uses the coupling coordination degree model to explore the
coupling relationship between the digital economy and carbon emissions. Subsequently,
the PVAR model is employed to empirically examine the actual accumulation mechanism
of the digital economy and its impact on carbon emissions. Finally, the paper identifies
urgent issues in their coupling coordination and proposes policy recommendations.

3. Mechanism Analysis and Research Hypotheses

The self-reinforcing supply and demand cycle plays a crucial role in driving the devel-
opment of the digital economy. In this cycle, innovation acts as a catalyst, continuously
pushing the creation of new products and services, thereby stimulating market demand.
As demand grows, companies respond by increasing investment in technology research
and development to meet the expanding market needs and enhance consumer experi-
ences. This ongoing supply-side innovation spurs demand growth, and the sustained
increase in demand, in turn, encourages further supply-side innovations, forming a stable
and powerful growth loop. Additionally, the cost-reducing effects of economies of scale
significantly enhance the market competitiveness of firms. The vast data lakes nurtured
by digital transformation become invaluable assets for companies, playing indispensable
roles in product optimization and market expansion. Feedback and data provided by
users not only guide the innovation of services and products but also serve as crucial
inputs for strategic decision making. Ultimately, through platform and network effects,
the increasing number of market participants boosts the platform’s value, further driving
market expansion and product innovation. This closely linked, self-reinforcing supply and
demand cycle effectively propels the development of the digital economy and amplifies
innovation dynamics.

As the market scale continues to expand, enterprises gain more opportunities and
resources to explore and experiment with new business models, further stimulating market
vitality and growth potential. With active government guidance and strong support
from capital markets, the development of the digital economy is characterized by smooth,
orderly, and rapid progression. In conclusion, this self-reinforcing positive cycle mechanism
not only lays a solid foundation for the robust and swift development of China’s digital
economy but also suggests that it will continue to serve as a key force driving socio-
economic progress.

Hypothesis 1. The digital economy in China has achieved a virtuous accumulation mechanism,
capable of self-promotion.

Driven by the digital economy, traditional industries become more efficient and intelli-
gent through technological innovation and application, thereby enhancing productivity and
improving energy use efficiency. In this process, labor, capital, and technological resources
shift from low value-added agriculture and manufacturing to high value-added service
and knowledge-intensive industries. This trend not only promotes industrial structure
upgrading but also creates conditions for achieving a low-carbon economy. Optimizing
the existing industrial structure can lead to a sustained reduction in energy consumption
and improved carbon emission efficiency. From the perspective of industrial upgrading,
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as the economic structure shifts towards digitalization and informatization, the state and
enterprises increasingly rely on data and information technology for decision making and
enhancing industrial efficiency and output. During this process, government macro-control
and industrial policies will increasingly focus on promoting the development and applica-
tion of environmentally friendly and low-carbon technologies to achieve the dual goals of
economic growth and environmental protection.

However, these changes are not without challenges. Industrial structural adjustments
often come with social costs, such as the need for retraining and job placement for some
labor forces. Additionally, the rapid development of high-tech industries may increase
dependence on scarce resources, posing new pressures on the natural environment. There-
fore, comprehensive industrial policy design should consider promoting technological
innovation, industrial structure adjustment, and the integration of the circular economy
with social equity to ensure truly sustainable development driven by the digital economy.

When analyzing the coupling relationship between the digital economy and carbon
emission levels, the rebound effect is a crucial factor, potentially weakening the environmen-
tal benefits brought by digital technologies. The rebound effect refers to the phenomenon
where improvements in energy efficiency lead to a reduction in the unit cost of energy,
which might increase actual energy consumption, thereby offsetting the expected energy
savings. Specifically, the rebound effect includes direct rebound effects, where energy-
saving technologies make use more economical, leading consumers to use these technolo-
gies more or for longer, resulting in no overall reduction in energy consumption, and
indirect rebound effects, where saved funds are spent on other energy-consuming goods or
services, increasing overall energy demand. Additionally, the economic growth rebound
effect occurs when efficiency improvements lower production costs, stimulating overall
production growth and potentially increasing total energy demand. Moreover, capital cost
rebound effects occur when cost savings from energy efficiency make firms more likely to
invest in energy-intensive production, increasing energy consumption. Lastly, switching
cost rebound effects may arise, as the sunk costs of existing technologies or equipment
might deter consumers or firms from investing in energy-saving technologies, hindering
the realization of energy savings.

Hypothesis 2a. The digital economy has a positive impact on carbon emission levels.
Hypothesis 2b. The digital economy has a negative impact on carbon emission levels.

In summary, the mechanism of the digital economy’s impact on carbon emissions is
illustrated in Figure 1.

Technological

Digital Economy Rebound effect Carbon Emissions

p Industrial _J

structure

Figure 1. The mechanism of action of digital economy and carbon emissions.
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4. Methods and Data Sources
4.1. Data Sources

This study primarily utilizes statistical data. Social statistics were used to calculate
the levels of digital economy development and carbon emissions across various provinces
and were mainly sourced from the “China Statistical Yearbook” and the National Bureau
of Statistics for the years 2013-2021. Some indicators were derived through composite
calculations of original data. The carbon emission data were referenced from the research
by Shan et al. [32-35].

