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Abstract: Biochar has attracted attention for its capability to remove phosphorus (P) from wastewater.
However, the poor dispersion and limited adsorption capacity of unmodified biochar prevent its wide
usage in water remediation. Herein, sludge biochar was modified using lanthanum nitrate to improve
the removal of P from aqueous solutions. Scanning electron microscopy (SEM), X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS)
were used to elucidate the modification and adsorption mechanisms of biochar. Furthermore, the
adsorption performance of the modified biochar was determined through adsorption kinetics and
isotherm model fitting. The results showed that the modification process successfully introduced
lanthanum-containing functional groups into biochar and considerably improved the complexation
performance and ion-exchange capacity. The maximum experimental adsorption capacity for phos-
phate was 140.237 mg/g at pH 3.0. The adsorption processes of the modified biochar accorded with
the Freundlich adsorption isotherm model, which indicates the successful adsorption of phosphate
onto the modified biochar via multilayer adsorption. The adsorption mechanism was dominated by
chemisorption, which mainly involved inner-sphere complexation, precipitation, and electrostatic
attraction. Meanwhile, the adsorption and desorption experiments demonstrated the satisfying
recycling performance of the modified biochar and the 72.3% adsorption capacity retention after
the sixth desorption cycle. The dynamic adsorption study revealed that the modified biochar had
long sustainable treatment durations of 7.58 and 9.08 h at adsorbent dosages of 1 and 2 g, respec-
tively, which proves the feasibility of using biochar as a cost-effective and efficient adsorbent for
phosphate-polluted water.

Keywords: adsorption; phosphate; modified biochar; lanthanum; sludge

1. Introduction

Phosphorus (P) is an essential nutrient in aquatic ecosystems [1–3]; however, excess P
levels can cause severe eutrophication, which threatens ecosystems and human health [4,5].
Therefore, to regulate the discharge standards for sewage, the discharge requirements for P
emissions have become increasingly stringent [6,7]. In particular, the current maximum
permissible P level for discharged effluents of wastewater treatment plants (WWTPs) is
0.5 mg/L [8]. Hence, P levels must be reduced and controlled [8–10].
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P may be removed from water through various techniques, including membrane
separation, ion exchange, chemical precipitation, and electrocoagulation [11,12]. However,
the unstable separation effect and high energy consumption limit the practical application
of these methods [13,14]. In comparison, phosphate removal via adsorption technology is
considerably promising. This process has the advantages of easy application, high removal
efficiency, and cost effectiveness [15,16]. However, certain commonly used adsorbents,
such as minerals and carbon compounds, which generally have low renewability or pose
biodegradation difficulties, can also cause secondary pollution [17,18]. In addition, the
majority of traditional adsorbents exhibit poor adsorption or high operation expenses.
Therefore, an effective, affordable, and ecologically safe adsorbent must be created for the
removal of phosphates from wastewater.

The rapid development of the urban economy has resulted in the generation of enor-
mous quantities of municipal sewage sludge waste [19]. Sewage sludge waste contains
high concentrations of nitrogen, P, organic micropollutants, heavy metals, and pathogens,
which pose a major threat to human health and the environment if left untreated [20]. As a
result, the treatment and reuse of sewage sludge have increasingly become the focus of at-
tention in recent years [19,21]. To meet increasing population demands, a cost-effective and
environmentally friendly disposal method must be development. Common methods used
in sewage sludge treatments in developing countries, such as incineration and landfilling,
cause secondary environmental pollution [19,22]. By contrast, thermal treatment, which is
an economical and environmentally friendly method for sewage sludge recycling, enables
the conversion of sewage sludge waste into functional biochar and valuable biofuels [23].

Biochar is a type of carbon-rich, porous adsorption material widely used in wastew-
ater treatment and pollution remediation because of its exceptional structural qualities,
abundant supplies, environmental friendliness, recyclability, and affordability [24–26].
Therefore, the thermal treatment of sewage sludge waste to yield biochar is important,
as its aromatic hydrocarbon surface and oxygen-containing groups can be used to attain
effective phosphate adsorption from wastewater and reduce the leaching of heavy met-
als, organic pollutants, and pathogens in sewage sludge products into soil and water for
utilizing sewage sludge waste resources. Nevertheless, the poor dispersion and limited
adsorption capacity of unmodified biochar prevent its wide application in water remedia-
tion [27,28]. Therefore, further modifications of sewage sludge biochar (SBC) are essential
for its improved performance.

Given the high affinity of phosphate for metal oxides and its reaction with them to
produce stable metal phosphates, metal-modified adsorbents are often used for phosphate
removal [29]. Lanthanum (La) is an environmentally friendly and benign rare earth ele-
ment [30,31], which has an abundant content and is inexpensive compared with other rare
earth materials [32]. Meanwhile, chemical bonds between La and phosphate are stronger
than those between phosphate and other metallic elements, such as aluminum and iron [33].
La-containing materials have garnered considerable attention for P removal because of their
superior stability in aqueous solutions and outstanding adsorption selectivity. Fang et al.
(2018) used a new magnetically recoverable magnetite/lanthanum hydroxide [M-La(OH)3]
for phosphate retention and recovery from lakes, demonstrating an adsorption capacity of
up to 52.7 mg-P/g at pH 7.0 in water. La exhibits excellent selectivity, forms strong ionic
bonds between La (III) and phosphate, and achieves good stability in aqueous solutions [34].
Min et al. (2019) synthesized a novel La-doped UiO-66, in which 0.2La-UiO-66 exhibited
a high phosphate adsorption capacity, with the maximum adsorption capacity reaching
348.43 mg·g−1. La modification increased the number of exposed adsorption sites and
improved the phosphate adsorption of adsorbents [35].

Moreover, the addition of La may cause the biochar surface to become substantially
less negatively charged; thus, the repulsion between the phosphate and biochar surface
is weakened, increasing the likelihood of collisions [36]. Therefore, La-modified biochar
can exhibit improved phosphate removal capacity from water. Therefore, in this study,
SBC was synthesized through low-temperature oxygen-limited pyrolysis and was further
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modified with lanthanum nitrate to form La-modified sludge biochar (LaSBC). The effects
of the starting dose, solution pH, contact duration, and phosphate initial concentration
on the adsorption process were investigated. The adsorption mechanism was discussed,
together with the investigation of adsorption isotherms, kinetics, and thermodynamics.
Furthermore, the dynamic adsorption capacity of adsorbents for actual wastewater in a
fixed-bed column was evaluated. Thus, an innovative and cost-effective LaSBC using
lanthanum nitrate as a modifier, proposed in this study, will provide a foundation for the
modification of inexpensive and highly effective adsorbents.

2. Materials and Method
2.1. Preparation of Materials

SBC was produced via a low-temperature limited-oxygen pyrolysis. The dewatering
sludge samples were collected from a sewage treatment plant in Guangxi, China, and then
dried at 105 ◦C for 24 h. The dried sludge was ground and passed through a 120-mesh
sieve. The sieved sludge powder was pyrolyzed in a tubular quartz furnace (SK2-6-12,
Zhongyang Machinery Factory, Zhengzhou, China) at a rate of 10 ◦C/min to 600 ◦C, held
at the target temperature for 3 h, surrounded by nitrogen gas [37,38], and then cooled to
room temperature. The material acquired was labeled SBC.

The LaSBC was produced as follows: the SBC and analytical-grade La nitrate hex-
ahydrate (La(NO3)3

.6H2O) were dissolved in 40 mL ultrapure water at a 1:2 mass ratio. A
magnetic stirrer was used to constantly agitate the mixture for 3 h at room temperature.
When the solid had fully settled, the supernatant was drained off. After drying at 50 ◦C for
12 h and washing with ultrapure water, the LaSBC was finally produced.

2.2. Material Characterization

The surface morphology of various samples was determined via scanning electron
microscopy (SEM; JSM-7900F, JEOL Ltd., Akishima, Japan). The elemental distribution of
the adsorbent was analyzed using a field emission scanning electron microscope–energy-
dispersive spectrometry (EDS; HitachiS-4800, Hitachi High Technology, Akishima, Japan).
The surface functional groups of various samples before and after phosphate adsorption
were investigated using Fourier transform infrared spectroscopy (FTIR; Nicolet Nexus
470, GMI-Technology Solutions, Phoneix, AZ, USA) in the 4000–500 cm−1 range. X-ray
photoelectron spectroscopy (XPS; ESCALAB 250xi, Thermo Fisher Scientific, Waltham,
MA, USA) was employed to analyze changes in functional groups and surface elemental
contents. X-ray diffraction (XRD; X’Pert3 Powder, DKSH Group, Zurich, Switzerland) was
utilized to determine the surface crystal structure of the samples. Further, the point of zero
charge (pHpzc) of various samples was ascertained via a zeta potential analyzer.