4.2. Research Methods
4.2.1. Measurement of Digital Economy and Carbon Emission Levels

To measure the level of digital economy development, it is essential to construct an
indicator system. Software business revenue is a significant metric since the digital economy
relies on the advancement of software technology, and its revenue growth is associated
with the level of digital technology application. The length of long-distance optical cable
lines reflects the degree of interconnectivity within the digital economy, serving as a critical
component of the communication infrastructure that directly influences the speed and
scope of digital economic development. The total volume of telecommunications services
measures the utilization rate of the communication infrastructure, with the growth of this
volume typically correlating with the activity level of the digital economy.

The proportion of the workforce employed in informatization is an important indicator,
as the development of the digital economy requires a labor force equipped with relevant
skills and knowledge. The penetration rate of mobile phones and the number of mobile
phone base stations are crucial communication indicators that directly reflect the prevalence
of mobile applications and services within the digital economy, thus impacting its activity
level. The number of internet broadband access ports and users indicates the extent
of the online activities and services in the digital economy and is closely related to the
development of various online businesses, education, and entertainment.

The proportion of enterprises engaged in the digital economy is a key structural indi-
cator, directly influencing the pattern of digital economic development and the proportion
of digital economy enterprises within the overall economic system. E-commerce sales are
the core indicator of online trading activities in the digital economy, directly reflecting the
adoption level of digital business models. The number of computers per 100 people and
the number of enterprises with websites per 100 enterprises are fundamental standards for
assessing the digitization level among individuals and businesses and directly reflect the
participation and penetration rates of the digital economy.

In summary, based on the principles of scientific, practical, and comprehensive indi-
cator construction, and referencing the research by Liu et al. [36,37], this study constructs
an indicator system for measuring the level of digital economy development. The system
includes three primary indicators—information development, digital infrastructure, and
digital transactions—and twelve secondary indicators, all of which are positive impact
indicators. The details are provided in Table 1.

For the measurement of carbon emission levels, this study selects five primary indi-
cators. Per capita carbon emissions reflect the contribution of each individual to carbon
emissions, providing clarity on which regions have populations that impose a greater
environmental burden and thereby offering valuable insights for policy formulation. Car-
bon emissions per unit of GDP indicate the relationship between a country or region’s
production efficiency and environmental pressure. Total carbon emissions effectively rep-
resent the overall carbon output of a region over a specific period, illustrating the total
environmental impact. Total energy consumption reflects a region’s level of energy use,
directly indicating energy consumption and indirectly indicating carbon emission levels,
thus providing essential data support for energy conservation and carbon reduction ef-
forts. Energy consumption per unit of GDP pertains to how much energy is consumed for
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each unit of economic output, reflecting the relationship between energy efficiency and

environmental pressure to some extent.

Table 1. Digital economy measurement indicator system.

First-Level Indicator Second-Level Indicator Indicator Attribute Unit of Measurement Weight
Information Software Business Revenue Positive Impact CNY 100 Million 0.045
Development
Number of Internet Pages Positive Impact 10,000 0.033
Total Telecommunications Positive Impact CNY 100 Million 0.058
Business Volume
Proportion of Information Positive Impact o 0.060
Industry Employees
Digital Infrastructure Mobile Phone Penetration Rate Positive Impact per 100 people 0.117
Long-haul Optical Cable Length Positive Impact 10,000 km 0.109
Internet Broadband Access Ports Positive Impact 10,000 0.100
Internet Broadband Access Users Positive Impact 10,000 households 0.097
Digital Transactions Proportion Qf Enterprlses Engaged in Positive Impact % 0.117
Digital Economy
E-commerce Sales Volume Positive Impact CNY 100 Million 0.059
Number of Computers per 100 People Positive Impact Units 0.105
Number of Websites per o .
100 Enterprises Positive Impact Units 0.100

These indicators comprehensively cover three closely related aspects—population,
economy, and energy—thereby accurately and thoroughly revealing and reflecting the
carbon emission levels of a region. Drawing on the research by Jiang et al. [38], this study
constructs an indicator system for measuring the level of carbon emission development,
which includes three primary indicators: population carbon emissions, economic carbon
emissions, and energy carbon emissions, along with five secondary indicators. All the

indicators are negative impact indicators. The details are provided in Table 2.

Table 2. Carbon emission level measurement indicator system.

First-Level Indicator Second-Level Indicator Indicator Attribute Unit of Measurement  Weight
Population Emissions Per Capita Carbon Emissions Positive Impact Tons 0.225
Economic Emissions Carbon Emissions per Unit of GDP Positive Impact Tons per CNY 10,000 0.289
Energy Emissions Total Carbon Emissions Positive Impact Tons 0.214
. e 10,000 Tons of
Total Energy Consumption Positive Impact Standard Coal 0.125
. . - Tons of Standard Coal
Energy Consumption per Unit of GDP Positive Impact per CN'Y 10,000 0.147

Furthermore, the entropy weight TOPSIS method is employed to measure the afore-
mentioned indicators. The specific steps are as follows:

Data Standardization: Due to the different nature and dimensions of each indicator,
the positive and negative indicators need to be standardized separately.