2.3. Batch Adsorption

Stock solutions containing 1000 mg·L−1 P(V) were prepared by dissolving potassium
dihydrogen phosphate (KH2PO4) in ultrapure water. The stock solutions were then diluted
to prepare the phosphate solutions required for the subsequent studies. The pH in this
experiment was adjusted by adding 0.1 mol·L−1 HCl or NaOH. The entire adsorption
process was performed in the oscillator of a thermostatic incubator.

Adsorption kinetics and isotherm models were used to investigate the overall inter-
action between phosphate and the adsorbents. The effects of the environmental factors
(pH and adsorbent dosage) on the adsorption of phosphate on LaSBC were explored in
this study. All experiments were repeated thrice. The operation steps of bath adsorption,
calculation, and the fitting of graphs are described in the Supplementary Materials.

2.4. Adsorption and Desorption Experiments

For adsorption experiments, a 250 mL beaker was filled with a 140 mL 100 mg·L−1

phosphate solution, and 0.7 g LaSBC was added to it, and the resulting mixture was shaken
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at 25 ◦C for 24 h. After filtration, the concentration of P in the supernatant liquid was
determined and qe was calculated.

For desorption experiments, filtered LaSBC was washed with ultrapure water for
the removal of residual phosphate solutions, and adsorbents were subsequently dried
in a drying oven at 50 ◦C for 12 h. The obtained product is the material, adsorbed once.
Subsequently, 140 mL 0.2 mol·L−1 NaCl solution was mixed with 0.7 g of the material
adsorbed once in 250 mL beakers. In addition, desorption was performed via constant
shaking at 25 ◦C and 200 r·min−1 for 24 h. The filtered adsorbent, which is the material
recycled once, was washed with ultrapure water until the pH became constant and dried.
The LaSBC was recycled six times to assess the recyclability of the adsorbents.

2.5. Fixed-Bed Column Experiments

To determine the dynamic adsorption capacity of the adsorbents, we used a plexiglass
column with an inner diameter of 10 mm and a height of 100 mm as a fixed-bed column
reactor. Continuous fixed-bed column experiments were performed using an 8 cm deep
fixed-bed column with various adsorbent amounts (1 and 2 g). The P removal effect of the
modified biochar bed was studied at a certain flow rate (5 mL·min−1) and the phosphate
concentration (3.08 mg P/L) used in WWTPs. Dynamic adsorption involved the use of
a peristaltic pump to pump the phosphate solution upward through the column and the
collection of 5 mL samples at a given time interval for its analysis.

3. Results and Discussion
3.1. Material Characterization

The SEM characterizations of the SBC and LaSBC are displayed in Figure 1a–c. In addi-
tion, the EDS image of the LaSBC is presented in Figure 1d. Figure 1a shows a comparatively
uniform block structure with a smooth surface and no holes, which resulted from the preser-
vation of a substantial amount of ash and volatiles at a low preparation temperature [39].
After the modification with La, this smooth block structure was converted into irregular
thick lumps (Figure 1b). The surface of the LaSBC contained abundant layered pores with
numerous rough protuberances and grooves, demonstrating the effective grafting of La
onto the LaSBC surface. This La grafting could also be directly proven by the presence
of La in the EDS image (Figure 1d). Fine pore structures were well developed on the
LaSBC surface after the loading of La3+. The increase in fine pore structures provided more
active sites for phosphate adsorption. After phosphate adsorption, the LaSBC surface was
clustered, and the pores were completely occupied by phosphate (Figure 1c).