For the positive impact indicators:

X — X
7. — min 1
K Xmax — Xinin @
For the negative impact indicators:
7. — Xmax — X 2)

=
/ Xmax - Xmin
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In Equations (1) and (2), Z;; is the actual value of the j-th indicator in the i-th province
after standardization, and the sum is the maximum and minimum value of this indicator.

Determining Weights Using the Entropy Method: The entropy weight method is
used to determine the weight of each indicator and calculate the distance between each
evaluation indicator and the optimal and worst vectors.

Dj_Jimwﬁ_zﬂ{D;_$im%%_zﬂz &)
j= =

Formula (3) is the weight of the j-th attribute, which is obtained by the entropy
weight method.
Measuring the Closeness to the Optimal Solution: The degree of closeness of each
evaluation object to the optimal solution is measured.
DE = i 4)
- D +D;

The larger the DE value, the better the evaluation object.

4.2.2. PVAR Model

The panel vector auto regression (PVAR) model treats all variables as an endogenous
system, combining the advantages of both panel data models and VAR models. This ap-
proach is more effective in addressing endogeneity among variables compared to traditional
models. The PVAR model constructed in this study is as follows:

P
Yie = Y 6V + 1+ 6; + Ayt ®)
=1

Here, Yj; represents the matrix, where Y;; = [DE,CE]. DE is the digital economy
development index obtained from the entropy weight TOPSIS method, CE denotes the
carbon emissions level, p is the lag index, [ is the lag length of the variables, #; represents
individual effects, 6; represents time effects, and A;; stands for the random disturbance term.

4.2.3. Coupling Coordination Model

The coupling coordination model not only reflects the strength of interaction between
systems but also demonstrates the relationship of interaction between systems. In this
study, the coupling coordination model is selected to reveal the interaction strength and
coordination degree between the level of digital economy and the level of carbon emissions.
The specific calculation process is as follows:

Calculation of coupling degree C

c:zx{‘ﬂ”XgWL}; (6)

[f (x) + g (x)]
Calculation of T comprehensive coordination
T'=af(x) +pg(x) (7)

Calculation of D coupling coordination
D=+vCxT 8)

where f(x) represents the digital economy development level DE calculated by the entropy
weight TOPSIS method, g(x) represents the level of carbon emissions CE, « and B denote
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undetermined weights, reflecting the influence coefficients of the digital economy develop-
ment level and carbon emissions level. In this paper, it is assumed that both are equally
important; thus, let « = § = 0.5. Referring to existing research [39,40], the coupling degree
and coupling coordination are classified into levels, as shown in Table 3.

Table 3. Coupling degree and coupling coordination degree classification.

Coupling Degree Range Coordination Degree Range
[0-0.3) Separation Stage [0.0-0.1) Extremely Disrupted [0.5-0.6) Barely Coordinated
[0.3-0.5) Antagonism Stage [0.1-0.2) Severely Disrupted [0.6-0.7) Marginally Coordinated
[0.5-0.8) Integration Stage [0.2-0.3) Moderately Disrupted [0.7-0.8) Intermediate Coordinated
[0.8-1.0) High-Level Coupling [0.3-0.4) Mildly Disrupted [0.8-0.9) Good Coordinated
. Near .
1.0 Good Resonance Coupling [0.4-0.5) Disrupted [0.9-1.0) Excellent Coordinated

5. Analysis of the Coupling Relationship between Digital Economy Level and Carbon
Emission Level

5.1. Analysis of Digital Economy Level

5.1.1. Overall Level

In Figure 2, it can be observed that, during this period, except for a slight decrease in
growth rate in 2017 and 2021, the level of China’s digital economy has shown a significant
upward trend. From 2013 to 2021, the digital economy showed an overall growth trend.
The data for this period reflect an increase in the digital economy from 0.18 to 0.32 in 2021,
indicating a positive development trend. This reflects significant achievements in China’s
investment in and development of the digital economy over the past few years. The digital
economy has not only driven economic growth and innovation, it has also provided more
convenience and opportunities for people’s lives and business activities.

—— Digital Econom
0.32 ’ y

0.30 -

0.28 -

0.26 -

0.24 1

0.22 -

0.20 A

0.18 -

a3 WM B ;e w7 A8 A 20 A2
Figure 2. Digital economy level in China from 2013 to 2021.

5.1.2. Regional Level

From the data in Table 4, it is evident that there are regional disparities in the develop-
ment of the digital economy. The East China region consistently maintained the highest
level of digital economy development among all regions during the study period. This may
be closely related to the region’s stable economic foundation, strong innovation capacity,
and early initiation of informatization. Moreover, the East China region also exhibited
the fastest growth rate, increasing from 0.2241 in 2013 to 0.3850 in 2021, reflecting the
speed and scale of its digital economy development. In contrast, the Northwest China
region consistently showed the lowest level of digital economy development among all
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regions, with its level rising from only 0.1398 in 2013 to 0.2471 in 2021. The relatively un-
derdeveloped digital economy in the Northwest China region could be directly associated
with constraints imposed by its geographical location and natural resources, as well as its
lagging infrastructure for digital development and overall economic level.

Table 4. Regional digital economy level.

North China Northeast China East China Central South China Southwest China Northwest China
2013 0.1963 0.1368 0.2241 0.1925 0.1466 0.1398
2014 0.2295 0.1674 0.2495 0.2236 0.1773 0.1633
2015 0.2532 0.1838 0.2870 0.2457 0.2110 0.1841
2016 0.2753 0.2039 0.3022 0.2716 0.2461 0.2048
2017 0.2882 0.2183 0.3197 0.2828 0.2579 0.2080
2018 0.3046 0.2325 0.3489 0.3126 0.2805 0.2245
2019 0.3156 0.2382 0.3736 0.3326 0.3122 0.2255
2020 0.3347 0.2574 0.3872 0.3490 0.3282 0.2395
2021 0.3395 0.2522 0.3850 0.3445 0.3223 0.2471

Although the Northeast China region had a relatively low initial level of digital
economy, its subsequent growth rate demonstrated an accelerating trend, reflecting the
local efforts in policy support and capital investment that promoted rapid digital economy
development. Its level increased from 0.1368 in 2013 to 0.2522 in 2021.

Overall, the digital economy levels in all regions exhibited a yearly increasing trend
from 2013 to 2021. The East China region showed the most significant growth, while the
North China, Central South China, and Northeast China regions also experienced relatively
fast growth. In contrast, the Southwest China and Northwest China regions had slower
growth. These regional differences could be influenced by factors such as the level of
regional economic development, policy support, investment intensity, and the extent of
digital infrastructure construction. Each region should develop appropriate strategies based
on its conditions to stimulate digital economy development, with the aim of achieving
balanced and sustainable regional economic growth.

5.1.3. Provincial Levels

Overall, the digital economy in most provinces has been continuously growing, in-
dicating that the proliferation and development of China’s digital economy are still in a
rapid upward phase, as shown in Figure 3. The growth in provinces and cities such as
Beijing, Guangdong, Shandong, and Jiangsu, has been particularly remarkable, which
may be closely related to factors such as economic foundation, policy support, innovation
capacity, and the level of informatization. However, some provinces, such as Yunnan, Inner
Mongolia, and Jilin, have shown relatively moderate growth and may require more support
and policy incentives to promote digital economy growth.

Specifically, the digital economy level in Beijing significantly increased from 0.3563
in 2013 to 0.6320 in 2021. This suggests that the digital economy in Beijing has developed
very rapidly, possibly benefiting from the development of high-tech industries and strong
government policy support. Guangdong also demonstrated robust growth, rising from
0.3760 in 2013 to 0.6024 in 2021, which could be related to the large economic scale of
the region and substantial investment in innovative technologies. The growth trends in
Yunnan and Inner Mongolia were relatively stable, increasing from 0.1465 and 0.1724 in
2013 to 0.2860 and 0.2686 in 2021, respectively. Provinces such as Jilin, Guizhou, Chongging,
Heilongjiang, Gansu, Jiangxi, and Guangxi, despite having relatively low initial digital
economy levels around 0.12, showed steady growth, all rising to above 0.20 by 2021.
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Figure 3. Provincial digital economy levels from 2013 to 2021.

5.1.4. Contribution Proportions of Different Dimensions

Informatization Development. In 2013, the proportion of informatization development
was 5.297%. Subsequently, this proportion slightly decreased to 5.163% in 2014 and 5.261%
in 2015. By 2016, it had further declined to 4.7538%, indicating a certain degree of slowdown.
The proportion slightly rebounded to 5.649% in 2017 and showed significant growth in
2018 and 2019, reaching 7.388% and 9.219%, respectively. In 2020, the proportion peaked at
10.494%, but it decreased to 6.268% in 2021. These fluctuations reflect the varying stages
and importance of informatization within the national digital economy strategy, suggesting
different periods of emphasis on information technology innovation and updates. Rapid
technological development plays a crucial role in driving digital economy growth; however,
as technological advancements stabilize, the growth rate begins to slow down, as shown in
Figure 4.

Digital Infrastructure. The proportion of digital infrastructure was 42.473% in 2013
and demonstrated a consistent upward trend, indicating increasing investment in digital
infrastructure construction. This proportion peaked at 45.616% in 2020 but slightly declined
to 39% in 2021. Overall, the trend remains steadily upward, highlighting the importance
placed by both the government and the market on digital infrastructure. This is a solid
foundation for digital economy development, emphasizing the long-term and fundamental
role of digital infrastructure in sustaining digital economic growth.

Digital Transactions. The proportion of digital transactions in the digital economy has
been gradually decreasing from 52.230% in 2013, reaching its lowest point at 50.196% in
2017. Subsequently, the proportion remained relatively stable, with 44.421% in 2019, and
43.890% and 45.100% in 2020 and 2021, respectively. This stable trend suggests that the
market scale and activity in the digital transactions sector have become relatively mature
during this period, entering a phase of steady development.
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Figure 4. Contribution proportions of different dimensions in the digital economy from 2013 to 2021.

In summary, the changes in informatization development highlight the importance
of technological innovation; the continuous growth in digital infrastructure reflects the
need for the long-term and stable development of the digital economy; and the stable
development of digital transactions indicates the maturity of the transactional activities
within the digital economy.