The FTIR spectra primarily represent changes in functional groups [40]. Figure 2
displays the FTIR spectra of LaSBC before and after adsorption. The peaks at 3430 and
1399 cm−1 can be attributed to the stretching vibrations of –OH [29,41], and those at 1633
and 1034 cm−1 can be associated with the C=C stretching vibration of the aromatic rings
and the C–O stretching vibration, respectively [42–45]. The LaSBC spectra show an increase
in the intensity and a shift in their –OH peaks compared with the SBC spectrum, suggesting
the existence of several –OH groups that effectively adsorb phosphate [46]. Two distinct
bands are observed at ~766 and ~711 cm−1 when comparing the FTIR spectra of SBC and
LaSBC, which are characteristics of La–OH bond vibrations [47]. Moreover, the absorption
peaks at 1461 and 1337 cm−1 are related to the vibration mode of the NO3

− anion in
the feedstock La(NO3)3. After phosphate adsorption, the bands at 621 and 538 cm−1 are
attributed to O–P–O bending vibrations [48,49]. Furthermore, a new peak at 593 cm−1 in
the LaSBC-P spectrum originates from the La-O coordination between the active La site and
oxygen anion in the phosphate molecule [47,50]. The observed alterations can be attributed
to the phosphate-active La site reaction, which signifies the effective loading of La groups
onto the SBC surface after La modification.
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Figure 2. FTIR spectra of SBC, LaSBC, and LaSBC-P.

Additional information regarding the degree of crystallinity and material structure
of the biochar materials was revealed by the XRD spectra. The XRD spectra of LaSBC
and LaSBC-P (Figure 3) showed diffraction peaks at 13.238◦, 18.901◦, 20.917◦, 31.240◦, and
36.594◦, which can be confidently matched with the characteristic peaks of La(OH)3 [51].
Remarkably, the diffraction peaks corresponding to crystalline carbon structures, such as
cellulose and lignin, were detected at a 2θ 26.662◦ [39,52]. This LaSBC peak was compar-
atively weaker than that of SBC, most likely because the heavier La3+ cations increased
the absorption of X-ray radiation. Such a mechanism implies that lanthanide atoms are
more effective at the diffusion of X-ray energy compared with sodium cations in biochar.
After the exchange of Na+ with La3+, the electron density distribution varied dramatically.
This condition resulted in the variation in beam interference, which reflects the relative
intensities of individual reflections [53].
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3.2. Effect of Environmental Parameters
3.2.1. Effect of pH

The solution pH influences the surface charge properties of the adsorbent, thereby
changing the interaction between the adsorbent and adsorbate and enabling the deter-
mination of the main types of phosphate (including H3PO4, H2PO4

−, HPO4
2−, and

PO4
3−) [36,54]. Figure 5a illustrates the effect of pH on the phosphate absorption on

SBC and LaSBC. The adsorption capacity (qe) and removal rate of LaSBC in the pH 3–11
range were considerably improved compared with those of the SBC. In an acidic envi-
ronment, the capability of the LaSBC to adsorb phosphates increased with an increase in
the pH from 3 to 5. Neutral H3PO4 was the predominant phosphate species in low-pH
solutions (pH < 3). Furthermore, it exhibited poor binding to the adsorption sites of LaSBC,
due to the absence of ion exchange and electrostatic forces during the removal process.
Meanwhile, the main phosphate species transformed into H2PO4

− and HPO4
2− at a pH

between 5 and 7, and protonation left adsorbent surfaces positively charged. As a result,
phosphate species were adsorbed onto the biochar via ion exchange and electrostatic forces.
The maximum removal efficiency of LaSBC reached 99.06% at pH 5. The ion exchange
and electrostatic interactions were less pronounced in an alkaline environment because of
the substantial competition between hydroxide and phosphate and the deprotonation of
the adsorbent surface. The electrostatic attraction between anions and adsorbents weak-
ened with an increase in the OH− concentration [53]. Further, the precipitation of La(III)
hydroxide impeded LaSBC adsorption at pH 11.
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As a result of zeta potential changes, the surface charge of the LaSBC was altered
dramatically with pH (Figure 5b). Over a broad pH range, the electronegativity of the
LaSBC was lower than that of the SBC, indicating that the addition of La likely decreased the
negative charge on the SBC surface via the formation of metal oxides on the surface [11,55].
Given the decrease in the negative charge, phosphate adsorption improved due to a
reduction in the electrostatic repulsion between the biochar and anions [11]. However, in
an extremely alkaline environment (pH 11), the electronegativity of the SBC and the LaSBC
was incredibly high, which revealed that excessively alkaline surroundings negatively
influence phosphate adsorption [11].