5.2. Carbon Emission Level Analysis

From Figure 5, it is evident that China’s carbon emission levels are in a relatively stable
phase, exhibiting a U-shaped trend characterized by an initial decline followed by a rise.
Specifically, in 2013, the carbon emission level peaked at a high of 0.2. Subsequently, there
was a yearly decreasing trend, reaching the lowest value of 0.185 in 2018. This indicates
significant changes in China’s efforts to control carbon emissions and the effectiveness of
its green environmental policies. Although there was a rebound in carbon emission levels
after 2018, the overall trend continues to show a decline in China’s carbon emission levels.
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Figure 5. China’s carbon emission levels from 2013 to 2021.
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5.3. Coupling Coordination Analysis of the Digital Economy and Carbon Emissions
5.3.1. Provincial Coupling Degree Analysis

From Figure 6, it can be seen that the coupling coefficients in most provinces show
a declining trend. This may reflect the gradually increasing coordination between digital
economy development and carbon emission control. This trend suggests that in promoting
the digital economy, relevant provinces might have adopted effective measures to slow
the growth rate of carbon emissions or that the growth of the digital economy has to some
extent improved carbon emission efficiency.
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Figure 6. Coupling degree analysis of the digital economy and carbon emissions by province from
2013 to 2021.

There are significant differences in the coupling coefficients between provinces, which
could be related to their industrial structures, energy consumption patterns, and environ-
mental protection policies. For instance, the coupling coefficients of Yunnan Province and
Jilin Province are consistently close to or equal to 1, implying that the carbon emission
levels in these provinces have grown in sync with the development of the digital economy.
In contrast, the coupling coefficient for Beijing is relatively low and shows a downward
trend, possibly due to the implementation of stricter environmental protection measures
alongside the promotion of the digital economy.

Some provinces have shown significant changes in their coupling coefficients in
specific years, which may be associated with economic policy adjustments, industrial
structure optimization, or technological advancements in those years. For example, Anhui
Province saw a significant decrease in its coupling coefficient in 2018 compared to the
previous year, possibly due to the implementation of relevant environmental protection
policies or industrial structure adjustments that year. Some provinces, such as Hebei,
Henan, and Shaanxi, have consistently high coupling coefficients, which may indicate
that these provinces have experienced significant carbon emission growth alongside the
development of the digital economy.

5.3.2. Provincial Coupling Degree Analysis

According to Table 5, from 2013 to 2021, the coupling coordination degree between the
digital economy and carbon emissions across various regions in China generally increased.
This indicates that China has been emphasizing environmental protection while advancing
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its digital economy, thereby achieving a coordinated development between the economy
and the environment. Specifically:

Table 5. Regional coupling coordination.

North China Northeast China East China Central South China Southwest China Northwest China
2013 0.4521 0.3996 0.4208 0.3901 0.3774 0.4392
2014 0.4670 0.4162 0.4309 0.4033 0.3933 0.4538
2015 0.4732 0.4179 0.4467 0.4083 0.3978 0.4645
2016 0.4783 0.4325 0.4491 0.4165 0.4104 0.4760
2017 0.4800 0.4386 0.4551 0.4209 0.4076 0.4808
2018 0.4912 0.4432 0.4648 0.4285 0.4115 0.4855
2019 0.5011 0.4616 0.4722 0.4334 0.4128 0.4857
2020 0.5113 0.4719 0.4771 0.4355 0.4124 0.4934
2021 0.5078 0.4690 0.4807 0.4381 0.4058 0.4958

In the North China region, the coupling coordination degree increased from 0.4521
in 2013 to 0.5078 in 2021, indicating that as the digital economy rapidly develops, carbon
emission control measures are gradually being strengthened, and the economic develop-
ment model is progressively shifting towards a low-carbon approach. The Northeast China
region exhibits a similar trend, with the coupling coordination degree rising from 0.3996
in 2013 to 0.4690 in 2021, reflecting positive progress in the coupling relationship between
digital economy development and environmental protection.

East China, an essential engine of China’s economy, saw its coupling coordination
degree grow from 0.4208 in 2013 to 0.4807 in 2021, demonstrating that while pursuing
economic growth, the region is continuously strengthening its investment and manage-
ment in environmental protection. The Central South China region showed relatively
slower growth in coupling coordination degree, increasing from 0.3901 in 2013 to 0.4381 in
2021, reflecting efforts to improve the coordination between economic development and
environmental protection.

The Southwest China region’s coupling coordination degree slightly increased from
0.3774 in 2013 to 0.4058 in 2021. Although the increase is modest, it still indicates some
coordination between digital economy development and carbon emission control. The
Northwest China region’s coupling coordination degree also showed an upward trend,
rising from 0.4392 in 2013 to 0.4958 in 2021, highlighting the region’s efforts to seek coordi-
nated development between the digital economy and environmental protection.

5.3.3. Provincial Coupling Coordination Degree Analysis

Overall, from 2013 to 2021, the coupling coordination degree across provinces in China
shows a general upward trend, increasing from 0.4150 to 0.4681. This indicates that during
the study period, as the provinces promoted the digital economy, they also gradually
improved carbon emission control levels, enhancing the coordination between the two.
This trend reflects the Chinese government'’s firm determination and effective measures in
pursuing the dual goals of economic growth and environmental protection, as illustrated
in Figure 7.

During this period, 14 provinces were in a state of mild imbalance in 2013, whereas by
2021, only 7 provinces remained in this state. This change indicates that most provinces
achieved a better balance between digital economic development and carbon emission
control during this period, with a significant improvement in the coupling coordination
degree. At the same time, it also suggests that as the provinces promote digital economic
development, they are gradually enhancing their control over carbon emissions, with
increasing coordination between the two. This is a positive signal, demonstrating that
China’s efforts to achieve the dual goals of economic development and environmental
protection have yielded noticeable results.
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Figure 7. Coupling coordination degree between the digital economy and carbon emissions across
provinces from 2013 to 2021.

Specifically, due to the heterogeneity in economic development, population resources,
and geographical environment, there are significant differences in the coupling coordination
degree between digital economy development and carbon emission levels across regions.
Shandong Province progressed from a state of near imbalance in 2013 to a state of primary
coordination by 2021, with its coupling coordination degree increasing from 0.4912 to 0.6270,
showing significant progress. Inner Mongolia and Shanxi also showed similar trends,
transitioning from marginal coordination to primary coordination, with their coupling
coordination degrees increasing from 0.4912 and 0.5183 to 0.6327 and 0.6460, respectively.
This reflects the positive results achieved in promoting the digital economy and controlling
carbon emissions in these regions.

Provinces such as Guangdong, Hebei, Jiangsu, Liaoning, Ningxia, Shaanxi, Xinjiang,
and Zhejiang transitioned from near imbalance to marginal coordination. Provinces like
Hunan, Hubei, Heilongjiang, Guangxi, Gansu, Fujian, and Anhui moved from mild imbal-
ance to near imbalance. These provinces have also made some progress in improving their
coupling coordination degree.

Yunnan, however, experienced fluctuations, moving from mild imbalance to near
imbalance and back to mild imbalance, indicating volatility and uncertainty in this area.
Sichuan, Shanghai, Henan, Guizhou, and Qinghai remained in a state of near imbalance,
suggesting relatively slow progress in coupling coordination. Beijing, Hainan, Jilin, Jiangxi,
Tianjin, and Chongqing remained in a state of mild imbalance, possibly indicating chal-
lenges in achieving coordinated development between the digital economy and carbon
emission control.

Overall, during the study period, there was a significant improvement in the balance
between promoting digital economic development and enhancing carbon emission control
across various provinces in China. However, the rate of progress in achieving coordination
between these two aspects varies among provinces, reflecting regional differences in eco-
nomic development, population resources, and geographical environments. For regions
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that remain uncoordinated, it is particularly important to consider the environmental
impacts while developing the digital economy to achieve more harmonious development.

6. Analysis of the Impact of Digital Economy Level on Carbon Emission Level
6.1. Stationarity Test

Non-stationarity in data may lead to spurious regression, causing biased results. Before
estimating the PVAR model, it is necessary to conduct stationarity tests on the original
series. This study adopts both the IPS (Im-Pesaran—Shin) test and the LLC (Levin-Lin—Chu)
test to perform panel data unit root tests on each variable, as shown in Table 6.

Table 6. Unit root test results.

Variable IPS Test LLC Test Conclusion
DE 0.2752 —3.3548 *** Non-stationary
CE 2.6342 —23.0514 *** Non-stationary

dDE —5.1188 *** —27.9203 *** Stationary
dCE —b5.2883 *** —41.5822 *** Stationary

*,**, and *** indicate significance at the 10%, 5%, and 1% statistical levels, respectively.

Based on the results in Table 6, it is observed that some sequences of DE and CE did
not pass the unit root test, indicating that the original sequences are non-stationary. After
performing first-order differencing on all variables, the transformed sequences dDE and
dCE are stationary, allowing the establishment of a PVAR model.

6.2. Selection of Optimal Lag Order

The optimal lag order of the model is determined based on the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information
Criterion (HQIC). The results are presented in Table 7. Considering the criteria collectively, it
is evident that the optimal lag order is 1. Hence, a first-order lag PVAR model is established.

Table 7. Optimal lag order selection criteria results.

Lag Order AIC Criterion BIC Criterion HOQIC Criterion
1 —10.6267 * —9.4914 * —10.1664 *
2 —10.5826 —9.2178 —10.0281
3 —10.2940 —8.6215 —9.6148
4 —9.7487 —7.6378 —8.8975
5 —9.0734 —6.2809 —7.9811

* indicates the optimal lag order selected by this criterion.