3.2.2. Effect of Adsorbent Dosages

The influence of LaSBC dosage on the adsorption process is presented in Figure 6.
With an increase in adsorbent dosage from 0.004 to 0.06 g, the adsorption capacity (qe) of
the LaSBC dropped from 30.77 mg/g to 7.44 mg/g under the same starting phosphate
concentration of 30 mg/L. However, the percentage removal of phosphate improved



Sustainability 2024, 16, 5667 8 of 15

from 68.37% to 99.17%. This result may be due to the quantity of active sites on the
adsorbent and that were accessible for the adsorption process. The active sites accessible
for phosphate adsorption increased with the increase in adsorbent dosage, which allowed
for the adsorption of more phosphate and led to a better removal efficiency. As the amount
of adsorbate in the solution was fixed, a decrease in the saturation of these active sites
with phosphate occurred concurrently with this rise in active sites, which resulted in the
observed decrease in qe values [56].
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3.3. Adsorption Kinetics

To better understand the adsorption process, we used several adsorption models for
investigating the adsorption behavior of adsorbents (Figure 7). The reversible physical
adsorption process is commonly described using a pseudo-first-order model, while the
chemisorption process between an adsorbent and an adsorbate is explained via a pseudo-
second-order model [57].
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Table S1 displays the fitting results obtained using the pseudo-first-order and pseudo-
second-order kinetic models. The coefficient of determination (R2 = 0.978, 0.979, and
0.961, respectively) of the pseudo-second-order kinetic model at 15 ◦C, 25 ◦C, and 45 ◦C
was higher than that of the pseudo-first-order kinetic model (R2 = 0.951, 0.946, and 0.958,
respectively), indicating that chemisorption was predominant in phosphate adsorption on
LaSBC. Additionally, the adsorption rate was controlled by the number of unoccupied sites
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on the LaSBC. The primary cause for this phenomenon was that a significant number of
La-based surface active sites was created following La doping, which paved the way for
the chemical adsorption process [52].

3.4. Adsorption Isotherms

Phosphate adsorption from aqueous solutions on the biochar surface is described
mathematically using the Langmuir or Freundlich isotherm, which facilitates the analysis
of the adsorbent–adsorbate interaction and the structural properties of the adsorption
layer [58]. The fitting curve of unary systems are shown in Figure 8, and the model
parameters are listed in Table 1. The Langmuir model assumes the single-layer adsorption
of the adsorbate on adsorbents, while the Freundlich model implies multilayer adsorption.
Table 1 shows the multilayer adsorption of phosphate on the LaSBC surface, with the
fitted R2 of the Freundlich model for phosphate adsorption at 15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C,
and 65 ◦C being greater than those of the Langmuir model. As a result, the adsorption
of phosphate onto LaSBC was heterogeneous, including interactions between adsorbed
molecules, and an uneven surface energy [59,60]. The affinity of the adsorbate for the
adsorbent is determined using the heterogeneity factor (1/n): the closer the factor is to
zero, the stronger the affinity [58]. According to Table 1, the adsorbent had a sufficient
adsorption capacity for phosphate, as the values of 1/n were less than one.
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Table 1. Isotherm parameters for the phosphate adsorption of LaSBC.

Samples Langmuir Freundlich
Qm (mg/g) KL (L/g) R2 KF (L/g) 1/n R2

LaSBC 15 ◦C 84.249 0.346 0.848 22.670 0.280 0.941
LaSBC 25 ◦C 99.910 0.213 0.871 24.876 0.288 0.940
LaSBC 35 ◦C 114.647 0.206 0.922 29.111 0.284 0.943
LaSBC 45 ◦C 130.314 0.103 0.905 28.458 0.304 0.952
LaSBC 65 ◦C 140.237 0.077 0.924 28.347 0.310 0.960

As can be seen from Figure 8, the adsorption capacity of LaSBC rose with an increase
in the phosphate initial concentration. This condition might have resulted from the high
phosphate concentration, associated with a high driving-force concentration gradient [61].
In addition, more phosphate ions mean more opportunities for adsorbent capture. Fur-
thermore, when the adsorption temperature increased from 15 ◦C to 65 ◦C, the adsorption
capacity of the adsorbent for phosphate gradually increased, indicating that an elevated
temperature is conducive for phosphate removal. This is because an increase in temperature
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accelerates the diffusion rate of phosphate to the active sites on the LaSBC surface [40]. As
shown in Table 1, according to the Langmuir model results, the maximum adsorption capac-
ities of LaSBC toward phosphate were 84.249, 99.910, 114.647, 130.314, and 140.237 mg/g
at the adsorption temperatures of 15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C, and 65 ◦C, respectively. This
result indicates that phosphate adsorption by LaSBC is an endothermic process [62].