6.3. GMM Estimation and Granger Causality Test

Before conducting the GMM estimation, the Helmert transformation is used to elim-
inate individual fixed effects in order to avoid biased parameters. The GMM estimation
results (see Table 8) indicate that when carbon emissions (CE) are the dependent variable
(column 2), the lagged digital economy (DE) has a significant negative impact on carbon
emissions at the 5% significance level, with a coefficient of —0.112. This suggests that the
digital economy has a significant negative effect on carbon emissions. When the digital
economy is the dependent variable (column 3), the lagged carbon emissions have a positive
but insignificant impact on the digital economy. The lagged digital economy has a signifi-
cant effect on the current digital economy at the 1% significance level, with a coefficient of
0.529, indicating that China’s digital economy can promote itself.
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Table 8. GMM estimation.
dCE dDE
Variable
Coefficient p-Value Coefficient p-Value
h_dCEL1 0.325 ** 0.027 0.002 0.974
h_dDEL1 —0.112 ** 0.034 0.529 *** 0.000

*,** and *** indicate significance at the 10%, 5%, and 1% statistical levels, respectively.

To further analyze the short-term dynamic impact and causality between the digital
economy and carbon emissions, the Granger causality test is used. The results in Table 9
show that at the 5% significance level, DE Granger-causes CE, indicating a significant
short-term impact of the digital economy on carbon emissions.

Table 9. Granger causality test.

Null Hypothesis Test Statistic p-Value Result
dDE does not Granger-cause dCE 4.499 ** 0.034 Reject
dCE does not Granger-cause dDE 0.001 0.974 Accept

*,** and *** indicate significance at the 10%, 5%, and 1% statistical levels, respectively.

6.4. Impulse Response Analysis

The impulse response function analyzes the dynamic relationship between the digital
economy and carbon emissions. Figure 8 reflects the impulse response of the digital
economy and carbon emissions for 10 lag periods using Monte Carlo simulations with
a confidence level of 95%. The x-axis represents the lag periods of the shock occurrence,
and the y-axis represents the response magnitude of the dependent variable to shocks in
the explanatory variables. The red line indicates the magnitude of the response of one
variable to a shock of one standard deviation in the other variable, while the green and
blue lines represent the upper and lower bounds of the 95% confidence interval for the
shock response.

Impulse-responses for 1 lag VAR of dCE dDE
IRF of dCE to dCE ] [ IRF of dCE to dDE
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Figure 8. Impulse response analysis.

The figures show that the impulse response of dCE to dCE is primarily positive,
indicating that carbon emissions respond quickly to their own shocks. This positive impact
is maximal in the initial period and then rapidly declines, with carbon emissions falling
back to 0 after a lag of 4 periods. Similarly, the impulse response of dDE to dDE is positive,
indicating that the digital economy responds rapidly to its own shocks, and maintains a
positive effect even after a lag of six periods. Combining this with the analysis of the impact
of the lagged digital economy on the current digital economy in the GMM estimation, it can
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be inferred that China’s digital economy has achieved a virtuous accumulation mechanism
and can self-promote, thus validating Hypothesis 1.

The impulse response of dDE to dCE is negative in the Oth period, then continuously
rises, reaching 0 after a lag of 5 periods. This indicates a negative impact of the digital
economy on carbon emissions, which is consistent with the significant negative impact
of the lagged digital economy on carbon emissions in the GMM estimation results, thus
validating Hypothesis 2b.

6.5. Variance Decomposition Analysis

Variance decomposition provides insight into the contribution of shocks to endogenous
variables to the volatility of a particular variable, helping to further identify the impact of
the digital economy on carbon emissions. Table 10 presents the variance decomposition
results for periods 1, 3, 6, and 10.

Table 10. Variance decomposition results of each variable.

Variable Period dCE dDE
dCE 1 1.000 0.000

3 0.980 0.020

6 0.975 0.025

10 0.974 0.026

dDE 1 0.000 1.000

3 0.003 0.997

6 0.003 0.997

10 0.003 0.997

From the results, it can be observed that there is little variation in the variance de-
composition results after the 10th period, indicating that the variables in the model have
achieved relatively good stability by the 10th period. Therefore, based on the corresponding
values in the 10th period, this paper explains the relationship between the digital economy
and carbon emissions. According to Table 10, in the first period, the changes in carbon
emissions are entirely due to their own impact, with the contribution rate of the digital
economy to carbon emissions being 0. As the lag period increases, the contribution of car-
bon emissions to their own changes gradually decreases, while the contribution proportion
of the digital economy changes slowly increases. This proportion increases from 0% in the
first period to 2.6% in the tenth period, indicating that the changes in carbon emissions are
influenced by both themselves and the digital economy. Conversely, changes in the digital
economy are affected by both carbon emissions and their own impact. In the first period,
the prediction error variance of the digital economy is entirely caused by its own impact.
However, by the 10th period, its own contribution to the prediction error is 99.7%, while
the impact of carbon emissions is only 0.3%.

7. Conclusions and Discussion

This study is based on panel data from 30 provinces, municipalities, and autonomous
regions in mainland China from 2013 to 2021. It constructs an evaluation system for the
level of digital economy and carbon emissions. Building on the entropy weight TOPSIS
method to measure the levels of digital economy and carbon emissions, the study employs
the coupling coordination model and the PVAR model to empirically test the impact of the
digital economy on carbon emissions and their coupling relationship. The results indicate
that the digital economy in various provinces is on an upward trend, while carbon emis-
sions have been effectively controlled, showing a downward trend. However, the coupling
coordination degree between the digital economy and carbon emissions is currently still
mainly at a near-disrupted stage, suggesting significant room for improvement in their
coordination. Additionally, we observe significant differences in the coupling relationship
between the digital economy and carbon emissions across different regions. These differ-
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ences are mainly due to variations in regional economic structures, the pace of industrial
upgrading, innovation capacity, and the rigor of policy implementation.