The maximum capacity of LaSBC at 65 ◦C of 140.237 mg/g was determined using
the Langmuir model. The greater ion mobility in the solution and increased likelihood
of adsorption sites colliding with phosphate ions accounted for the enhanced adsorption
capacity at higher temperatures [36]. The P adsorption capacity of LaSBC is better than
the majority of other previously published metal-modified sludge adsorbents. Specific
metal-modified adsorbents and their values are listed in Table 2.

Table 2. Comparison of P adsorption capacity of various metal-modified sludge biochars.

Biochar Qm (mg/g) References

La-modified sludge biochar (LaSBC) 140.237 This study
Alkaline sludge biochar 42.51 [63]

Calcium-containing paper-sludge-based biochar 68.49 [64]
Iron-modified waste-biochar-sludge-based biochar 111.0 [25]

Egg shell-modified sludge biochar 154.18 [65]
Oyster shell-modified sludge biochar 129.03 [65]

Dolomite-modified sludge biochar 29.18 [66]

3.5. Adsorption Thermodynamics

The adsorption process is spontaneous and entails modifications of thermodynamic
functions. To establish the spontaneity and nature of the adsorption process, we calculated
the thermodynamic parameters Gibbs free energy, enthalpy change, and entropy change
using the Van ’t Hoff equation, and the obtained thermodynamic parameters are given in
Table S2. As presented in Table S2, the reaction enthalpy (∆H) was 954.963 kJ/mol, which
suggests the rate of the endothermic phosphate adsorption process on the surface of the
LaSBC. This parameter’s positive and large value (>50 kJ mol−1) implies that a chemical
reaction underlies the adsorption process [56]. The free enthalpy of negative adsorption
(∆G) values means that phosphate adsorption onto the LaSBC occurred spontaneously. The
positive values of ∆S indicated the increased unpredictability at the solid–liquid interface
during adsorption. Thus, the adsorption of P ions on La-modified biochar is driven by
entropy [67].

3.6. Adsorption and Desorption Studies

The stability and recyclability of adsorbents in the adsorption–desorption process are
vital to the cost effectiveness of the adsorption process [6,56]. To assess the potential of
the adsorbent for reuse in the subsequent phosphate adsorption study, 0.2 mol·L−1 NaCl
was employed in desorption investigations. The adsorption capacity following desorption
is shown in Figure S1, demonstrating a relatively stable adsorption capacity in six cycles.
Specifically, 88.0% of the initial qe was found to have been retained after the first desorption
regeneration. The adsorption capacity after six cycles was 72.3% of the initial qe, and it
decreased by 15.7% in total. This trend could be due to the formation of La-P compounds
and multilayer structures, saturating adsorption sites and preventing some sites from
further adsorption [56]. The adsorption capacities of LaSBC remained above 70% after
repeated adsorption and desorption, demonstrating that LaSBC is economical and practical
for phosphate adsorption.

3.7. Dynamic Adsorption Studies

To evaluate the practical feasibility of LaSBC, continuous dynamic adsorption ex-
periments were carried out on actual wastewater (P concentration of 3.08 mg/L) using
a fixed-bed column. At the adsorbent dosages of 1 and 2 g, the breakthrough curves for
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LaSBC are displayed in Figure S2. The effective treatment times of the adsorbent were
7.58 and 9.08 h, respectively, when the phosphate content in the effluent surpassed the
current maximum permitted P concentration (0.5 mg·L−1). The difference in time could
be attributed to an increase in the amount of LaSBC, increasing the surface area of the
adsorption layer and binding sites for phosphate adsorption [40]. The results showed that
LaSBC had a long sustainable treatment time, which proves the feasibility of its practical
application in polluted water.