Compared to other related studies, our findings indicate that in more economically
developed regions, the decoupling effect between carbon emissions and economic growth
is more pronounced due to higher levels of technology application and policy support.
Furthermore, we find that the digital economy has a self-reinforcing mechanism, enabling
self-promotion. In the short term, the digital economy has a significant negative impact on
carbon emissions, but this impact is not evident in the long term.

Based on the above conclusions, the following policy recommendations are proposed.
First, Enhancing the Green Development Orientation of Digital Infrastructure: The gov-
ernment should promote the green transformation of digital infrastructure by providing
policy support to encourage data centers to utilize clean energy and optimize network
architecture to improve energy efficiency. At the national level, the government should
ensure the establishment of clear standards and goals, including regular revisions of energy
conservation and environmental protection standards. This should involve mandating data
centers to use efficient cooling systems, adopt renewable energy sources, and employ effi-
cient servers. Additionally, the government should support the upgrading and replacement
of network equipment and promote efficient data transmission protocols and software
algorithms to reduce energy losses during data transmission. Simultaneously, establishing
an energy-saving evaluation system and monitoring mechanism to periodically assess data
center energy consumption and operational efficiency and promptly disclose assessment
results to the public will enhance industry transparency and competitiveness. Encouraging
the development of low-carbon technologies and solutions to reduce the carbon footprint of
digital economic development is also crucial. The government can implement green credit
and investment policies to provide financial subsidies or tax incentives to enterprises using
green energy or low-carbon technologies to stimulate market participants’” enthusiasm.

Second, Strengthening Cross-Regional Coordination of Energy and Industrial Struc-
ture: Given significant differences in the coupling relationship between the digital economy
and carbon emissions across different regions, efforts should be made to seek regional
cooperation and coordination to promote resource sharing and jointly promote industrial
optimization and upgrading. This involves reducing redundant construction and creating
an environmentally friendly industrial chain. Firstly, the government should establish
a comprehensive regional development plan that includes a comprehensive assessment
of regional economic characteristics, resource endowments, and environmental carrying
capacity. Based on this assessment, a development roadmap should be designed that aligns
with national macroeconomic development strategies while reflecting regional character-
istics. Additionally, the government should strengthen information communication and
data sharing mechanisms between regions to effectively monitor the flow and allocation
of various resources to ensure optimal resource utilization. Encouraging and supporting
horizontal links and vertical integration of industrial chains between regions to stabilize
cooperative relationships among upstream and downstream enterprises in the industrial
chain will not only reduce energy consumption and carbon emissions throughout the
industrial chain but also improve industrial efficiency and overall competitiveness.

Third, Continued Investment in Innovation and Research and Development (R&D) to
Establish a Long-Term Mechanism: The government should increase investment in R&D of
new technologies, particularly in digital technology and its application in the production
process, to promote technological innovation as a new driver of economic growth. To
establish a long-term mechanism for innovation and R&D, the government needs to not
only increase fiscal investment but also build a comprehensive ecosystem that supports
innovation. This includes specialized support for R&D funds, tax incentives, intellectual
property protection, and the establishment of mechanisms for the transformation of R&D
results. To attract enterprises, universities, and research institutions to participate in the
country’s technology innovation strategy and create a synergistic effect, priority should
be given to layout in frontier technology fields, such as artificial intelligence, big data,
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cloud computing, and the Internet of Things in the digital technology field. Additionally,
encouraging enterprises to innovate business models with a focus on services and solutions
to promote positive interactions between the digital economy and carbon emissions is
essential. By promoting the innovation of business models and supporting enterprises
to transition from product sales to service and solution provision, companies can evolve
from mere producers and suppliers of goods to comprehensive service providers. This
transformation helps to improve resource utilization efficiency and reduce the overall
carbon footprint of society.

Although this paper primarily focuses on the impact of the digital economy on carbon
emissions and their coupling relationship, we acknowledge that carbon emissions are
influenced by a complex array of factors. Beyond the development of the digital economy,
several additional factors significantly affect carbon emission levels. Energy structure
varies greatly among different regions and countries, and the extent of reliance on fossil
fuels directly impacts carbon emissions. Changes in energy consumption patterns, such as
the shift from coal to natural gas or renewable energy sources, are also crucial in reducing
carbon emissions. Government policies and regulations play a decisive role in guiding and
regulating economic activities to reduce carbon emissions. Policy tools, such as carbon
taxes, emission trading systems, and energy efficiency standards, are effective measures for
promoting emission reductions. Public awareness of climate change and environmental
protection, along with their daily behavioral choices—such as energy saving, recycling, and
green consumption—also influence carbon emission levels to some extent.

Overall, while this study primarily focuses on China, its findings and recommenda-
tions have universal applicability. They can provide useful insights for other countries
seeking to balance digital economic development with carbon emission control.
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