3.8. Adsorption Mechanisms

Figure 9 illustrates the possible mechanisms underlying phosphate adsorption by
LaSBC from an aqueous solution. The appearance of LaPO4 peaks in the XRD of LaSBC-P
suggests that LaPO4 precipitation was one of the key processes for phosphate removal
by LaSBC. La exhibits a strong affinity for phosphate because of the low Ksp value of
LaPO4 (3.7 × 10−23) [29,68]. La produces complex compounds with PO4

3- ions, even at low
concentrations in solutions [69]. Thus, precipitation serves as a crucial adsorption process
for phosphate removal [29].
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The mechanism was further explained through the analysis of the types of phosphate
at various pH levels and through determining the zero charge of LaSBC. The types of
phosphate were varied at different pH levels, as shown in the following equation (Equa-
tion (1)) [51]:

H3PO4 ↔ K1H2PO4
− ↔ K2HPO4

2− ↔ K3PO4
3− (1)

where pK1 = 2.13, pK2 = 7.20, and pK3 = 12.33
Adsorbents containing metal are positively charged at low pH levels because metal

hydroxides are readily protonated, and at high pH levels, they are negatively charged, as
metal hydroxides are easily deprotonated under this condition [11,40,70]. As displayed in
Figure 4b, pHpzc was 7.65 for LaSBC. The LaSBC was positively charged and protonated
(La-OH + H+↔La-OH2+) at a pH of 2.0–7.65. This condition allowed the LaSBC to adsorb
phosphate species H2PO4

− or HPO4
2− through electrostatic attraction. In addition, in the

pH range of 7.65–12.0, LaSBC was negatively charged and deprotonated. The adsorption
of phosphate tended toward a lower pH, and the surface anion exchange process was
followed by OH− release [71]. The solution pH rose as anion exchange advanced [11]. With
an increase in pH, the effect of electrostatic attraction diminished rapidly.

However, hydroxyl groups present in the solution would undergo anion exchange
with phosphate ions and form chemical bonds through inner-sphere complexation to
achieve phosphate removal. Thus, anion exchange and inner-sphere complexation are
inseparable from one another. FTIR and XPS measurements demonstrated that inner-
sphere complexation was a key process in the phosphate removal process [16,36]. The FTIR
spectra of LaSBC-P are displayed in Figure 2. The peak observed at approximately 621 and
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538 cm−1 corresponded to the bending vibration of O-P-O, which proved that phosphate
can be adsorbed effectively on adsorbents [69,72]. The peak noticed at 1399 cm−1 generated
by –OH vibration was attenuated, evidently. This result might be caused by the exchange
of –OH with phosphate to enable inner-sphere complexation [73].

The XPS spectra of LaSBC are displayed in Figure 4. The characteristic peaks of La
3d5/2 for LaSBC were observed at 835.68 and 839.23 eV, and those of La 3d3/2 were ob-
served at 852.28 and 856.08 eV. After phosphate adsorption, the peaks of La 3d5/2 were
observed at 835.78 and 839.33 eV, whereas those of La 3d3/2 were observed at 852.48 and
856.17 eV. The binding energies of La 3d5/2 and 3d3/2 shifted to higher values, which
indicated a possible electron transfer in the valence band of La 3d and the occurrence of
La-O-P inner-sphere complexation [16,35,74]. These results demonstrate that precipita-
tion, electrostatic attraction, and inner-sphere complexation occurred during phosphate
adsorption. These adsorption mechanisms are the same as several adsorption mechanisms
reported in previous studies [75,76].

4. Conclusions

After the modification of lanthanum nitrate, the capability of LaSBC to remove phos-
phate from water considerably improved. The maximum experimental adsorption capacity
for phosphate was 140.237 mg/g at pH 3.0. In addition, the adsorption mechanisms were
predominantly precipitation, electrostatic attraction, and inner-sphere complexation. LaSBC
possessed excellent recycling ability, and 72.3% of the initial qe was found to have been
retained after the sixth desorption cycle. The dynamic adsorption study revealed that the
modified biochar has a long sustainable treatment period. Moreover, our findings prove the
feasibility of biochar as an economical and efficient adsorbent for phosphate-polluted water.
Future studies are expected to improve the effect of pH on LaSBC adsorption capacity.
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//www.mdpi.com/article/10.3390/su16135667/s1, Table S1: Kinetic parameters for the phosphate
adsorption of the LaSBC; Table S2: Thermodynamic parameters for the phosphate adsorption of the
LaSBC; Figure S1: Adsorption capacity after desorption of LaSBC; Figure S2: Effects of dosages on
breakthrough point of LaSBC. Reference [77] is cited in Supplementary Materials.
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